
Compute Express LinkTM (CXLTM)
Specification

March 2019

Revision: 1.0

 Compute Express Link Specification
March 2019 2
Revision 1.0

The copyright in this Specification is owned by CXL as a Contractual SIG. Use of this Specification and any related intellectual property (collectively,
the “Specification”), is governed by the terms of the Promoter, Contributor or Adopter Agreement (collectively, “Agreement”) as available by
request from admin@computeexpresslink.org. This specification may only be used by (a) a party to the Agreement, and in compliance with its
terms, or (b) non-parties to the Agreement who have accepted an approved disclaimer of liability and acknowledgement of IP protections.

Any use or implementation of this specification is expressly subject to the terms and conditions described in the CXL Promoter, Contributor, and/or
Adopter Agreement, as appropriate for your status. The implementation or use of industry specifications made available by any other standards
body, such as PCIe, if referenced in a CXL Final Specification (as such term is defined in those agreements) is not governed by CXL policies and
procedures, and may be subject to patent, copyright, and other intellectual property right protection (collectively “IPR”). Licensing of such IPR in a
referenced industry specification shall be governed by the policies and procedures of the organization promulgating such industry specification.

This document is provided ‘as is’ with no warranties, express or implied, including any warranty of merchantability, fitness for a particular purpose,
noninfringement of any third-party intellectual property rights, or any warranty otherwise arising out of any proposal, specification or sample. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

CXL is a trademark of the CXL Contractual SIG

All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

©2019 CXL

mailto:admin@computeexpresslink.org

Contents

 Compute Express Link Specification
March 2019 3
Revision 1.0

Contents

1.0 Introduction ..12
1.1 Audience ..12
1.2 Terminology / Acronyms ..12
1.3 Reference Documents..13
1.4 Motivation and Overview ..13

1.4.1 Compute Express Link ...13
1.4.2 Flex Bus ..14

1.5 Flex Bus Link Features..16
1.6 Flex Bus Layering Overview ...17
1.7 Document Scope ..19

2.0 Compute Express Link System Architecture...21
2.1 Type 1 CXL Device ...21
2.2 Type 2 Device...22

2.2.1 Bias Based Coherency Model ...23
2.2.1.1 Host Bias..23
2.2.1.2 Device Bias ...24
2.2.1.3 Mode Management...24
2.2.1.4 Software Assisted Bias Mode Management...25
2.2.1.5 HW Autonomous Bias Mode Management ..25

2.3 Type 3..26

3.0 Compute Express Link Transaction Layer ..27
3.1 CXL.io...27

3.1.1 PCIe Root Complex Integrated Endpoint ..28
3.1.2 CXL Power Management VDM Format ...29

3.1.2.1 Credit and PM Initialization...32
3.1.3 Optional PCIe Features Required for CXL ...34
3.1.4 Error Propagation ..34
3.1.5 Memory Type Indication on ATS...34
3.1.6 Deferrable Writes...35

3.2 CXL.cache ..35
3.2.1 Overview..35
3.2.2 CXL.cache Channel Description...36

3.2.2.1 Channel Ordering..36
3.2.2.2 Channel Crediting..37

3.2.3 CXL.cache Wire Description ..37
3.2.3.1 D2H Request..38
3.2.3.2 D2H Response ..38
3.2.3.3 D2H Data ...39
3.2.3.4 H2D Request..39
3.2.3.5 H2D Response ..40
3.2.3.6 H2D Data ...40

3.2.4 CXL.cache Transaction Description ...41
3.2.4.1 Device to Host Requests ..41
3.2.4.2 Device to Host Response ...52
3.2.4.3 Host to Device Requests ..53
3.2.4.4 Host to Device Response ...55

3.2.5 Cacheability Details and Request Restrictions..56
3.2.5.1 GO-M Responses...56
3.2.5.2 Device/Host Snoop-GO-Data Assumptions...56
3.2.5.3 Device/Host Snoop/WritePull Assumptions ...57
3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts ...57

Contents

 Compute Express Link Specification
March 2019 4
Revision 1.0

3.2.5.5 Multiple Snoops to the same address..57
3.2.5.6 Multiple Reads to the same cache line...57
3.2.5.7 Multiple Evicts to the same cache line ...57
3.2.5.8 Multiple WriteRequests to the same cache line...58
3.2.5.9 Normal Global Observation (GO)..58
3.2.5.10 Relaxed Global Observation (FastGO)..58
3.2.5.11 Evict to Device-Attached Memory..58
3.2.5.12 Memory Type on CXL.cache ...58
3.2.5.13 General Assumptions ..58

3.3 CXL.mem..59
3.3.1 Introduction..59
3.3.2 M2S Request (Req) ..60
3.3.3 M2S Request with Data (RwD) ..63
3.3.4 S2M No Data Response (NDR)..64
3.3.5 S2M Data Response (DRS) ...65
3.3.6 Forward Progress & Ordering Rules ..65

3.4 Transaction Flows to Device-Attached Memory...66
3.4.1 Flows for Type 1 and Type 2 Devices ...66

3.4.1.1 Notes and Assumptions ...66
3.4.1.2 Requests from Host..66
3.4.1.3 Requests from Device in Host & Device Bias...72

3.5 Flows for Type 3 Devices ..75

4.0 Compute Express Link Link Layers..77
4.1 CXL.io Link Layer ..77
4.2 CXL.mem and CXL.cache Common Link Layer..79

4.2.1 Introduction..79
4.2.2 High-Level CXL.cache/CXL.mem Flit Overview...80
4.2.3 Slot Format Definition ...85

4.2.3.1 RSVD Fields..85
4.2.3.2 H2D & M2S Formats...85
4.2.3.3 D2H & S2M Formats...92

4.2.4 Link Layer Registers ..98
4.2.5 Flit Packing Rules ...98
4.2.6 Link Layer Control Flit...100
4.2.7 Link Layer Initialization...103
4.2.8 CXL.cache/CXL.mem Link Layer Retry...104

4.2.8.1 LLR Variables..104
4.2.8.2 ACK Forcing ..106
4.2.8.3 LLR Control Flits..107
4.2.8.4 RETRY Framing Sequences..108
4.2.8.5 LLR State Machines ...108
4.2.8.6 Interaction with Physical Layer Reset or Reinitialization...112
4.2.8.7 CXL.cache/CXL.mem Flit CRC ...113

4.2.9 CXL.cache-Side Poison and Viral ...114
4.2.9.1 Viral ..114

5.0 Compute Express Link ARB/MUX ..115
5.1 Virtual LSM States...116

5.1.1 Rules for Virtual LSM State Transitions Across Link..118
5.1.1.1 General Rules ...118
5.1.1.2 State Request ALMP..118
5.1.1.3 State Status ALMP..120

5.2 ARB/MUX Link Management Packets...123
5.2.1 ARB/MUX Bypass Feature ...124

5.3 Arbitration and Data Multiplexing/Demultiplexing ..124

6.0 Flex Bus Physical Layer ..126

Contents

 Compute Express Link Specification
March 2019 5
Revision 1.0

6.1 Overview ...126
6.2 Flex Bus.CXL Framing and Packet Layout...127

6.2.1 Ordered Set Blocks and Data Blocks..127
6.2.2 Protocol ID[15:0]...128
6.2.3 x16 Packet Layout ..129
6.2.4 x8 Packet Layout ...130
6.2.5 x4 Packet Layout ...134
6.2.6 x2 Packet Layout ...134
6.2.7 x1 Packet Layout ...134
6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary..134
6.2.9 Framing Errors..135

6.3 Link Training..136
6.3.1 PCIe vs Flex Bus.CXL mode selection...136

6.3.1.1 Hardware Autonomous Mode Negotiation ...136
6.3.1.2 Flex Bus.CXL Negotiation with Maximum Supported Link

Speed of 8GT/s or 16GT/s ...139
6.3.1.3 Link Width Degradation and Speed Downgrade ..140

6.4 Recovery.Idle and Config.Idle Transitions to L0 ..140
6.5 L1 Abort Scenario ...140
6.6 Retimers and Low Latency Mode ...140

6.6.1 Control SKP Ordered Set Frequency and L1/Recovery Entry ...141

7.0 Control and Status Registers ...142
7.1 Configuration Space Registers ..142

7.1.1 PCI Express Designated Vendor-Specific Extended
Capability (DVSEC) for CXL Device..142
7.1.1.1 DVSEC Flex Bus Capability (Offset 0Ah) ...144
7.1.1.2 DVSEC Flex Bus Control (Offset 0Ch) ..144
7.1.1.3 DVSEC Flex Bus Status (Offset 0Eh)...145
7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)..145
7.1.1.5 DVSEC Flex Bus Status2 (Offset 12h) ..145
7.1.1.6 DVSEC Flex Bus Lock (Offset 14h) ..145
7.1.1.7 DVSEC Flex Bus Range registers..145

7.2 Memory Mapped Registers ...147
7.2.1 Upstream and Downstream Port Registers ...149

7.2.1.1 CXL Downstream Port RCRB ...149
7.2.1.2 CXL Upstream Port RCRB ...151
7.2.1.3 Upstream and Downstream Flex Bus Port DVSEC...153

7.2.2 CXL Upstream and Downstream Port Subsystem Component Registers................................155
7.2.2.1 CXL.cache and CXL.mem Registers ..155
7.2.2.2 CXL ARB/MUX Registers..163

7.3 CXL RCRB Base Register ...163

8.0 Reset, Initialization, Configuration and Manageability ..165
8.1 Compute Express Link Boot and Reset Overview ...165

8.1.1 General ..165
8.1.2 Comparing CXL and PCIe behavior ...165

8.2 Compute Express Link Device Boot Flow ...166
8.3 Compute Express Link Device Warm Reset Entry Flow..166
8.4 Compute Express Link Device Cold Reset Entry Flow...167
8.5 Compute Express Link Device Sleep State Entry Flow ...168
8.6 Function Level Reset (FLR) ..169
8.7 Hotplug ..169
8.8 Software Enumeration ..170

8.8.1 Software Model..170
8.8.2 PCIe software view of the hierarchy ...170

8.8.2.1 BIOS View ..171

Contents

 Compute Express Link Specification
March 2019 6
Revision 1.0

8.8.2.2 OS View ..171
8.8.3 BIOS Enumeration Flow...171
8.8.4 Software View of CXL.cache...173

8.9 Accelerators with Multiple Flex Bus Links ..173
8.9.1 Single CPU Topology ..173
8.9.2 Multiple CPU Topology ..175

8.10 Software view of HDM...176
8.10.1 Accelerator HMAT Fragment table format...176

8.11 Manageability Model for CXL Devices Matches PCIe...177

9.0 Power Management..178
9.1 Statement of Requirements..178
9.2 Policy based Runtime Control - Idle Power - Protocol Flow ..178

9.2.1 General ..178
9.2.2 Package-Level Idle (C-state) Entry and Exit Coordination ..178
9.2.3 PkgC Entry flows ...180
9.2.4 PkgC Exit Flows..181

9.3 Compute Express Link Physical Layer Power Management States ...184
9.4 Compute Express Link Power Management..184

9.4.1 Compute Express Link PM Entry Phase 1...184
9.4.2 Compute Express Link PM Entry Phase 2...185
9.4.3 Compute Express Link PM Entry Phase 3...187
9.4.4 Compute Express Link Exit from ASPM L1 ..189

9.5 CXL.io Link Power Management ...189
9.5.1 CXL.io ASPM Phase L1 Entry..189
9.5.2 CXL.io ASPM Phase 2 Entry ..190
9.5.3 CXL.io ASPM Phase 3 Entry ..190

9.6 CXL.cache + CXL.mem Link Power Management ..191

10.0 Security...192

11.0 Reliability, Availability and Serviceability ..193
11.1 Supported RAS Features..193
11.2 CXL Error Handling...193

11.2.1 Protocol and Link Layer Error Reporting..194
11.2.1.1 CXL Downstream Port (DP) Detected Errors. ...194

11.2.2 CXL Device Error Handling..195
11.2.2.1 CXL.mem and CXL.cache Errors...195
11.2.2.2 CXL Device Error Handling Flows..196

11.3 CXL Link Down Handling..197
11.4 CXL Viral Handling ..197
11.5 CXL Error Injection..198

12.0 Platform Architecture..199
12.1 Flex Bus connector definition ..199

12.1.1 Connector type ..199
12.1.2 Pin count...199

12.2 Topologies..201
12.3 Protocol detection ..201
12.4 AIC form factor ...201
12.5 AIC Power Envelope...201
12.6 Flexbus Slot Auxiliary Power ..201

13.0 Performance Considerations ...202

A Taxonomy..203
A.1 Accelerator Usage Taxonomy..203
A.2 Bias Model Flow Example – From CPU ..204

Contents

 Compute Express Link Specification
March 2019 7
Revision 1.0

A.3 CPU Support for Bias Modes..205
A.3.1 Remote Snoop Filter..205
13.0.1 Directory in Accelerator Attached Memory ...205

