

Memory Challenges and CXL[™] Solutions

Chris Petersen CXL Director and Hardware Systems Technologist Facebook

Prakash Chauhan

CXL Director and Systems Architect

Google

Today's Presenters

Chris Petersen

CXL[™] Consortium Director Hardware Systems Technologist, Facebook

Prakash Chauhan

CXL[™] Consortium Director Systems Architect, Google

Agenda

- Memory Trends
- Memory Challenges
- Emerging memories for cost reduction
- CXL Enabled Memory Solutions
- CXL.Mem Flows for Type 3 memory devices
- Summary

Memory Trends: Increasing Costs

- Memory an increasing fraction of System Cost
 - Memory Price (cost/bit) flat due to scaling challenges
- Increasing core counts driving Memory Demand
 - Increased Capacity
 - Increased Bandwidth

Data Source: De Dios & Associates

Challenge: DRAM (1T-1C) Cell No Longer Scaling

- Cell Scaling is challenged by the following trends
 - Worsening Aspect ratio > 50:1
 - Burj Khaleefa A/R is 9:1
 - Mechanical stability
 - Layer to Layer registration
 - Reducing Capacitance value
 - Increasing leakage (High K dielectrics)
 - Increasing Cell-Cell interference (coupling capacitance)
 - Variable retention time

Memory Trends: BW vs. CPU Core Count

Source: De Dios & Associates

Compute Express Link[™] and CXL Consortium[™] are trademarks of the Compute Express Link Consortium.

Challenge: Adding Memory Bandwidth is Expensive

- Add channels to CPU
 - Large Sockets
 - Cost, Reliability
 - PCB Layer Count
 - Additional layer per channel
 - Board form-factor
 - Difficulty fitting in standard widths

• Increase Data Rates

- PCB technology
 - Back-drill, SMT connectors, blind vias
 - Faster cross-socket links require ultra low loss materials (balanced bandwidth system)
- Equalization circuits
 - Complexity, cost added to both ends
- 1DPC

7

- Capacity/Granularity Issues
- Exotic DIMMs (LR, 3DS)

Emerging Memories for Cost Reduction

Emerging Cross-Point Memories Scale Well

Compute Express Link[™] and CXL Consortium[™] are trademarks of the Compute Express Link Consortium.

Emerging Memory Attachment Challenge

- Emerging memories are often transactional
 - Non-Deterministic Timing
 - Asymmetric Read/Write timing
- Not ideal for sharing DDR Bus with DRAM

Problems with DIMM-only Based Memory Solutions

- Transactional DIMMs have problems coexisting with regular DDR DIMMs
 - Lowers Bus frequency (2DPC or lost channel B/W)
 - Arbitration between DRAM and Transactional DIMMs impacts efficiency
 - QoS impacts and latency increases for DRAM
 - Slowing access to high performance memory
- Only homogeneous DIMM types are possible
 - Same generation of DDR
 - Memory controller + PHY limitation
 - Same speed grades and timing
 - For bus efficiency and controller implementation
 - Same device geometry
 - To allow interleave across all channels
 - Same power and thermal envelopes

CXL Opportunities

1. CXL is a memory agnostic, but coherent interface

2. CXL can address system design challenges

3. CXL enables new compute and memory architectures

CXL Device Types

CXL: A Common Memory Interface

- CXL provides a common, standard interface for many types of memory
- Media independence: could be used to connect DDR3/4/5, LPDDR3/4/5, Persistent memory, etc
- Enables flexibility for different media characteristics (persistence, latency, BW, endurance, etc)

Heterogeneous Memory Attach - DIMMs vs CXL

- DIMMs are not suitable for Heterogeneous Memory types
- CXL solves the problem
 - Enables a slow memory tier to be completely isolated from main tier
 - Minimal interference between CXL and direct attached DRAM DIMMs
 - Enables other memory types whose bandwidth is additive to existing platform memory bandwidth
 - E.g. DDR4 and DDR5 can coexist in the same platform
 - CXL capacity additive to platform memory capacity
 - With inevitable move towards 1 DIMM per DDR channel, CXL becomes a cost-effective path for capacity expansion

Addressing System Challenges

1. Power density

- DIMM slots tend to be power limited to 15-18W (less in more dense platforms)
- CXL enables:
 - Separation of DIMM slots and CXL Memory slots
 - Higher power CXL Memory devices (e.g. 25W+)
- 2. Memory channel count scaling
 - Parallel DDR* interfaces require 200+ pins
 - CXL enables:
 - Less pins per package = more channels or smaller packages
 - Lower mother board PCB layer counts

Scaling Compute and Memory Independently

• Adds 300GB/s of BW

Common motherboard

- Enables flexibility to add a variety of memory without impacting DDR5 DIMMs
- 800+ less pins/signals vs. 10x DDR5 channels

CXL Type 3 Devices

Memory Write Flow

CXL Type 3 Devices

Memory Write Flow

CXL Type 3 Devices

MemInv used for read and writing MetaValue

Memory Invalidate Flow

CXL: A Scalable Solution for Memory

CXL Memory: More Work Ahead

- Hardware
 - Ecosystem growth and interoperability
 - Form factor development and alignment
 - Power, thermal, mechanical and management interfaces
 - Evaluation and characterization of memory latency
 - Tools and Benchmarks
- Software
 - Non Uniform Memory
 - Job scheduling based on latency, bandwidth, capacity
 - Interleaving
 - Interleave sets for maximum parallelism without impacting performance
 - RAS
 - Unified error reporting and handling for heterogeneous memory types
 - Security
 - Firmware security, media security, data integrity and isolation with heterogeneous media controllers
 - QoS
 - At link and Media level

- CXL enables memory tiering with various media types including emerging memory technologies
- CXL enables media independence and solves system design challenges
- CXL will help us address the future memory roadmap by providing new opportunities to scale memory capacity and bandwidth

Call to Action

- To join the CXL Consortium, visit <u>www.computeexpresslink.org/join</u>
- Download an evaluation copy of the <u>CXL 1.1 specification</u>
- Engage with us on social media:

Thank You!

