

CXL 1.1 vs CXL 2.0 – What's the difference ?

Danny Volkind – CTO & Co-Founder, UnifabriX Elad Shliselberg – System Architect, UnifabriX

June 15, 2022

Agenda

- A (brief) Introduction to CXL
- CXL 2.0 highlights
- New in CXL 2.0:
 - Switches
 - Fabric Manager
 - Logical Devices
 - Telemetry & Load Management
 - Hot-plug
 - Security
 - Interleaving (if time permits)
- Topics not covered
- Wrap-up.

And the second s

References

Documents

- Compute Express Link[™] (CXL[™]) 1.1 Specification
- CXL[™] 2.0 Specification
- CXL[™] 2.0 ECN
- PCI Express® (PCIe®) Base Specification Revision 5.0
- Unified Extendible Firmware Interface (UEFI) Specification
- CXL Consortium Webinars

CXL – A Revolution in Computer Architecture

- A unified bus enabling a standard way of connecting to the IO, caching and memory sub-systems.
 - Wide industry support and adoption.
- Leverages PCI Express® (PCIe®)
 - Runs on top of a PCIe PHY (Gen5 down to Gen3 in degraded mode).
- Optimized for high-rates and low-latency.
- Comprised of three dynamically multiplexed protocols: CXL.IO, CXL.MEM, CXL.CACHE.

CXLMix & Match Approach

CXL Evolution

Timeline

- CXL 1.0 March 2019
- CXL 1.1 Sep 2019
- CXL 2.0 Nov 2020
- CXL 3.0 in the making
- Wide support and adoption: Over 170 industry leading companies have joined the CXL consortium.
- Server CPU products supporting CXL 1.1 publicly announced and are expected by the end of this year.

How will it look like?

- A CXL device is detected during the PCIe training sequence exchange (APN mechanism).
- The platform FW produces the System Resource Affinity Table (SRAT) and Heterogeneous Memory Attribute Table (HMAT) – both defined in the UEFI specification.
- Provides the OS information about memory initiators and targets in the system and proximity domains.
- Also includes performance information such as latency and bandwidth

fedora kernel: acpi/hmat: HMAT: Memory Flags:0001 Processor Domain:0 Memory Domain:0 fedora kernel: acpi/hmat: HMAT: Memory Flags:0001 Processor Domain:1 Memory Domain:1 fedora kernel: acpi/hmat: HMAT: Memory Flags:0000 Processor Domain:0 Memory Domain:2 fedora kernel: acpi/hmat: HMAT: Memory Flags:0000 Processor Domain:0 Memory Domain:3

devuser@zeus.unifabrix.com RANGE	m ∼>lsmem -b	output	RANGE,S SIZE NO	IZE DE	,NODE,ZONES ZONES
0x000000000000000000000000000000000000	00007fffffff	214748	3648	0	None
0x00000010000000-0x0000	00107fffffff	6657199	3088	0	Normal
0x00000108000000-0x0000	00247fffffff	8589934	5920	1	Normal
0x00000248000000-0x0000	90a47ffffff	54975581	3888	2	Normal
0x000000a480000000-0x00000	98a47ffffff	879609302	2208	3	Normal
Memory block size: Total online memory: Total offline memo <u>r</u> y:	214748364 950046765875	18 52 0			

CXL 2.0 Highlights

- Backward compatibility with CXL 1.1
- Fanout enhancement: switching and pooling
- Fabric Management
- Fine-grain resource allocation
- Telemetry and load-management
- Hot-plug support
- Security
- And much more...

CXL 2.0 Facilitated Scaling Beyond the Platform

Management Virtual Hierarchies Resource Pooling

Security Telemetry Hot Plug

June 15, 2022

Compute Express Link™ and CXL™ Consortium are trademarks of the Compute Express Link Consortium.

Switches

Switches – Hierarchies (VCS)

- Fine-grained resource allocation
- Virtual CXL Switch (VCS)
- Resource and host isolation

Fabric Management

- Central Manager
- Unified management API
- Enumerates System
- Centralized Control per switch
- Can be anything!
 - On board BMC
 - External controller
 - Centralized controller

June 15, 2022

Logical Devices (LD)

- Multi-headed Device (1.1)
 - Multiple host connections
 - Single physical device
- Logical Device (LD)
 - Resides in single virtual hierarchy
 - Functional Interface
- Single Logical Device (SLD)
- What is an MLD?
 - Allows splitting and management of identifiable resources across multiple hosts

June 15, 2022

Compute Express Link™ and CXL™ Consortium are trademarks of the Compute Express Link Consortium.

Multi-Logic Device (MLD)

- Switch oriented
 - Managed by Fabric Manager
- MLD can be split between virtual hierarchies
- Logical Device ID (LDID)
- Up to 16 T3 LDs per MLD

QoS Telemetry + Load Management

- Embedded in memory transactions
- Real-time load telemetry
- Run-time calibration

Compute E×press Link ™

Hot Plug

Hot Add

- Managed Hot Removal
 - GPF Global Persistent Flush
- Management
 - Down Stream ports
 - Fabric Management
 - Allocation
 - MLDs

June 15, 2022

17

- DMTF Security Protocol and Data Model (SPDM) PCIe IDE ECN
- Certificates that can be verified
- Asymmetric Handshake, Symmetric Encryption
 - EC-DSA

Security

- AES-GCM
 - Integrated MAC for data verification
 - Skid Mode for lower latency
- Link Level or Selective stream protection
 - CXL.IO vs CXL.CacheMem
 - Point to Point

Memory Interleaving

- Memory Interleaving groups
- Configurable
 - On address bits 14-8
 - granularity of 256B-16KB
 - Up to 16* way
 - Latency grouping
 - Cross Host Interleaving

Major Topics not Covered

- Speculative Reads
- RCiEP vs DVSEC mapping
- Global Persistent Flush (GPF) + PMEM Support
- Power Budgeting
- Enhanced Error Handling + Isolation
 - Security violations
 - Surprise link down
- Skid Mode
- Link QoS

- CXL represents a major change in server architecture.
- CXL 1.1 enables device-level memory expansion and coherent acceleration modes.
- CXL 2.0 augments CXL 1.1 with enhanced fanout support and a variety of additional features (some of which were reviewed in this webinar).
- CXL supporting platforms are due later this year.
- With CXL enabled applications around the corner, novel mechanisms efficiently utilizing vast scales of resources will enable a whole new world of compute.

Q&A

Please share your questions in the Question Box

······

Thank You

June 16, 2022

Compute Express Link™ and CXL™ Consortium are trademarks of the Compute Express Link Consortium.

22