A.4 Giant Cache Model..205

Figures
1 Conceptual Diagram of Accelerator Attached to Processor via CXL...14
2 CPU Flex Bus Port Example...15
3 Flex Bus Usage Model Examples ..16
4 Remote Far Memory Usage Model Example..16
5 Conceptual Diagram of Flex Bus Layering ..18
6 CXL Device Types ..21
7 Type 1 - Device with Cache ...22
8 Type 2 Device - Device with Memory..22
9 Type 2 Device - Host Bias ..24
10 Type 2 Device - Device Bias ..24
11 Type 3 - Memory Expander...26
12 Flex Bus Layers -- CXL.io Transaction Layer Highlighted...28
13 CXL Power Management Messages Packet Format..29
14 ATS 64-bit Request with CXL Indication ...34
15 ATS Translation Completion Data Entry with CXL indication ..35
16 CXL.cache Channels ...36
17 CXL.cache Read Behavior...42
18 CXL.cache Read0 Behavior..43
19 CXL.cache Device to Host Write Behavior...44
20 CXL.cache WrInv Transaction...45
21 WOWrInv/F with FastGO/ExtCmp ..46
22 CXL.cache Read0-Write Semantics..47
23 CXL.cache Snoop Behavior ...54
24 Legend..66
25 Example Cacheable Read from Host...67
26 Example Read for Ownership from Host...68
27 Example Non Cacheable Read from Host ...69
28 Example Ownership Request from Host - No Data Required...69
29 Example Flush from Host...70
30 Example Weakly Ordered Write from Host..70
31 Example Strongly Ordered Write from Host with Invalid Host Caches..71
32 Example Strongly Ordered Write from Host with Valid Caches..71
33 Example Device Read to Device-Attached Memory ...72
34 Example Device Write to Device-Attached Memory in Host Bias...73
35 Example Device Write to Device-Attached Memory ..74
36 Example Host to Device Bias Flip ...75
37 Read from Host...76
38 Write from Host..76
39 Flex Bus Layers -- CXL.io Link Layer Highlighted ..78
40 Flex Bus Layers -- CXL.cache + CXL.mem Link Layer Highlighted ...80
41 CXL.cache/.mem Protocol Flit Overview ...81
42 CXL.cache/.mem All Data Flit Overview...81
43 H0 - H2D Req + H2D Resp ...85
44 H1 - H2D Data Header + H2D Resp + H2D Resp..86
45 H2 - H2D Req + H2D Data Header..86
46 H3 - 4 H2D Data Header ...87
47 H4 - M2S RwD Header...87

Contents

 Compute Express Link Specification
March 2019 8
Revision 1.0

48 H5 - M2S Req ..88
49 G0 - H2D/M2S Data ..88
50 G0 - M2S Byte Enable..89
51 G1 - 4 H2D Resp...89
52 G2 - H2D Req + H2D Data Header + H2D Resp ..90
53 G3 - 4 H2D Data Header + H2D Resp..90
54 G4 - M2S Req + H2D Data Header ...91
55 G5 - M2S RwD Header + H2D Resp..91
56 H0 - D2H Data Header + 2 D2H Resp + S2M NDR...92
57 H1 - D2H Req + D2H Data Header..92
58 H2 - 4 D2H Data Header + D2H Resp..93
59 H3 - S2M DRS Header + S2M NDR...93
60 H4 - 2 S2M NDR ...94
61 H5 - 2 S2M DRS..94
62 G0 - D2H Data ...95
63 G0 - D2H/S2M Byte Enable ...95
64 G1 - D2H Req + 2 D2H Resp ...96
65 G2 - D2H Req + D2H Data Header + D2H Resp ..96
66 G3 - 4 D2H Data Header ...97
67 G4 - S2M DRS Header + 2 S2M NDR ...97
68 G5 - 3 S2M NDR..98
69 G6 - 3 S2M DRS ..98
70 LLCRD Flit Format (Only Slot 0 is Valid. Others are Reserved) ...102
71 Retry Flit Format (Only Slot 0 is Valid. Others are Reserved)..102
72 Init Flit Format (Only Slot 0 is Valid. Others are Reserved) ..103
73 Retry Buffer and Related Pointers...107
74 CXL.cache/mem Replay Diagram...112
75 CRC Data Mask for 527 bit Flit ..114
76 Flex Bus Layers -- CXL ARB/MUX Highlighted ...115
77 CXL Entry to Active Flow ...119
78 CXL Entry to PM State ..120
79 CXL Recovery Exit Flow..121
80 CXL Exit from PM State ..122
81 CXL Recovery Error Flow...123
82 ARB/MUX Link Management Packet Format ..123
83 Flex Bus Layers -- Physical Layer Highlighted ...126
84 Flex Bus x16 Packet Layout..129
85 Flex Bus x16 Protocol Interleaving Example ..130
86 Flex Bus x8 Packet Layout ..131
87 Flex Bus x8 Protocol Interleaving Example ...133
88 Flex Bus x4 Packet Layout ..134
89 CXL.io TLP Ending on Flit Boundary Example..135
90 Flex Bus Mode Negotiation During Link Training (Sample Flow)...139
91 PCIe DVSEC for Flex Bus Device...143
92 CXL Memory Mapped Register Regions..149
93 CXL Downstream Port RCRB..150
94 CXL Upstream Port RCRB..152
95 PCIe DVSEC for Flex Bus Port..153
96 CXL Device Warm Reset Entry Flow ...167
97 CXL Device Cold Reset Entry Flow ..168
98 CXL Device Sleep State Entry Flow...169
99 PCIe software view...170
100 One CPU connected to one accelerator via two Flex Bus links ..173
101 Two CPU connected to one accelerator via two Flex Bus links ..175
102 PkgC Entry Flows ..180

Contents

 Compute Express Link Specification
March 2019 9
Revision 1.0

103 PkgC Exit Flows - Triggered by device access to system memory..181
104 PkgC Exit Flows - Execution Required by Device..182
105 PkgC Exit Flows - Execution Required by Processor...183
106 CXL Link PM Phase 1...185
107 CXL Link PM Phase 2...186
108 CXL PM Phase 3 ..188
109 Electrical Idle ..188
110 ASPM L1 Entry Phase 1..190
111 CXL Error Handling ..194
112 Standard x16 PCIe Connector Pin List - For Reference Purpose Only..200
113 Profile D - Giant Cache Model...206

Tables
1 Terminology / Acronyms..12
2 Reference Documents ...13
3 CXL Power Management Messages -- Data Payload Fields Definitions ..31
4 Optional PCIe Features Required For CXL..34
5 CXL.cache Channel Crediting ...37
6 CXL.cache - D2H Request Fields...38
7 Non Temporal Encodings ..38
8 CXL.cache - D2H Response Fields..38
9 CXL.cache - D2H Data Header Fields ..39
10 CXL.cache – H2D Request Fields ..39
11 CXL.cache - H2D Response Fields..40
12 RSP_PRE Encodings ...40
13 Cache State Encoding for H2D Response...40
14 CXL.cache - H2D Data Header Fields ..40
15 CXL.cache. – Device to Host Requests..47
16 D2H Request (targeting non-device-attached memory) supported H2D Responses..51
17 D2H Request (Targeting Device-attached Memory) Supported Responses..51
18 D2H Response Encodings..52
19 CXL.cache – Mapping of Host to Device Requests & Responses ..54
20 H2D Response Opcode Encodings ..55
21 M2S Request Fields ..60
22 M2S Req Memory Opcodes ..61
23 Meta Data Field Definition ...61
24 Meta0-State Value Definition...61
25 Snoop Type Definition ..62
26 M2S Req Usage...62
27 M2S RwD Fields..63
28 M2S RwD Memory Opcodes ...63
29 M2S RwD Usage ...64
30 S2M NDR Fields..64
31 S2M NDR Opcodes..64
32 S2M DRS Fields ..65
33 S2M DRS Opcodes ..65
34 CXL.cache/CXL.mem Flit Header Definition...82
35 Flit Type Encoding ..82
36 Legal values of Sz & BE Fields..83
37 CXL.cache/CXL.mem Credit Return Encodings ..83
38 Slot Format Field Encoding...84
39 H2D/M2S Slot Formats ...84
40 D2H/S2M Slot Formats ...85
41 CXL.cache/CXL.mem Link Layer Control Types ..100

Contents

 Compute Express Link Specification
March 2019 10
Revision 1.0

42 CXL.cache/CXL.mem Link Layer Control Details...100
43 Control Flits and Their Effect on Sender and Receiver States..108
44 Local Retry State Transitions...110
45 Remote Retry State Transition..112
46 Virtual LSM States Maintained Per Link Layer Interface..116
47 ARB/MUX Multiple Virtual LSM Resolution Table ..117
48 ARB/MUX State Transition Table...117
49 ALMP Byte 2 and Byte 3 Encoding..124
50 Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode ...127
51 Flex Bus.CXL Protocol IDs...128
52 Protocol ID Framing Errors...135
53 Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation..136
54 Additional Information on Symbols 8-9 of Modifed TS1/TS2 Ordered Set...137
55 Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets ..138
56 Rules of Enable Low Latency Mode Features...141
57 Register Attributes ...142
58 PCI Express DVSEC Register Settings for Flex Bus Device..143
59 CXL Memory Mapped Registers Regions ...148
60 CXL Downstream Port Supported PCIe Capabilities and Extended Capabilities..150
61 CXL Upstream Port Supported PCIe Capabilities and Extended Capabilities..153
62 PCI Express DVSEC Header Registers Settings for Flex Bus Port ..153
63 CXL Subsystem Component Register Ranges in MEMBAR0..155
64 CXL.cache and CXL.mem Architectural Registers...155
65 Event Sequencing for Reset, Sx, and ADR Flows...166
66 Interaction Between CPU Cache Flush Instructions and CXL.cache...173
67 Memory Decode rules in presence of one CPU/two Flex Bus links ..174
68 Memory Decode rules in presence of two CPU/two Flex Bus links ..176
69 Runtime-Control - CXL Versus PCIe Control Methodologies..178
70 CXL RAS Features ...193
71 Device Specific Error Reporting and Nomenclature Guidelines...195
72 Accelerator Usage Taxonomy ...203

Revision History

 Compute Express Link Specification
March 2019 11
Revision 1.0

Revision History

§ §

Revision Description Date

1.0 Initial release. March, 2019

Introduction

 Compute Express Link Specification
March 2019 12
Revision 1.0

1.0 Introduction

1.1 Audience
The information in this document is intended for anyone designing or architecting any
hardware or software associated with Compute Express Link (CXL) or Flex Bus.

1.2 Terminology / Acronyms
Please refer to the PCI Express Specification for additional terminology and acronym
definitions beyond those listed in Table 1.

Caution: Please note that references to IAL or Rlink should be interpreted as CXL, references to
Intel Flex Bus should be interpreted as Flex Bus, and references to Intel Accelerator
Link should be interpreted as Compute Express Link. Not all figures have been updated
yet to reflect the new terminology and there may be overlooked references to prior
terminology in the specification text.

Table 1. Terminology / Acronyms

Term / Acronym Definition

CXL
Compute Express Link, a low-latency, high-bandwidth discrete or on-package link that supports dynamic
protocol muxing of coherency, memory access, and IO protocols, thus enabling an accelerator to access
system memory as a caching agent and/or Host system memory.

CXL.io PCIe-based non coherent I/O protocol with enhancements for accelerator support.

CXL.mem Memory access protocol that supports device-attached memory.

CXL.cache Agent coherency protocol that supports device caching of Host memory.

CXL Flex Bus A flexible high-speed port that is statically configured to support either PCI Express or Compute Express
Link.

Flex Bus.CXL CXL protocol over a Flex Bus interconnect.

Smart I/O Enhanced I/O with additional protocol support.

PCIe RCiEP PCIe Root Complex Integrated Endpoint.

RCEC Root Complex Event Collector, collects errors from PCIe RCiEPs.

MCP Multi-chip Protocol, an on-package connection typically used between a CPU die and a companion die.

SVM Shared Virtual Memory

HDM
Host-managed Device Memory. Device-attached memory mapped to system coherent address space and
accessible to Host using standard write-back semantics. Memory located on a CXL device can either be
mapped as HDM or PDM.

PDM
Private Device memory. Device-attached memory not mapped to system address space or directly
accessible to Host as cacheable memory. Memory located on PCIe devices is of this type. Memory located
on a CXL device can either be mapped as PDM or HDM.

Accelerator
Devices that may be used by software running on Host processors to offload or perform any type of
compute or I/O task. Examples of accelerators include programmable agents (such as GPU/GPCPU), fixed-
function agents, or reconfigurable agents such as FPGAs.

Introduction

 Compute Express Link Specification
March 2019 13
Revision 1.0

1.3 Reference Documents

1.4 Motivation and Overview

1.4.1 Compute Express Link

CXL is a dynamic multi-protocol technology designed to support a vast spectrum of
accelerators. CXL provides a rich set of protocols that include I/O semantics similar to
PCIe (i.e., CXL.io), caching protocol semantics (i.e., CXL.cache), and memory access
semantics (i.e., CXL.mem) over a discrete or on-package link. Depending on the
particular accelerator usage model, all of the protocols or only a subset of the protocols
may be enabled; however, CXL.io is always required for discovery and enumeration,
error reporting, and host physical address (HPA) lookup. A key benefit of CXL is that it
provides a low-latency, high-bandwidth path for an accelerator to access the system.
The figure below is a conceptual diagram showing a device attached to an Intel Host
processor via CXL. Note that the CXL link is shown as a direct-attached CPU link and
cannot reside behind a PCIe switch (although this does not preclude the concept of a
potential CXL switch in the future).

MC Memory Controller

HBM High Bandwidth Memory

Home Agent This is the agent on the Host that is responsible for resolving system wide coherency for a given address

DCOH This is the agent on the device that is responsible for resolving coherency with respect to device caches
and managing Bias states

SF Snoop Filter

AIC Add In Card

DP Downstream Port

UP Upstream Port

VMM Virtual Machine Manager

AiA Accelerator Interfacing Architecture

Table 2. Reference Documents

Document Chapter Reference Document No./Location

PCI Express Base Specification
Revision 5.0 N/A www.pcisig.com

Table 1. Terminology / Acronyms

Term / Acronym Definition

http://www.pcisig.com

Introduction

 Compute Express Link Specification
March 2019 14
Revision 1.0

1.4.2 Flex Bus

A Flex Bus port allows designs to choose between providing native PCIe protocol or CXL
over a high-bandwidth, off-package link; the selection happens during boot time via
auto negotiation and depends on the device that is plugged into the slot. Flex Bus uses
PCIe electricals, making it compatible with PCIe retimers, and adheres to standard PCIe
form factors for an add-in card.

Figure 2 provides a high-level diagram of a Flex Bus port implementation, illustrating
both a slot implementation and a custom implementation where the device is soldered
down on the motherboard. The slot implementation can accommodate either a Flex
Bus.CXL card or a PCIe card. One or two optional retimers can be inserted between the
CPU and the device to extend the distance. As illustrated in Figure 3, this flexible
innovation port can be used to attach coherent accelerators or smart I/O to a Host
processor.

Figure 1. Conceptual Diagram of Accelerator Attached to Processor via CXL

Introduction

 Compute Express Link Specification
March 2019 15
Revision 1.0

Figure 2. CPU Flex Bus Port Example

Introduction

 Compute Express Link Specification
March 2019 16
Revision 1.0

Figure 4 illustrates how a Flex Bus.CXL port can be used as a memory expansion port.

1.5 Flex Bus Link Features
Flex Bus provides a point-to-point interconnect that can transmit native PCIe protocol
or dynamic multi-protocol CXL to provide I/O, coherency, and memory protocol over
PCIe electricals. The primary link attributes include support of the following features:

• Native PCIe mode, full feature support as defined in the PCIe specification
• CXL mode, as defined in this specification
• Static configuration of PCIe vs CXL protocol mode
• Signaling rate of 8 GT/s, 16 GT/s or 32 GT/s for CXL mode
• Link width support for x16, x8, x4, x2, and x1 (degraded mode) in CXL mode
• Bifurcation (aka Link Subdivision) support to x4 in CXL mode

Figure 3. Flex Bus Usage Model Examples

Figure 4. Remote Far Memory Usage Model Example

Introduction

 Compute Express Link Specification
March 2019 17
Revision 1.0

1.6 Flex Bus Layering Overview
Flex Bus architecture is organized as multiple layers, as illustrated in Figure 5. The CXL
transaction (protocol) layer is subdivided into logic that handles CXL.io and logic that
handles CXL.mem and CXL.cache; the CXL link layer is subdivided in the same manner.
Note that the CXL.mem and CXL.cache logic are combined within the transaction layer
and within the link layer. The CXL link layer interfaces with the CXL ARB/MUX, which
interleaves the traffic from the two logic streams. Additionally, the PCIe transaction and
data link layers are optionally implemented and, if implemented, are converged with
the CXL.io transaction and link layers, respectively. As a result of the link training
process, the transaction and link layers are configured to operate in either PCIe mode
or CXL mode. While a host CPU would most likely implement both modes, an
accelerator AIC may choose to implement only the CXL mode. The logical sub-block of
the Flex Bus physical layer is a converged logical physical layer that can operate in
either PCIe mode or CXL mode, depending on the results of alternate mode negotiation
during the link training process.

Introduction

 Compute Express Link Specification
March 2019 18
Revision 1.0

Figure 5. Conceptual Diagram of Flex Bus Layering

Introduction

 Compute Express Link Specification
March 2019 19
Revision 1.0

1.7 Document Scope
This document specifies the functional and operational details of the Flex Bus
interconnect and the CXL protocol. It describes the CXL usage model and defines how
the transaction, link, and physical layers operate. Reset, power management, and
initialization/configuration flows are described. Additionally, RAS behavior is described.
Please refer to the PCIe specification for PCIe protocol details.

The contents of this document are summarized in the following chapter highlights:
• Section 2.0, “Compute Express Link System Architecture” on page 21 – This

chapter describes different profiles of devices that might attach to a CPU root
complex over a CXL capable link. For each device profile, a description of the typical
workload and system resource usage is provided along with an explanation of
which CXL capabilities are relevant for that workload. Additionally, a Bias Based
coherency model is introduced which optimizes the performance for accesses to
device-attached memory depending on whether the memory is in host bias, during
which the memory is expected to be accessed mainly by the Host, or device bias,
during which the memory is expected to be accessed mainly by the device.

• Section 3.0, “Compute Express Link Transaction Layer” on page 27 – The
transaction layer chapter is divided into subsections that describe details for CXL.io,
CXL.cache, and CXL.mem. The CXL.io protocol is required for all implementations,
while the other two protocols are optional depending on expected device usage and
workload. The transaction layer specifies the transaction types, transaction layer
packet formatting, transaction ordering rules, and crediting. The CXL.io protocol is
based on the “Transaction Layer Specification” chapter of the PCIe base
specification; any deltas from the PCIe base specification are described in this
chapter. These deltas include PCIe Vendor_Defined Messages for reset and power
management, modifications to the PCIe ATS request and completion formats to
support accelerators, and Deferred Writes instruction definitions. For CXL.cache,
this chapter describes the channels in each direction (i.e., request, response, and
data), the transaction opcodes that flow through each channel, and the channel
crediting and ordering rules. The transaction fields associated with each channel
are also described. For CXL.mem, this chapter defines the message classes in each
direction, the fields associated with each message class, and the message class
ordering rules. Finally, this chapter provides flow diagrams that illustrate the
sequence of transactions involved in completing host-initiated and device-initiated
accesses to device-attached memory.

• Section 4.0, “Compute Express Link Link Layers” on page 77 – The link layer is
responsible for reliable transmission of the transaction layer packets across the Flex
Bus link. This chapter is divided into subsections that describe details for CXL.io
and for CXL.cache and CXL.mem. The CXL.io protocol is based on the “Data Link
Layer Specification” chapter of the PCIe base specification; any deltas from the
PCIe base specification are described in this chapter. For CXL.cache and CXL.mem,
the 528-bit flit layout is specified. The flit packing rules for selecting transactions
from internal queues to fill the three slots in the flit are described. Other features
described for CXL.cache and CXL.mem include the retry mechanism, link layer
control flits, CRC calculation, and viral and poison.

• Section 5.0, “Compute Express Link ARB/MUX” on page 115 – The ARB/MUX
arbitrates between requests from the CXL link layers and multiplexes the data to
forward to the physical layer. On the receive side, the ARB/MUX decodes the flit to
determine the target to forward transactions to the appropriate CXL link layer.
Additionally, the ARB/MUX maintains virtual link state machines for every link layer
it interfaces with, processing power state transition requests from the local link
layers and generating ARB/MUX link management packets to communicate with the
remote ARB/MUX.

• Section 6.0, “Flex Bus Physical Layer” on page 126 – The Flex Bus physical layer is
responsible for training the link to bring it to operational state for transmission of

Introduction

 Compute Express Link Specification
March 2019 20
Revision 1.0

PCIe packets or CXL flits. During operational state, it prepares the data from the
CXL link layers or the PCIe link layer for transmission across the Flex Bus link;
likewise, it converts data received from the link to the appropriate format to pass
on to the appropriate link layer. This chapter describes the deltas from the PCIe
base specification to support the CXL mode of operation. The framing of the CXL
flits and the physical layer packet layout are described. The mode selection process
to decide between CXL mode or PCIe mode, including hardware autonomous
negotiation and software controlled selection is also described. Finally, CXL low
latency modes are described.

• Section 7.0, “Control and Status Registers” on page 142 – This chapter provides
details of the Flex Bus and CXL control and status registers. It describes the various
address spaces in which the registers are located. In the memory space, this
chapter describes how the upstream and downstream port root complex register
block (RCRB) regions are organized and how the upstream and downstream port
MEMBAR0 regions are organized. It also differentiates between registers required
to be implemented in a Flex Bus Host versus the registers required to be
implemented in a CXL device.

• Section 8.0, “Reset, Initialization, Configuration and Manageability” on page 165 –
This chapter describes the flows for boot, warm reset entry, cold reset entry, and
sleep state entry; this includes the transactions sent across the link to initiate and
acknowledge entry as well as steps taken by a CXL device to prepare for entry into
each of these states. Additionally, this chapter describes the software enumeration
model and how the BIOS view of the hierarchy differs from the OS view due to the
fact that the CXL link is not exposed to the OS. This chapter discusses different
accelerator topologies, i.e., single CPU, multiple CPUs, and multiple nodes; for each
topology, software management of the multiple Flex Bus links involved is described.

• Section 9.0, “Power Management” on page 178 – This chapter provides details on
protocol specific link power management and physical layer power management. It
describes the overall power management flow in three phases: protocol specific PM
entry negotiation, PM entry negotiation for ARB/MUX interfaces (managed
independently per protocol), and PM entry process for the physical layer. The PM
entry process for CXL.cache and CXL.mem is slightly different than the process for
CXL.io; these processes are described in separate subsections in this chapter.

• Section 10.0, “Security” on page 192 – This chapter is a placeholder for non-
product specific security requirements; currently there are no such requirements.

• Section 11.0, “Reliability, Availability and Serviceability” on page 193 – This chapter
describes the RAS capabilities supported by a CXL host and a CXL device. It
describes how various types of errors are logged and signaled to the appropriate
hardware or software error handling agent. It describes the link down flow and the
viral handling expectation. Finally, it describes the error injection requirements.

• Section 12.0, “Platform Architecture” on page 199 – This chapter provides details
on the Flex Bus connector, platform topologies, AIC form factors, and AIC power
envelope. It also discusses an out-of-band protocol detection mechanism.

• Section 13.0, “Performance Considerations” on page 202 – This chapter describes
hardware and software considerations for optimizing performance across the Flex
Bus link in CXL mode.

§ §

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 21
Revision 1.0

2.0 Compute Express Link System Architecture

This section describes the performance advantages and key features of CXL. CXL is a
high performance I/O bus architecture used to interconnect peripheral devices that can
be either traditional non-coherent IO devices or accelerators with additional
capabilities. The types of devices that can attach and the overall system architecture is
described in the figure below.

Before we dive into the details of each type of CXL device, here’s a foreword about
where CXL is not applicable.

Traditional non-coherent IO devices rely primarily on standard Producer-Consumer
ordering models and execute against Host-attached memory. For such devices, there’s
little interaction with the Host except for work submission and signaling on work
completion boundaries. Such accelerators also tend to work on data streams or large
contiguous data objects. These devices typically do not need the advanced capabilities
provided by CXL and traditional PCIe is sufficient as an accelerator attach medium. The
following sections describe various profiles of CXL devices.

2.1 Type 1 CXL Device
Type 1 CXL devices have special needs for which having a fully coherent cache in the
device becomes valuable. For such devices, standard Producer-Consumer ordering
models do not work very well. One example of a device with a special need is to
perform complex atomics that are not part of the standard suite of atomic operations
present on PCIe.

Basic cache coherency allows an accelerator to implement any ordering model it
chooses and allows it to implement an unlimited number of atomic operations. These
tend to require only small amounts of cache which can easily be tracked by standard
processor snoop filter mechanisms. The size of cache that can be supported for such

Figure 6. CXL Device Types

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 22
Revision 1.0

devices depends on the host’s snoop filtering capacity. CXL supports such devices using
its optional CXL.cache link over which an accelerator can use CXL.cache protocol for
cache coherency transactions.

2.2 Type 2 Device
Type 2 devices are ones which have memory, for example DDR, High Bandwidth
Memory (HBM) etc, attached to the device. These devices execute against memory but
their performance comes from having massive bandwidth between the accelerator and
device-attached memory. The key goal for CXL is to provide a means for the Host to
push operands into device-attached memory and for the Host to pull results out of
device-attached memory such that it doesn’t add software and hardware cost that
offsets the benefit of the accelerator. This spec refers to coherent system address
mapped device-attached memory as Host-managed Device Memory (HDM).

There is an important distinction between HDM and traditional IO/PCIe Private Device
Memory (PDM). An example of such a device is a GPGPU with attached GDDR. Such
devices have treated device-attached memory as Private. This means that the memory
is not accessible to the Host and is not coherent with the rest of the system. It is
managed entirely by the device HW and driver and is used primarily as intermediate
storage for the device with large datasets. The obvious disadvantage to a model such
as this is that it involves large amounts of copies back and forth from the Host memory
to device-attached memory as operands are brought in and results are written back.
Please note that CXL does not preclude devices with PDM.

At a high level, there are two models of operation that are envisaged for HDM. These
are described below.

Figure 7. Type 1 - Device with Cache

Figure 8. Type 2 Device - Device with Memory

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 23
Revision 1.0

2.2.1 Bias Based Coherency Model

The Bias Based coherency model defines two states of bias for device-attached memory
- Host Bias and Device Bias. When the device-attached memory is in Host Bias state, it
appears to the device just as regular Host-attached memory does. That is, if the device
needs to access it, it needs to send a request to the Host which will resolve coherency
for the requested line. On the other hand, when the device-attached memory is in
Device Bias state, the device is guaranteed that the Host does not have the line cached.
As such, the device can access it without sending any transaction (request, snoops etc)
to the Host whatsoever. It is important to note that the Host itself sees a uniform view
of device-attached memory regardless of the bias state. In both modes, coherency is
preserved for device-attached memory.

The key benefits of Bias Based coherency model are:
• Helps maintain coherency for device-attached memory which is mapped to system

coherent address space.
• Helps the device access its local attached memory at high BW without incurring

significant coherency overheads (e.g., snoops to the Host).
• Helps the Host access device-attached memory in a coherent, uniform manner, just

as it would for Host-attached memory.

To maintain Bias modes, a Type 2 CXL Device will:
• Implement the Bias Table which tracks Bias on a page granularity (e.g., 1b per 4KB

page) which can be cached in the device using a Bias Cache.
• Build support for Bias transitions using a Transition Agent (TA). This essentially

looks like a DMA engine for “cleaning up” pages, which essentially means to flush
the host’s caches for lines belonging to that page.

• Build support for basic load and store access to accelerator local memory for the
benefit of the Host.

The bias modes are described in detail below.

2.2.1.1 Host Bias

The Host Bias mode typically refers to the part of the cycle when the operands are
being written to memory by the Host during work submission or when results are being
read out from the memory after work completion. During Host Bias mode, coherency
flows allows for high throughput access from the Host to device-attached memory (as
shown by the green arrows in Figure 9) whereas device access to device-attached
memory is not optimal since they need to go through the host (as shown in yellow
arrows in Figure 9).

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 24
Revision 1.0

2.2.1.2 Device Bias

The Device Bias mode is used when the device is executing the work, between work
submission and completion, and in this mode, the device needs high BW and low
latency access to device-attached memory. In this mode, Host access to device-
attached memory is still possible, but this will be non-optimal (as shown in green
arrows in Figure 10).

In this mode, device can access device-attached memory without consulting the Host’s
coherency engines (as shown in yellow arrows in Figure 10). The Host can still access
device-attached memory but may be forced to give up ownership by the accelerator (as
shown in purple arrows in Figure 10). This results in the device seeing ideal latency &
BW from device-attached memory, whereas the Host sees compromised performance.

2.2.1.3 Mode Management

There are two envisioned Bias Mode Management schemes – Software Assisted and HW
Autonomous. CXL supports both modes. Examples of Bias Flows are present in
Appendix A.

While two modes are described below, it is worth noting that strictly speaking, devices
do not need to implement any bias. In this case, all of device-attached memory
degenerates to Host Bias. This means that all accesses to device-attached memory

Figure 9. Type 2 Device - Host Bias

Figure 10. Type 2 Device - Device Bias

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 25
Revision 1.0

must be routed through the Host. An accelerator is free to choose a custom mix of SW
assisted and HW autonomous bias management scheme. The Host implementation is
agnostic to any of the above choices.

2.2.1.4 Software Assisted Bias Mode Management

With Software Assistance, we rely on SW to know for a given page, which state of the
work execution flow it resides in. This is useful for accelerators with phased
computation with regular access patterns. Based on this, SW can best optimize the
coherency performance on a page granularity by choosing Host or Device Bias modes
appropriately.

Here are some characteristics of Software Assisted Bias Mode Management:
• Software Assistance can be used to have data ready at an accelerator before

computation.
• If data is not moved to accelerator memory in advance, it is generally moved on

demand based on some attempted reference to the data by the accelerator.
• In an “on demand” data fetch scenario, the accelerator must be able to find work to

execute, for which data is already properly placed, or it must stall.
• Every cycle that an accelerator is stalled eats into its ability to add value over

software running on a core.
• Large, complex, programmable accelerators, like GPUs are often able to find work

to execute and hide data fetch latencies.
• Simple accelerators typically cannot hide data fetch latencies.

Efficient software assisted data/coherency management is critical to the
aforementioned class of simple accelerators.

2.2.1.5 HW Autonomous Bias Mode Management

Software assisted coherency/data management is ideal for simple accelerators, but of
lesser value to complex, programmable accelerators. At the same time, the complex
problems frequently mapped to complex, programmable accelerators like GPUs present
an enormously complex problem to programmers if software assisted coherency/data
movement is a requirement. This is especially true for problems that split computation
between Host and accelerator or problems with pointer based, tree based or sparse
data sets.

With HW Autonomous Bias Mode Management, we do not rely on SW to appropriately
manage page level coherency bias. Rather, it is the HW which makes predictions on the
bias mode based on the requester for a given page and adapts accordingly. Key
benefits for this model are:

• Provide the same page granular coherency bias capability as in the software
assisted model.

• Eliminate the need for SW to identify and schedule page bias transitions prior to
offload execution.

• Provide hardware support for dynamic bias transition during offload execution.
• Hardware support for this model can be a simple extension to the software assisted

model.
• Link flows and Host support is unaffected.
• Impact limited primarily to actions taken at the accelerator when a Host touches a

Device Biased page and vice-versa.

Compute Express Link System Architecture

 Compute Express Link Specification
March 2019 26
Revision 1.0

• Note that even though this is an ostensible hardware driven solution, hardware
need not perform all transitions autonomously – though it may do so if desired.

It is sufficient if hardware provide hints (e.g., “transition page X to bias Y now”), but
leaves the actual transition operations under software control.

2.3 Type 3
A CXL Type 3 device is fundamentally different from other device Types in the sense
that unlike other device types, it is not an active compute engine. Instead, a Type 3
device is primarily a memory expander for the Host as shown in the figure below.

Since this is not an accelerator, the device does not make any requests over CXL.cache.
The device operates primarily over CXL.mem to service requests sent from the Host.
The CXL.io link is used device discovery, enumeration, error reporting and
management. The CXL architecture is independent of memory technology and allows
for a range of memory organization possibilities depending on support implemented in
the Host.

§ §

Figure 11. Type 3 - Memory Expander

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 27
Revision 1.0

3.0 Compute Express Link Transaction Layer

3.1 CXL.io
CXL.io provides a non-coherent load/store interface for I/O devices. Figure 12 shows
where the CXL.io transaction layer exists in the Flex Bus layered hierarchy. Transaction
types, transaction packet formatting, credit-based flow control, virtual channel
management, and transaction ordering rules follow the PCIe definition; please refer to
the “Transaction Layer Specification” chapter of the PCI Express Base Specification for
details. This chapter highlights notable PCIe operational modes or features that are
used for CXL.io.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 28
Revision 1.0

3.1.1 PCIe Root Complex Integrated Endpoint

a CXL.io endpoint is exposed to software as a PCIe RCiEP. Please refer to the PCIe 5.0
Base Specification for more details.

Figure 12. Flex Bus Layers -- CXL.io Transaction Layer Highlighted

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 29
Revision 1.0

3.1.2 CXL Power Management VDM Format

The CXL power management messages are sent as PCIe Vendor Defined Type0
messages with a 4DW data payload. These include the PMREQ, PMRESP, and PMGO
messages. Figure 13 provides the format for the CXL PM VDM messages. The following
are the characteristics of these messages:

• Fmt and Type fields are set to indicate message with data and routing of “Local-
Terminate at Receiver”

• Message Code is set to Vendor Defined Type 0
• Vendor ID field is set to 8086h. (Note that this may change to include the CXL

assigned vendor ID.)
• Byte 15 of the message header contains the VDM Code and is set to the value of

“CXL PM Message.” (68h)
• The 4DW Data Payload contains the CXL PM Logical Opcode (e.g., PMREQ, PMRESP,

etc) and any other information related to the CXL PM message. Details of fields
within the Data Payload are described in Table 3.

Figure 13. CXL Power Management Messages Packet Format

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 30
Revision 1.0

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 31
Revision 1.0

Table 3. CXL Power Management Messages -- Data Payload Fields Definitions

Field Description Notes

PM Logical Opcode[7:0]

Power Management Command:
00h - AGENT_INFO
02h - RESETPREP
04h - PMREQ (PMRESP and PMGO)
FEh - CREDIT_RTN

PM Agent ID[6:0]
Sender’s ID:
1111111 - CXL device (Default)

A device does not
consume this value
when it receives a
message from the
Host.
Host will send PM
Agent ID for the CXL
Device to use in the
CREDIT_RTN msg.

Parameter[15:0]

CREDIT_RTN:
Reserved

AGENT_INFO:
0 - REQUEST (set) /RESPONSE_N (cleared)
[7:1] - INDEX
All others reserved

PMREQ:
0 - REQUEST (set) /RESPONSE_N (cleared)
1 - EA
2 - GO
All others reserved
RESETPREP:
0 - REQUEST (set) /RESPONSE_N (cleared)
All others reserved

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 32
Revision 1.0

3.1.2.1 Credit and PM Initialization

Figure below illustrates the use of PM2IP.CREDIT_RTN and PM2IP.AGENT_INFO
messages to initialize Power Management messaging protocol intended to facilitate
communication between the Host Power Management Unit and the CXL Device.

The CXL device must be able to receive and process CREDIT_RTN messages without
dependency on any other PM2IP messages. Also, CREDIT_RTN messages do not use a
credit. The CREDIT_RTN messages are used to exchange and initialize the TX credits on
each side, so that flow control can be managed appropriately. The credits being sent
from either side represent the number of messages that side can receive from the

Payload[95:0]

CREDIT_RTN:
7:0 NUM_CREDITS
14:8 TARGET_AGENT_ID
All others reserved

AGENT_INFO:
if Param.Index == 0,
7:0 - REVISION_ID
all others reserved
else
all reserved

RESETPREP:
7:0 - ResetType
0x01 => host space transition from S0 to S1;
0x03 => host space transition from S0 to S3;
0x04 => host space transition from S0 to S4;
0x05 => host space transition from S0 to S5;
0x10 => Host space Warm reset (host space partition
reset without power down);
0x11 => Cold reset for host space (host space
partition reset with powerdown);
0x21 => D3cold for Host space

15:8 - PrepType
0x00 => General Prep
0x01 => Early Prep;
0x02 => Reset Entry Start (first checkpoint for CXL
device blocks during a Reset event/power state
transition);
0x03 => Link Turnoff (typically the last checkpoint
during a Reset event/power state transition);

17:16 - Phase
0x00 => Phase 0
0x01 => Phase 1
0x02 => Phase 2
0x03 => Phase 3

All others reserved
PMREQ:
31:0 - PCIe LTR format
All others reserved

CXL Agent must treat
the
TARGET_AGENT_ID
field as Reserved when
returning credits to
Host.

Only Index 0 is defined
for AGENT_INFO, all
other Index values are
reserved.

Table 3. CXL Power Management Messages -- Data Payload Fields Definitions

Field Description Notes

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 33
Revision 1.0

other. CREDIT_RTN message is also used by the Host to assign a PM_AGENT_ID to the
CXL Device. CXL Device must wait for the CREDIT_RTN message from the Host before
initiating any IP2PM messages to the host.

A CXL device must support at least one credit - where a credit implies having sufficient
buffering to sink a PM2IP message with 128 bits of payload.

After credit initialization, the CXL device must wait for an AGENT_INFO message from
the Host. This message contains the Revision ID of the PM protocol of the Host. CXL
Device must send its Revision ID to the Host in response to the AGENT_INFO Req from
the host. Expectation is that the host and CXL device Revision IDs match - when there
is a mismatch, Host PMU may implement a compatibility mode to work with CXL
devices with older Revision ID. Alternatively, Host PMU may log the mismatch and
report an error, if it does not know how to reliably function with a CXL device with a
mis-matched Revision ID.

There is an expectation from the CXL device that it restores credits to the Host as soon
as a message is received. Host PMU can have multiple messages in flight, if it was
provided with multiple credits. Releasing credits in a timely manner will provide better
performance for latency sensitive flows. Under no circumstances should the CXL device
hold back a credit for longer than 10us.

The following list summarizes the rules that must be followed by a CXL Device.
• CXL Device must wait to receive PM2IP.CREDIT_RTN message before initiating any

IP2PM messages
• CXL Device must use the PM_AGENT_ID that it receives in the first PM2IP message

received from the Host Punit (Master)
• CXL Device must implement enough resources to sink and process any

CREDIT_RTN messages without dependency on any other PM2IP or IP2PM
messages or other message classes

• CXL Device must implement at least one credit to sink a PM2IP message
• CXL Device must return any credits to the Host Punit as soon as possible. Under no

circumstances should the CXL device withhold a credit for longer than 10us

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 34
Revision 1.0

3.1.3 Optional PCIe Features Required for CXL

Table 4 lists optional features per the PCIe Specification that are required to enabled
CXL.

3.1.4 Error Propagation

CXL.cache and CXL.mem errors detected by the device are propagated to the CPU over
the CXL.io traffic stream. These errors are logged as correctable and uncorrectable
internal errors in the PCIe AER registers.

3.1.5 Memory Type Indication on ATS

Requests to certain memory regions can only be issued on CXL.io and not on
CXL.cache. It is up to the Host to decide what these memory regions are. For example,
on x86 systems, the Host may choose to restrict access to Uncacheable (UC) type
memory over CXL.io only. The Host indicates such regions by means of an indication on
ATS completion to the device.

ATS requests sourced from a CXL device must set the “Source-CXL” bit.

64-bit: DWORD3, Byte 3, Bit 3; 32-bit: DWORD2, Byte 3, Bit 3Note: This bit is
Reserved in the ATS request as defined by the PCIe spec.

ATS translation completion from the Host will carry the indication that requests to a
given page can only be issued on CXL.io using the following bit, “Issue-on-CXL.io”, in
the Translation Completion Data Entry:

Table 4. Optional PCIe Features Required For CXL

Optional PCIe Feature Notes

Data Poisoning by transmitter

ATS Only required if .cache is present (e.g. only for Type 1 & Type 2 devices
but not for Type 3 devices)

Additional VCs and TCs beyond
VC0/TC0 VC0, optional VC1 for QoS

Figure 14. ATS 64-bit Request with CXL Indication

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 35
Revision 1.0

DWORD1, Byte 2, Bit 1

Note: This bit is Reserved in the ATS completion as defined by the PCIe spec.

3.1.6 Deferrable Writes

Deferrable Writes are used for scalable work submission (across a large number of
software agents) to a shared work queue on a device. The simplest usage is use of an
instruction by kernel-mode driver to submit work to a device shared work queue
without any locks or software synchronization. The expected usage is for user-mode
software to execute the instruction to queue work directly to a shared work queue on a
device that is mapped to the user virtual address space by kernel-mode software.

CXL.io supports such instruction sets with CXL.io specific opcodes which follows the
semantics of a non-posted memory write going downstream. In addition, CXL.io
supports a new completion status type which allows a device to indicate whether the
Deferrable Write command was successfully enqueued into the shared work queue or if
it needs to be deferred.

On CXL.io, a Deferrable Write is sent as a NPMemWr32/64 transaction which has the
following encodings (please note that the encoding for NPMemWr32 is deprecated in
PCIe):

Fmt[2:0] - 010b/011b

Type[4:0] - 11011b

Since Deferrable Write is non-posted, the device is expected to send a Cpl response.
The Completion Status field in the Cpl (with a Byte Count of ‘4) indicates whether work
was successfully enqueued in the shared work queue or not. Successful work
submission is accompanied by a “Successful Completion” Completion Status.
Unsuccessful work submission is accompanied by a “Memory Request Retry Status”
Completion Status. The encoding for these are:

Successful Completion (SC) - 000b

Memory Request Retry Status (MRS) - 010b

3.2 CXL.cache

3.2.1 Overview

The CXL.cache protocol defines the interactions between the device and Host as a
number of requests that each have at least one associated response message and
sometimes a data transfer. The interface consists of three channels in each direction:

Figure 15. ATS Translation Completion Data Entry with CXL indication

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 36
Revision 1.0

Request, Response, and Data. The channels are named for their direction, D2H for
Device to Host and H2D for Host to Device, and the transactions they carry, Request,
Response, and Data.

D2H Request carries new requests from the Device to the Host. The requests typically
target memory. Each request will receive zero, one or two responses and at most one
64-byte cacheline of data. The channel may be back pressured without issue. D2H
Response carries all responses from the Device to the Host. Device responses to snoops
indicate the state the line was left in the device caches, and may indicate that data is
being returned to the Host to the provided data buffer. D2H responses need to be
guaranteed to make progress or deadlocks may occur. They may still be blocked
temporarily for link-layer credits, but should not require any other transaction to
complete to free the credits. D2H Data carries all data and byte-enables from the
Device to the Host. The data transfers can result either from implicit or explicit write-
backs. In all cases a full 64-byte cacheline of data will be transferred. D2H Data
transfers must make progress or deadlocks may occur. They may be blocked temporarily
for link-layer credits, but must not require any other transaction to complete to free the
credits.

H2D Request carries request from the Host to the Device. These are snoops to maintain
coherency. Data may be returned for snoops. The request carries the location of the
data buffer to which any return data should be written. H2D Requests may be back
pressured for lack of device resources, however the resources must free up without
needing D2H Requests to make progress. H2D Response carries ordering messages and
pulls for write data. Each response carries the request identifier from the original device
request to indicate where the response should be routed. For write data pull responses,
the message carries the location where the data should be written. H2D Responses can
only be blocked temporarily for link-layer credits. H2D Data delivers the data for device
read requests. In all cases a full 64-byte cacheline of data will be transferred. H2D Data
transfers can only be blocked temporarily for link-layer credits.

The CXL.cache interface has 3 main channels in each direction between the device and
the Host. The three main channels are Request, Response, and Data as shown in the
figure below. The independent channels allow different kinds of messages to use
dedicated wires and achieve both decoupling and a higher effective throughput per
wire.

3.2.2 CXL.cache Channel Description

3.2.2.1 Channel Ordering

In general, all of the CXL.cache channels must work independently of each other to
ensure that forward progress is maintained. For example, since requests from the
device to the Host to a given address X will be blocked by the Host before it collects all
snoop responses for this address X, linking the channels would lead to deadlock.

Figure 16. CXL.cache Channels

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 37
Revision 1.0

However, there is a specific instance where ordering between channels must be
maintained for the sake of correctness. The Host needs to wait until Global Ordering
(GO) messages, sent on H2D Response, are observed by the device before sending
subsequent snoops for the same address. To limit the amount of buffering needed to
track GO messages, the Host assumes that GO messages that have been sent over
CXL.cache in a given cycle cannot be passed by snoops sent in a later cycle.

For transactions that have multiple concurrent messages within a single channel (e.g.,
FastGO and ExtCmp), the device/Host should assume that they can come in any order.
For transactions that have disjoint messages on a single channel (e.g., WritePull and GO
for WrInv) the device/Host must ensure they cross CXL.cache in order.

3.2.2.2 Channel Crediting

To maintain the modularity of the interface no assumptions can be made on the ability
to send a message on a channel since at least link-layer credits may not be available at
all times. Therefore, each channel must use a credit for sending any message and
collect credit returns from the receiver. During operation, the receiver returns a credit
whenever it has processed the message (i.e., freed up a buffer). It is not required that
all credits are accounted for on either side, it is sufficient that credit counter saturates
when full. If no credits are available, the sender must wait for the receiver to return
one. The table below describes which channels must drain to maintain forward progress
and which can be blocked indefinitely.

3.2.3 CXL.cache Wire Description

The definition of each of the fields for each CXL.cache Channel is below.

Table 5. CXL.cache Channel Crediting

Channel
Forward
Progress
Condition

Blocking condition Description

D2H Request Credited to Host Indefinite Needs Host buffer, could be held by
earlier requests

D2H Response Pre-allocated Link-layer only, must make progress.
Temporary back pressure is allowed. Headed to specified Host buffer

D2H Data Pre-allocated Link-layer only, must make progress.
Temporary back pressure is allowed. Headed to specified Host buffer

H2D Request Credited to device Must make progress. Temporary back
pressure is allowed.

May be temporarily back pressured due
to lack of availability of D2H Response or
D2H Data credits

H2D Response Pre-allocated Link-layer only, must make progress.
Temporary back pressure is allowed. Headed to specified device buffer

H2D Data Pre-allocated Link-layer only, must make progress.
Temporary back pressure is allowed. Headed to specified device buffer

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 38
Revision 1.0

3.2.3.1 D2H Request

3.2.3.2 D2H Response

Table 6. CXL.cache - D2H Request Fields

D2H Request Width Description

Valid 1 The request is valid.

Opcode 5 The opcode specifies the operation of the request. Details in Table 15

Address [51:6] 46 Carries the physical address of coherent requests.

CQID 12

Command Queue ID: The CQId field contains the ID of the tracker entry
that is associated with the request. When the response and data is
returned for this request, the CQId is sent in the response or data
message indicating to the device which tracker entry originated this
request.
Implementation Note: CQID usage depends on the round-trip transaction
latency and desired BW. To saturate link BW for a x16 link @32GT/s, 11
bits of CQID should be sufficient.

NT 1 For cacheable reads the NonTemporal field is used as a hint to indicate to
the Host how it should be cached. Details in Table 7

RSVD 14

Total 79

Table 7. Non Temporal Encodings

NonTemporal Definition

1b0 Default behavior. This is Host implementation specific.

1b1 Requested line should be moved to Least Recently Used (LRU) position

Table 8. CXL.cache - D2H Response Fields

D2H Response Width Description

Valid 1 The response is valid

Opcode 5 The opcode specifies the what kind of response is being signaled. Details in
Table 18

UQID 12 Unique Queue ID: This is a reflection of the UQID sent with the H2D
Request and indicates which Host entry is the target of the response

RSVD 2

Total 20

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 39
Revision 1.0

3.2.3.3 D2H Data

3.2.3.3.1 Byte Enable

Although Byte Enable is technically part of the data header, it is not sent on the flit
along with the rest of the data header fields. Instead, it is sent only if the value is not
all 1’s, as a data chunk as described in Section 4.2.2. The Byte Enable field is 64 bits
wide and indicates which of the bytes are valid for the contained data.

3.2.3.4 H2D Request

Table 9. CXL.cache - D2H Data Header Fields

D2H Data Header Width Description

Valid 1 The Valid signal indicates that this is a valid data message.

UQID 12
Unique Queue ID: This is a reflection of the UQID sent with the H2D
Response and indicates which Host entry is the target of the data
transfer.

ChunkValid 1

In case of a 32B transfer on CXL.cache, this indicates what 32 byte
chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.

Bogus 1

The Bogus field indicates that the data associated with this evict
message was returned to a snoop after the D2H request was sent
from the device but before a WritePull was received for the evict.
This data is no longer the most current, so it should be dropped by
the Host.

Poison 1 The Poison field is an indication that this data chunk is corrupted and
should not be used by the Host.

RSVD 1

Total 17

Table 10. CXL.cache – H2D Request Fields

H2D Request Width Description

Valid 1 The Valid signal indicates that this is a valid request.

Opcode 3 The Opcode field indicates the kind of H2D request. Details in Table 19

Address [51:6] 46 The Address field indicates which cache line the request targets.

UQID 12 Unique Queue ID: This indicates which Host entry is the source of the
request

RSVD 2

Total 64

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 40
Revision 1.0

3.2.3.5 H2D Response

3.2.3.6 H2D Data

Table 11. CXL.cache - H2D Response Fields

H2D Response Width Description

Valid 1 The Valid field indicates that this is a valid response to the device.

Opcode 4 The Opcode field indicates the type of the response being sent. Details
in Table 20

RspData 12
The response Opcode determines how the RspData field is interpreted
as shown in Table 20. Thus, depending on Opcode, it can either contain
the UQID or the MESI information in bits [3:0] as shown in Table 13.

RSP_PRE 2 RSP_PRE carries performance monitoring information for requests that
do not receive data. Details in Table 12

CQID 12 Command Queue ID: This is a reflection of the CQID sent with the D2H
Request and indicates which device entry is the target of the response.

RSVD 1

Total 32

Table 12. RSP_PRE Encodings

RSP_PRE[1:0] Response

00 Host Cache Miss to Local CPU socket
memory

01 Host Cache Hit

10 Host Cache Miss to Remote CPU socket
memory

11 Reserved

Table 13. Cache State Encoding for H2D Response

Cache State Encoding

Invalid (I) 4’b0011

Shared (S) 4’b0001

Exclusive (E) 4’b0010

Modified (M) 4’b0110

Error (Err) 4’b0100

Table 14. CXL.cache - H2D Data Header Fields (Sheet 1 of 2)

H2D Data Header Width Description

Valid 1 The Valid field indicates that this is a valid data to the device.

CQID 12
Command Queue ID: This is a reflection of the CQID sent with the
D2H Request and indicates which device entry is the target of the
data transfer.

ChunkValid 1

In case of a 32B transfer on CXL.cache, this indicates what 32 byte
chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 41
Revision 1.0

3.2.4 CXL.cache Transaction Description

3.2.4.1 Device to Host Requests

3.2.4.1.1 Device to Host (D2H) CXL.cache Request Semantics

For device to Host requests there are four different semantics: CXL.cache Read,
CXL.cache Read0, CXL.cache Read0/Write, and CXL.cache Write. All device to Host
CXL.cache transactions fall into the one of these four semantics, though the allowable
responses and restrictions for each request type within a given semantic are different.

3.2.4.1.2 CXL.cache Read

CXL.cache Reads must have a D2H request credit and send a request message on the
D2H CXL.cache request channel. CXL.cache Read requests require zero or one
response (GO) message and data messages totaling a single 64 byte cache line of data.
Both the response, if present, and data messages are directed at the device tracker
entry provided in the initial D2H request packet’s CQid field. The device entry must
remain active until all the messages from the Host have been received. To ensure
forward progress the device must have a reserved data buffer to be able to accept all
64 bytes of data immediately after the request is sent. However, the device may
temporarily be unable to accept data from the Host due to prior data returns not
draining. Once both the response message and the data messages have been received
from the Host, the transaction can be considered complete and the entry de-allocated
from the device.

The figure below shows the elements required to complete a CXL.cache Read. Note that
the response (GO) message can be received before, after, or between the data
messages.

Poison 1 The Poison field indicates to the device that this data is corrupted and
as such should not be used.

GO-Err 1
The GO-ERR field indicates to the agent that this data is the result of
an error condition and should not be cached or provided as response
to snoops.

RSVD 8

Total 24

Table 14. CXL.cache - H2D Data Header Fields (Sheet 2 of 2)

H2D Data Header Width Description

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 42
Revision 1.0

3.2.4.1.3 CXL.cache Read0

CXL.cache Read0 must have a D2H request credit and send a message on the D2H
CXL.cache request channel. CXL.cache Read0 requests receive a response message but
no data messages. The response message is directed at the device entry indicated in
the initial D2H request message’s CQId value. Once the GO message is received for
these requests, they can be considered complete and the entry de-allocated from the
device. A data message must not be sent by the Host for these transactions. Most
special cycles (e.g., CLFlush) and other miscellaneous requests fall into this category.
Details in Table 15.

The following figure shows the elements required to complete a CXL.cache Read0
transaction.

Figure 17. CXL.cache Read Behavior

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 43
Revision 1.0

3.2.4.1.4 CXL.cache Write

CXL.cache Write must have a D2H request credit before sending a request message on
the D2H CXL.cache request channel. Once the Host has received the request message,
it is required to send either two separate or one merged GO-I and WritePull message.
The GO message must never arrive at the device before the WritePull but it can arrive
at the same time in the combined message. If the transaction requires posted
semantics then a combined GO-I/WritePull message can be used. If the transaction
requires non-posted semantics, then WritePull will be issued first followed by the GO-I
when the non-posted write is globally observed.

Upon receiving the GO-I message, the device will consider the store done from a
memory ordering and cache coherency perspective, giving up snoop ownership of the
cache line (if the CXL.cache message is an Evict).

The WritePull message triggers the device to send data messages to the Host totaling
exactly 64 bytes of data, though any number of byte enables can be set.

A CXL.cache write transaction is considered complete by the device once the device has
received the GO-I message, and has sent the required data messages. At this point the
entry can be de-allocated from the device.

The Host considers a write to be done once it has received all 64 bytes of data, and has
sent the GO-I response message. All device writes and Evicts fall into the CXL.cache
Write semantic.

See Section Multiple Evicts to the same cache line for more information on restrictions
around multiple active write transactions.

Figure 18. CXL.cache Read0 Behavior

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 44
Revision 1.0

Figure 19 shows the elements required to complete a CXL.cache Write transaction (that
matches posted behavior). The WritePull (or the combined GO_WritePull) message
triggers the data messages. There are restrictions on Snoops and WritePulls. See
Section Device/Host Snoop/WritePull Assumptions for more details.

Figure 20 shows a case where the WritePull is a separate message from the GO (for
example: strongly ordered uncacheable write).

Figure 21 shows the Host FastGO plus ExtCmp responses for weakly ordered write
requests.

Figure 19. CXL.cache Device to Host Write Behavior

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 45
Revision 1.0

Figure 20. CXL.cache WrInv Transaction

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 46
Revision 1.0

3.2.4.1.5 CXL.cache Read0-Write Semantics

CXL.cache Read0-Write requests must have a D2H request credit before sending a
request message on the D2H CXL.cache request channel. Once the Host has received
the request message, it is required to send one merged GO-I and WritePull message.

The WritePull message triggers the device to send the data messages to the Host,
which together transfer exactly 64 bytes of data though any number of byte enables
can be set.

A CXL.cache Read0-write transaction is considered complete by the device once the
device has received the GO-I message, and has sent the all required data messages. At
this point the entry can be de-allocated from the device.

The Host considers a read0-write to be done once it has received all 64 bytes of data,
and has sent the GO-I response message. ItoMWr falls into the Read0-Write category.

Figure 21. WOWrInv/F with FastGO/ExtCmp

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 47
Revision 1.0

Table 15 summarizes all the opcodes available from Device to Host.

Figure 22. CXL.cache Read0-Write Semantics

Table 15. CXL.cache. – Device to Host Requests (Sheet 1 of 2)

CXL.cache Opcode Semantic Opcode

RdCurr Read 00001

RdOwn Read 00010

RdShared Read 00011

RdAny Read 00100

RdOwnNoData Read0 00101

ItoMWr Read0-Write 00110

MemWr Read0-Write 00111

CLFlush Read0 01000

CleanEvict Write 01001

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 48
Revision 1.0

3.2.4.1.6 RdCurr

These are full cache-line read requests from the device for lines to get the most current
data, but not change the existing state in any cache, including in the Host. The Host
does not need to track the cache-line in the device that issued the RdCurr. RdCurr gets
a data but no GO. The device receives the line in the Invalid state which means it gets
one use of the line and cannot cache it.

3.2.4.1.7 RdOwn

These are full cache-line reads requests from the device for lines to be cached in any
writeable state. Typically RdOwn request receives the line in Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdOwn request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of all1s. The device is responsible for
handling the error appropriately.

3.2.4.1.8 RdShared

These are full cache-line read requests from the device for lines to cached in Shared
state. Typically, RdShared request receives the line in Shared (GO-S) state.

Under error conditions, a RdOwn request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of all1s. The device is responsible for
handling the error appropriately.

3.2.4.1.9 RdAny

These are full cache-line read requests from the device for lines to cached in any state.
Typically, RdAny request receives the line in Shared (GO-S), Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdOwn request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of all1s. The device is responsible for
handling the error appropriately.

3.2.4.1.10 RdOwnNoData

These are requests to get exclusive ownership of the cache-line address indicated in
the address field. The typical response is Exclusive (GO-E).

Under error conditions, a RdOwnNoData request may receive the line in Error (GO-Err)
state. The device is responsible for handling the error appropriately.

DirtyEvict Write 01010

CleanEvictNoData Write 01011

WOWrInv Write 01100

WOWrInvF Write 01101

WrInv Write 01110

CacheFlushed Read0 10000

Table 15. CXL.cache. – Device to Host Requests (Sheet 2 of 2)

CXL.cache Opcode Semantic Opcode

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 49
Revision 1.0

3.2.4.1.11 ItoMWr

This command requests exclusive ownership of the cache-line address indicated in the
address field and atomically writes the cache-line back to the Host. The device
guarantees the entire line will be modified, so no data needs to be transferred to the
device. The typical response is GO-I-WritePull, which is sent once the request is
granted ownership. The device must not retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate. An ExtCmp will still be sent by the Host after the GO-Err-WritePull in all
cases.

3.2.4.1.12 MemWr

The command behaves like the ItoMWr in that it atomically requests ownership of a
cache-line and then writes a full cache-line back to the fabric. However, it differs from
ItoMWr in where the data is written. Only if the command hits in a cache will the data
be written there, on a miss the data will be written to directly to memory. The typical
response is GO-I-WritePull once the request is granted ownership. The device must not
retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate. An ExtCmp will still be sent by the Host after the GO-Err-WritePull in all
cases.

3.2.4.1.13 ClFlush

This is a request to the Host to invalidate the cache-line specified in the address field.
The typical response is GO-I that will be sent from the Host upon completion in
memory.

Under error conditions, a ClFlush request may receive the line in the Error (GO-Err)
state. The device is responsible for handling the error appropriately.

3.2.4.1.14 CleanEvict

This is a request to the Host to evict a full 64 byte Exclusive cache line from the device.
Typically, CleanEvict receives GO-WritePull or GO-WritePullDrop. Receiving any means
the device must relinquish snoop ownership of the line. For GO-WritePull the device will
send the data as normal. For GO-WritePullDrop the device simply drops the data.

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull or GO-WritePullDrop, the device
must set the Bogus field in all D2H Data messages to indicate the data is now stale.

CleanEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one CleanEvict from the device may be pending on
CXL.cache for any given cache-line address.

CleanEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

3.2.4.1.15 DirtyEvict

This is a request to the Host to evict a full 64 byte Modified cache line from the device.
Typically, DirtyEvict receives GO-WritePull from the Host at which point the device must
relinquish snoop ownership of the line and send the data as normal.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 50
Revision 1.0

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull, the device must set the Bogus
field in all D2H Data messages to indicate the data is now stale.

DirtyEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one DirtyEvict from the device may be pending on
CXL.cache for any given cache-line address.

In error conditions, a GO-Err-WritePull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate.

DirtyEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

3.2.4.1.16 CleanEvictNoData

This is a request for the device to update the Host that a clean line is dropped in the
device. The sole purpose of this request is to update any snoop filters in the Host and
no data will be exchanged.

CleanEvictNoData is only expected for host-attached memory range of addresses. For
device-attached memory range, the equivalent operation can be completed internally
within the device without sending a transaction to the Host.

3.2.4.1.17 WOWrInv

This is a weakly ordered write invalidate line request of 0-63 bytes for write combining
type stores. Any combination of byte enables may be set.

Typically, WOWrInv receives a FastGO-WritePull followed by an ExtCmp. Upon receiving
the FastGO-WritePull the device sends the data to the Host. For host-attached memory,
the Host sends the ExtCmp once the write is complete in memory.

In error conditions, a GO-Err-Writepull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate. An ExtCmp will still be sent by the Host after the GO-Err in all cases.

3.2.4.1.18 WOWrInvF

Same as WOWrInv (rules and flows), except it is a write of 64 bytes.

3.2.4.1.19 WrInv

This is a write invalidate line request of 0-64 bytes. Typically WrInv receives a WritePull
followed by a GO. Upon getting the WritePull the device sends the data to the Host. The
Host sends GO once the write complete in memory (both, host-attached or device-
attached).

In error conditions, a GO-Err is received. The device is responsible for handling the
error as appropriate.

3.2.4.1.20 CacheFlushed

This is an indication sent by the device to inform the Host that its caches are flushed
and it no longer contains any cache-lines in the Shared, Exclusive or Modified state.
The Host can use this information to clear its snoop filters and block snoops to the
device and return a GO. Once the device receives the GO, it is guaranteed to not
receive any snoops from the Host until the device sends the next cacheable D2H
Request.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 51
Revision 1.0

Table 16. D2H Request (targeting non-device-attached memory) supported H2D
Responses

For requests targeting device-attached memory, if the region is in Device Bias, no
transaction is expected on CXL.cache since the Device can complete those requests
internally. If the region is in Host Bias, the table below shows how the device should
expect the response.

D2H Request

W
rit

eP
ul

l

GO
_W

rit
eP

ul
l

Ex
tC

m
p

GO
_W

rit
eP

ul
l_

Dr
op

Fa
st

GO
_W

rit
eP

ul
l

GO
_E

RR
_W

rit
eP

ul
l

GO
-E

rr

GO
-I

GO
-S

GO
-E

GO
-M

CLFlush X X
RdShared X X X

RdAny X X X X X
ItoMWr X X
MemWr X X

CacheFlushed X
RdCurr
RdOwn X X X X

RdOwnNoData X X
CleanEvict X X
DirtyEvict X X

CleanEvictNoData X
WOWrInv X X X

WOWrInvF X X X
WrInv X X X

Table 17. D2H Request (Targeting Device-attached Memory) Supported Responses
(Sheet 1 of 2)

D2H Request Response on CXL.mem Response on CXL.cache

RdCurr MemRdFwd None

RdOwn MemRdFwd None

RdShared MemRdFwd None

RdAny MemRdFwd None

RdOwnNoData MemRdFwd None

ItoMWr None Same as host-attached memory

MemWr None Same as host-attached memory

CLFlush MemRdFwd None

CleanEvict NA NA

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 52
Revision 1.0

CleanEvict, DirtyEvict and CleanEvictNoData targeting device-attached memory should
always be completed internally by the device, regardless of bias state. For D2H
Requests that receive a response on CXL.mem, the CQID associated with the
CXL.cache request is reflected in the Tag of the CXL.mem MemRdFwd or MemWrFwd
command. For MemRdFwd, the caching state of the line is reflected in the MetaValue
field as described in Table 24.

3.2.4.2 Device to Host Response

Responses are directed at the Host entry indicated in the UQId field in the original H2D
request message.

3.2.4.2.1 RspIHitI

In general, this is the response that a device provides to a snoop when the line was not
found in any caches. If the device returns RspIHitI for a snoop, the Host can assume
the line has been cleared from that device.

3.2.4.2.2 RspVHitV

In general, this is the response that a device provides to a snoop when the line was hit
in the cache and no state change occurred. If the device returns an RspVHitV for a
snoop, the Host can assume a copy of the line is present in one or more places in that
device.

3.2.4.2.3 RspIHitSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now invalid. If the device returns an
RspIHitSE for a snoop, the Host can assume the line has been cleared from that device.

DirtyEvict NA NA

CleanEvictNoData NA NA

WOWrInv MemWrFwd None

WOWrInvF MemWrFwd None

WrInv None Same as host-attached memory

CacheFlushed None Same as host-attached memory

Table 17. D2H Request (Targeting Device-attached Memory) Supported Responses
(Sheet 2 of 2)

D2H Request Response on CXL.mem Response on CXL.cache

Table 18. D2H Response Encodings

Device CXL.cache Rsp Opcode

RspIHitI 00100

RspVHitV 00110

RspIHitSE 00101

RspSHitSE 00001

RspSFwdM 00111

RspIFwdM 01111

RspVFwdV 10110

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 53
Revision 1.0

3.2.4.2.4 RspSHitSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now downgraded to shared state. If the
device returns an RspSHitSE for a snoop, the Host should assume the line is still in the
device.

3.2.4.2.5 RspSFwdM

This response indicates to the Host that the line being snooped is now in S state in the
device, after having hit the line in Modified state. The device may choose to downgrade
the line to Invalid. This response also indicates to the Host snoop tracking logic that 64
bytes of data will be transferred on the D2H CXL.cache Data Channel to the Host data
buffer indicated in the original snoop’s destination (UQid).

3.2.4.2.6 RspIFwdM

(aka HITM) This response indicates to the Host that the line being snooped is now in I
state in the device, after having hit the line in Modified state. The Host may now
assume the device contains no more cached copies of this line. This response also
indicates to the Host snoop tracking logic that 64 bytes of data will be transferred on
the D2H CXL.cache Data Channel to the Host data buffer indicated in the original
snoop’s destination (UQid).

3.2.4.2.7 RspVFwdV

This response indicates that the device is returning the current data to the Host and
leaving the state unchanged. The Host must only forward the data to the requestor
since there is no state information.

3.2.4.3 Host to Device Requests

Snoops from the Host need not gain any credits besides local H2D request credits. The
device will always send a Snoop Response message on the D2H CXL.cache Response
channel. If the response is of the Rsp*Fwd* format, then the device must respond with
64 bytes of data via the D2H Data channel, directed at the UQid from the original snoop
request message. If the response is not Rsp*Fwd*, the Host can consider the request
complete upon receiving all of the snoop response messages. The device can stop
tracking the snoop once the response has been sent for non-data forwarding cases, or
after both the last chunk of data has been sent and the response has been sent.

The figure below shows the elements required to complete a CXL.cache snoop. Note
that the response message can be received by the Host with any relative order with the
data messages. The byte enable field is always all 1s for Snoop data transfers.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 54
Revision 1.0

3.2.4.3.1 SnpData

These are snoop requests from the Host for lines that are intended to be cached in
either Shared or Exclusive state at the requester (the Exclusive state can be cached at
the requester only if all devices respond with RspI). This type of snoop is typically

Figure 23. CXL.cache Snoop Behavior

Table 19. CXL.cache – Mapping of Host to Device Requests & Responses

O
p

co
d

e

R
sp

IH
it

I

R
sp

V
h

it
V

R
sp

S
H

it
S

E

R
sp

IH
it

S
E

R
sp

S
Fw

d
M

R
sp

IF
w

d
M

R
sp

V
Fw

d
V

SnpData ‘001 X X X X

SnpInv ‘010 X X X

SnpCurr ‘011 X X X X X X

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 55
Revision 1.0

triggered by data read requests. A device that receives this snoop must either
invalidate or downgrade all cache lines to Shared state. If the device holds dirty data it
must return it to the Host.

3.2.4.3.2 SnpInv

These are snoop requests from the Host for lines that are intended to be granted
ownership and Exclusive state at the requester. This type of snoop is typically triggered
by write requests. A device that receives this snoop must invalidate all cache lines. If
the device holds dirty data it must return it to the Host.

3.2.4.3.3 SnpCur

This snoop gets the current version of the line, but doesn’t require change of any cache
state in the hierarchy. It is only sent on behalf of the RdCurr request. If the device
holds data in Modified state it must return it to the Host. The cache state can remain
unchanged in both the device and Host, and the Host should not update its caches.

3.2.4.4 Host to Device Response

3.2.4.4.1 WritePull

This response tells the device to send the write data to the Host, but not to change the
state of the line. This is used for WrInv where the data is needed before the GO-I can
be sent. This is because GO-I is the notification that the write was completed by I/O.

3.2.4.4.2 GO

The Global Observation (GO) message conveys that read requests are coherent and
that write requests are coherent and consistent. It is an indication that the transaction
has been observed by the system device and the MESI state that is encoded in the
RspType field indicates what state the data associated with the transaction should be
put in for the requester’s caches. Details in Table 11.

If the Host returns Modified state to the device, then the device is responsible for the
dirty data and cannot drop the line without writing it back to the Host.

If the Host returns Invalid or Error state to the device, then the device must use the
data at most once and not cache the data. Error responses to reads and cacheable
write requests (for example, RdOwn or ItoMWr) will always be the result of an abort
condition, so modified data can be safely dropped in the device.

Table 20. H2D Response Opcode Encodings

H2D Response Class Encoding RspData

WritePull 0001 UQID

GO 0100 MESI

GO_WritePull 0101 UQID

ExtCmp 0110 Don’t Care

GO_WritePull_Drop 1000 UQID

Fast_GO 1100 Don’t Care

Fast_GO_WritePull 1101 UQID

GO_ERR_WritePull 1111 UQID

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 56
Revision 1.0

3.2.4.4.3 GO_WritePull

This is a combined GO + WritePull message. No cache state is transferred to the device.
The GO+WritePull message is used for posted write types.

3.2.4.4.4 ExtCmp

This response indicates that the data that was previously locally ordered (FastGO) has
been observed throughout the system. Most importantly, accesses to memory will
return the most up to date data.

3.2.4.4.5 GO_WritePull_Drop

This message has the same semantics as Go_WritePull, except that the device should
not send data to the Host. This response can be sent in place of GO_WritePull when the
Host determines that the data is not required. This response will never be sent for
partial writes since the byte enables will always need to be transferred.

3.2.4.4.6 Fast_GO

Similar to GO, but only indicates that the request is locally observed. There will be a
later ExtCmp message when the transaction is fully observable in memory. Devices that
do not implement the Fast_GO feature may ignore this message and wait for the
ExtCMP.

3.2.4.4.7 Fast_GO_WritePull

Similar to GO_WritePull, but only indicates that the request is locally observed. There
will be a later ExtCmp message when the transaction is fully observable in memory.
Devices that do not implement the Fast_GO feature may ignore the GO message and
wait for the ExtCMP. Data must always be sent for the WritePull though. No cache state
is transferred to the device.

3.2.4.4.8 GO_ERR_WritePull

Similar to GO_WritePull, but indicates that there was an error with the transaction that
should be handled properly in the device. Data must be sent to the Host for the
WritePull, and the Host will drop the data. No cache state is transferred to the device
(assumed Error). An ExtCmp is still sent if it is expected by the originating request.

3.2.5 Cacheability Details and Request Restrictions

These details and restrictions apply to all devices.

3.2.5.1 GO-M Responses

GO-M responses from the Host indicate that the device is being granted the sole copy
of modified data. The device must cache this data and write it back when it is done.

3.2.5.2 Device/Host Snoop-GO-Data Assumptions

When the Host returns a GO response to a device, the expectation is that a snoop
arriving to the same address of the request receiving the GO would see the results of
that GO. For example, if the Host sends GO-E for an RdOwn request followed by a
snoop to the same address immediately afterwards, then one would expect the device
to transition the line to M state and reply with an RspIFwdM response back to the Host.
In order to implement this principle, CXL.cache link layer ensures that the device will
receive the two messages in separate slots to make the order completely
unambiguous.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 57
Revision 1.0

When the Host is sending a snoop to the device, the requirement is that no GO
response will be sent to any requests with that address in the device until after the
Host has received a response for the snoop and all implicit writeback (IWB) data (dirty
data forwarded in response to a snoop) has been received.

When the Host returns data to the device for a read type request, and GO for that
request has not yet been sent to the device, the Host may not send a snoop to that
address until after the GO message has been sent. Since the new cache state is
encoded in the response message for reads, sending a snoop to an address without
having received GO, but after having received data, is ambiguous to the device as to
what the snoop response should be in that situation.

Fundamentally, the GO that is associated with a read request also applies to the data
returned with that request. Sending data for a read request implies that that data is
valid, meaning the device can consume it even if the GO has not yet arrived. The GO
will arrive later and inform the device what state to cache the line in (if at all) and
whether or not the data was the result of an error condition (such as hitting an address
region the device was not allowed to access).

3.2.5.3 Device/Host Snoop/WritePull Assumptions

The device requires that the Host cannot have both a WritePull and H2D Snoop active
on CXL.cache to a given 64 byte address. The Host may not launch a snoop to a 64
byte address until all WritePull data from that address has been received by the Host.
Conversely, the Host may not launch a WritePull for a write until the Host has received
the snoop response (including data in case of Rsp*Fwd*) for any snoops to the pending
writes address. Any violation of these requirements will mean that the Bogus field on
the D2H Data channel will be unreliable.

3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts

In order to snoop cache evictions (for example, DirtyEvict) and maintain an orderly
transfer of snoop ownership from the device to the Host, cache evictions on CXL.cache
must adhere to the following protocol.

If a device Evict transaction has been issued on the CXL.cache D2H request channel,
but has not yet processed its WritePull from the Host, and a snoop hits the WB, the
device must track this snoop hit. When the device begins to process the WritePull, the
device must set the Bogus field in all of the D2H data messages sent to the Host. The
intent is to communicate to the Host that the request data was already sent as IWB
data, so the data from the Evict is potentially stale.

3.2.5.5 Multiple Snoops to the same address

The Host is only allowed to have one snoop outstanding to a given cache line address to
a given device at one time. The Host must wait until it has received both the snoop
response and all IWB data (if any) before dispatching the next snoop to that address.

3.2.5.6 Multiple Reads to the same cache line

Multiple read requests (cacheable or uncacheable) to the same cache line are allowed.
The Host can freely reorder requests, so the device is responsible for ordering requests
when required.

3.2.5.7 Multiple Evicts to the same cache line

Multiple Evicts to the same cache line are not allowed. The second Evict may only be
issued after the first receives both the CXL.cache GO-I response and the WritePull.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 58
Revision 1.0

Since Evict guarantees that the evicted cache line is otherwise in the initiating device, it
is impossible to send another Evict without an intervening cacheable Read/Read0
request to that address.

3.2.5.8 Multiple WriteRequests to the same cache line

Multiple WrInv/WOWrInv/ItoMWr/MemWr to the same cache line are allowed to be
outstanding on CXL.cache. The Host can freely reorder requests, so the device is
responsible for ordering requests when required.

3.2.5.9 Normal Global Observation (GO)

Normal Global Observation (GO) responses are sent only after the Host has guaranteed
that request will have next ownership of the requested cache line. GO messages for
requests carry the cache line state permitted through the MESI state or indicate that
the data should only be used once and whether or not an error occurred.

3.2.5.10 Relaxed Global Observation (FastGO)

FastGO is only allowed for requests that do not require strict ordering. The Host may
return the FastGO once the request is guaranteed next ownership of the requested
cache-line within the socket, but not necessarily in the system. Requests that receive a
FastGO response and require completion messages are usually of the write combining
memory type and the ordering requirement is that there will be a final completion
(ExtCmp) message indicating that the request is at the stage where it is fully observed
throughout the system.

3.2.5.11 Evict to Device-Attached Memory

Device Evicts to device-attached memory are not allowed on CXL.cache. The device is
only allowed to issue WrInv, WOWrInv* to device-attached memory.

3.2.5.12 Memory Type on CXL.cache

To source requests on CXL.cache, devices need to get the Host Physical Address (HPA)
from the Host by means of an ATS request on CXL.io. Due to memory type restrictions,
on the ATS completion, the Host indicates to the device if a HPA can only be issued on
CXL.io as described in Section 3.1.5. The device is not allowed to issue requests to such
HPAs on CXL.cache.

3.2.5.13 General Assumptions

1. The Host will NOT preserve ordering of the CXL.cache requests as delivered by the
device. The device must maintain the ordering of requests for the case(s) where
ordering matters.

2. The order chosen by the Host will be conveyed differently for reads and writes. For
reads, a Global Observation (GO) message conveys next ownership of the
addressed cache line; the data message conveys ordering with respect to other
transactions. For writes, the GO message conveys both next ownership of the line
and ordering with respect to other transactions.

3. The device may cache ownership and internally order writes to an address if a prior
read to that address received either GO-E or GO-M.

4. For reads from the device, the Host transfers ownership of the cache line with the
GO message, even if the data response has not yet been received by the device.
The device must respond to a snoop to a cache line which has received GO, but if
data from the current transaction is required (e.g., a RdOwn to write the line) the
data portion of the snoop is delayed until the data response is received.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 59
Revision 1.0

5. The Host must not send a snoop for an address where the device has received a
data response for a previous read transaction but has not yet received the GO.
Refer to Section 3.2.5.2

6. Write requests (other than Evicts) such as WrInv, WOWrInv*, ItoMWr and MemWr
will never respond to WritePulls with data marked as Bogus.

7. The Host must not send two cache-line data responses to the same device request.
The device may assume one-time use ownership (based on the request) and begin
processing for any part of a cache line received by the device before the GO
message. Final state information will arrive with the GO message, at which time the
device can either cache the line or drop it depending on the response.

8. For a given transaction, H2D Data transfers may be done in any order, and may be
interleaved with data transfers for other transactions.

9. D2H Data transfer of a cache line must come in consecutive packets with no
interleaved transfers from other lines. The data must come in natural chunk order,
that is, 64B transfers must complete the lower 32B half first, since snoops are
always cache line aligned.

10. Device snoop responses in D2H Response must not be dependent on any other
channel or on any other requests in the device besides the availability of credits in
the D2H Response channel. The Host must guarantee that the responses will
eventually be serviced and return credits to the device.

11. The Host must not send a second snoop request to an address until all responses,
plus data if required, for the prior snoop are collected.

12. H2D Response and H2D Data messages to the device must drain without the need
for any other transaction to make progress.

13. The Host must not return GO-M for data that is not actually modified with respect
to memory.

14. The Host must not write unmodified data back to memory.
15. Except for WOWrInv and WOWrInF, all other writes are strongly ordered.

3.3 CXL.mem

3.3.1 Introduction

The CXL Memory Protocol is called CXL.mem, and it is a transactional interface between
the CPU and Memory. It uses the phy and link layer of Compute Express Link (CXL)
when communicating across dies. The protocol can be used for multiple different
Memory attach options including when the Memory Controller is located in the Host
CPU, when the Memory Controller is within an Accelerator device, or when the Memory
Controller is moved to a memory buffer chip. It applies to different Memory types
(volatile, persistent etc) and configurations (flat, hierarchical etc) as well.

The coherency engine in the CPU interfaces with the Memory (Mem) using CXL.mem
requests and responses. In this configuration, the CPU coherency engine is regarded as
the CXL.mem Master and the Mem device is regarded as the CXL.mem Subordinate.
The CXL.mem Master is the agent which is responsible for sourcing CXL.mem requests
(reads, writes etc) and a CXL.mem Subordinate is the agent which is responsible for
responding to CXL.mem requests (data, completions etc).

When the Subordinate is an Accelerator, CXL.mem protocol assumes the presence of a
device coherency engine (DCOH). This agent is assumed to be responsible for
implementing coherency related functions such as snooping of device caches based on
CXL.mem commands and update of Meta Data fields. Support for memory with Meta
Data is optional but this needs to be negotiated with the Host in advance. The
negotiation mechanisms is outside the scope of this specification. If Meta Data is not

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 60
Revision 1.0

supported by device-attached memory, the DCOH will still need to use the Host
supplied Meta Data updates to interpret the commands. If Meta Data is supported by
device-attached memory, it can be used by Host to implement a coarse snoop filter for
CPU sockets.

CXL.mem transactions from Master to Subordinate are called "M2S" and transactions
from Subordinate to Master are called “S2M”.

Within M2S transactions, there are two message classes:
• Request without data - generically called Requests (Req)
• Request with Data - (RwD)

Similarly, within S2M transactions, there are two message classes:
• Response without data - generically called No Data Response (NDR)
• Response with data - generically called Data Response (DRS)

The next sections describe the above message classes and opcodes in detail.

3.3.2 M2S Request (Req)

The Req message class generically contains reads, invalidates and signals going from
the Master to the Subordinate.

Table 21. M2S Request Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

MemOpcode 4 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 22

MetaField 2

Meta Data Field – Up to 3 Meta Data Fields can be addressed. This specifies
which, if any, Meta Data Field needs to be updated. Details of Meta Data
Field in Table 23. If the Subordinate does not support memory with Meta
Data, this field will still be used by the DCOH for interpreting Host
commands as described in Table 24

MetaValue 2

Meta Data Value - When MetaField is not No-Op, this specifies the value the
field needs to be updated to. Details in Table 24. If the Subordinate does not
support memory with Meta Data, this field will still be used by the device
coherence engine for interpreting Host commands as described in Table 24

SnpType 3
Snoop Type - This specifies what snoop type, if any, needs to be issued by
the DCOH and the minimum coherency state required by the Host. Details in
Table 25

Address[51:5] 47
This field specifies the Host Physical Address associated with the
MemOpcode. Addr[5] is provisioned for future usages such as critical chunk
first.

Tag 16

The Tag field is used to specify the source entry in the Master which is pre-
allocated for the duration of the CXL.mem transaction. This value needs to
be reflected with the response from the Subordinate so the response can be
routed appropriately. The exceptions are the MemRdFwd and MemWrFwd
opcodes as described in Table 22

TC 2 Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.

RSVD 10 Reserved

Total 87

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 61
Revision 1.0

Table 22. M2S Req Memory Opcodes

Opcode Description Encoding

MemInv Invalidation request from the Master. Primarily for Meta Data updates. No data read or
write required. If SnpType field contains valid commands, perform required snoops. ‘0000

MemRd Normal memory data read operation. If MetaField contains valid commands, perform
Meta Data updates. If SnpType field contains valid commands, perform required snoops. ‘0001

MemRdData

Normal Memory data read operation. MetaField & MetaValue to be ignored. Instead,
update Meta0-State as follows:
If initial Meta0-State value = ‘I’, update Meta0-State value to ‘A’
Else, no update required
If SnpType field contains valid commands, perform required snoops.

‘0010

MemRdFwd

This is an indication from the Host that data can be directly forwarded from device-
attached memory to the device without any completion to the Host. This is typically sent
as a result of a CXL.cache D2H read request to device-attached memory. The Tag field
contains the reflected CQID sent along with the D2H read request. The SnpType is always
NoOp for this Opcode. The caching state of the line is reflected in Meta0-State value.

‘0011

MemWrFwd

This is an indication from the Host to the device that it owns the line and can update it
without any completion to the Host. This is typically sent as a result of a CXL.cache D2H
write request to device-attached memory. The Tag field contains the reflected CQID sent
along with the D2H write request. The SnpType is always NoOp for this Opcode. The
caching state of the line is reflected in Meta0-State value.

‘0100

MemInvNT
This is similar to the MemInv command except that the NT is a hint that indicates the
invalidation is non-temporal and the writeback is expected soon. However, this is a hint
and not a guarantee.

‘1001

Reserved Reserved
‘0110
‘0111
‘Others

Table 23. Meta Data Field Definition

Meta Field Description Encoding

 Meta0 - State Update the Metadata bits with the value in the Meta Data Value field. Details
of MetaValue associated with Meta0-State in Table 24 00

Reserved Reserved
01
10

No-Op No meta data operation. Ignore value in MetaValue field 11

Table 24. Meta0-State Value Definition

Encoding Description

2’b00

Invalid (I) - Indicates the Host does not have a cacheable copy of the line. The DCOH can
use this information to grant exclusive ownership of the line to the device. When paired
with a MemOpcode = MemInv and SnpType = SnpInv, this is used to communicate that
the device should flush this line from its caches, if cached, to device-attached memory.

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 62
Revision 1.0

Valid M2S request semantics are described below.

2’b10

Any (A) - Indicates the Host may have an shared, exclusive or modified copy of the line.
The DCOH can use this information to interpret that the Host likely wants to update the
line and the device should not be given a copy of the line without first sending a request
to the Host.

2’b11

Shared (S) - Indicates the Host may have at most a shared copy of the line. The DCOH
can use this information to interpret that the Host does not have an exclusive or modified
copy of the line. If the device wants a shared or current copy of the line, the DCOH can
provide this without sending a request to the Host. If the device wants an exclusive copy
of the line, the DCOH will have to send a request to the Host first.

2’b01 Reserved

Table 25. Snoop Type Definition

SnpType Description Description Encoding

No-Op No snoop needs to be performed 000

SnpData Snoop may be required - the requester needs at least a Shared copy of the line.
Device may choose to give an exclusive copy of line as well. 001

SnpCur
Snoop may be required - the requester needs the current value of the line.
Requester guarantees the line will not be cached. Device need not change the state
of the line in its caches, if present.

010

SnpInv Snoop may be required - the requester needs an exclusive copy of the line. 011

Reserved 1xx

Table 24. Meta0-State Value Definition

Encoding Description

Table 26. M2S Req Usage

M2S Req Meta Field Meta
Value SnpType S2M NDR S2M DRS Description

MemRd Meta0-State A SnpInv Cmp-E MemData The Host wants an exclusive copy
of the line

MemRd Meta0-State S SnpData Cmp-S or
Cmp-E MemData The Host wants a shared copy of

the line

MemRd No-Op NA SnpCur Cmp MemData The Host wants a non-cacheable
but current value of the line

MemRd No-Op NA SnpInv Cmp MemData

The Host wants a non-cacheable
value of the line and the device
should invalidate the line from its
caches

MemInv Meta0-State A SnpInv Cmp-E NA The Host wants ownership of the
line without data

MemInvNT Meta0-State A SnpInv Cmp-E NA

The Host wants ownership of the
line without data. However, the
Host expects this to be non-
temporal and may do a writeback
soon.

MemInv Meta0-State I SnpInv Cmp NA The Host wants the device to
invalidate the line from its caches

MemRdData NA NA SnpData Cmp-S or
Cmp-E MemData The Host wants a cacheable copy

in either exclusive or shared state

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 63
Revision 1.0

3.3.3 M2S Request with Data (RwD)

The Request with Data (RwD) message class generally contains writes from the Master
to the Subordinate.

The definition of other fields are consistent with M2S Req (refer to M2S Request (Req)).
Valid M2S RwD semantics are described below.

Table 27. M2S RwD Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

MemOpcode 4 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 28

MetaField 2

Meta Data Field – Up to 3 Meta Data Fields can be addressed. This
specifies which, if any, Meta Data Field needs to be updated. Details of
Meta Data Field in Table 23. If the Subordinate does not support
memory with Meta Data, this field will still be used by the DCOH for
interpreting Host commands as described in Table 24

MetaValue 2

Meta Data Value - When MetaField is not No-Op, this specifies the value
the field needs to be updated to. Details in Table 24. If the Subordinate
does not support memory with Meta Data, this field will still be used by
the device coherence engine for interpreting Host commands as
described in Table 24

SnpType 3
Snoop Type - This specifies what snoop type, if any, needs to be issued
by the DCOH and the minimum coherency state required by the Host.
Details in Table 25

Address[51:6] 46 This field specifies the Host Physical Address associated with the
MemOpcode.

Tag 16

The Tag field is used to specify the source entry in the Master which is
pre-allocated for the duration of the CXL.mem transaction. This value
needs to be reflected with the response from the Subordinate so the
response can be routed appropriately.

TC 2 Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.

Poison 1 This indicates that the data contains an error. The handling of poisoned
data is device specific. Please refer to the Chapter 12 for more details.

RSVD 10

Total 87

Table 28. M2S RwD Memory Opcodes

Opcode Description Encoding

MemWr

Memory write command. Used for full line writes. If MetaField contains valid commands,
perform Meta Data updates. If SnpType field contains valid commands, perform required
snoops. If the snoop hits a Modified cacheline in the device, the DCOH will invalidate the
cache and write the data from the Host to device-attached memory.

‘0001

MemWrPtl

Memory Write Partial. Contains 64 byte enables, one for each byte
of data. If MetaField contains valid commands, perform Meta Data updates. If SnpType
field contains valid commands, perform required snoops. If the snoop hits a Modified
cacheline in the device, the DCOH will need to perform a merge, invalidate the cache and
write the contents back to device-attached memory.

‘0010

Reserved Reserved Others

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 64
Revision 1.0

3.3.4 S2M No Data Response (NDR)

The NDR message class contains completions and indications from the Subordinate to
the Master.

Opcodes for the NDR message class are defined in the table below.

Definition of other fields are the same as for M2S message classes.

Table 29. M2S RwD Usage

M2S Req Meta Field Meta
Value SnpType S2M NDR Description

MemWr Meta0-State I No-Op Cmp The Host wants to write the line back to memory
and does not retain a cacheable copy.

MemWr Meta0-State A No-Op Cmp
The Host wants to write the line back to memory
and retains a cacheable copy in shared, exclusive
or modified state.

MemWr Meta0-State I SnpInv Cmp

The Host wants to write the line back to memory
and does not retain a cacheable copy. In
addition, the Host did not get ownership of the
line before doing this write and needs the device
to snoop-invalidate its caches before doing the
write back to memory.

MemWrPtl Meta0-State I SnpInv Cmp
Same as the above row except the data being
written is partial and the device needs to merge
the data if it finds a copy of the line in its caches.

Table 30. S2M NDR Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

Opcode 3 Memory Operation – This specifies which, if any, operation needs to be
performed on the data and associated information. Details in Table 31

MetaField 2
Meta Data Field – For devices that support memory with meta data, this
is a reflection of the value sent in the associated M2S Req or M2S RwD.
For devices that do not, this field is a don’t care.

MetaValue 2

Meta Data Value – For M2S Req, for devices that support memory with
meta data, this is the initial value of the Meta Data Field as read from
memory for a M2S Req that does not return a S2M DRS. For M2S RwD
and for devices that do not support memory with meta data, this field is
a don’t care.

Tag 16 Tag - This is a reflection of the Tag field sent with the associated M2S
Req or M2S RwD.

RSVD 4

Total 28

Table 31. S2M NDR Opcodes

Opcode Description Encoding

Cmp Completions for Writebacks, Reads and Invalidates ‘000

Cmp-S Indication from the DCOH to the Host for Shared state ‘001

Cmp-E Indication from the DCOH to the Host for Exclusive ownership ‘010

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 65
Revision 1.0

3.3.5 S2M Data Response (DRS)

The DRS message class contains memory read data from the Subordinate to the
Master.

The fields of the DRS message class are defined in the table below.

3.3.6 Forward Progress & Ordering Rules

• Req & RwD message classes, each, need to be credited independently between
each hop in a multi-hop fabric. Back pressure, due to lack of resources at the
destination, is allowed. However, these must eventually drain without dependency
on any other traffic type.

• No transaction should pass a MemRdFwd or a MemWrFwd, if the transaction and
MemRdFwd or MemWrFwd are to the same cacheline address.
Reason: As described in Table 22, MemRdFwd and MemWrFwd opcodes, sent on the
Req message class are, in fact, responses to CXL.cache D2H requests. The reason
the response for certain CXL.cache D2H requests are on CXL.mem Req channel is
to ensure subsequent requests from the Host to the same address remain ordered
behind it. This allows the host and device to avoid race conditions. An example of a
transaction flow is shown Figure 36.

• Apart from the above, there is no ordering requirement for the Req, RwD, NDR &
DRS message classes or for different addresses within the Req message class.

• NDR & DRS message classes, each, need to be pre-allocated at the source. This
guarantees that the responses can sink and ensures forward progress.

Table 32. S2M DRS Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request.

Opcode 3
Memory Operation – This specifies which, if any, operation needs
to be performed on the data and associated information. Details
in Table 33.

MetaField 2
Meta Data Field – For devices that support memory with meta
data, this is a reflection of the value sent in the associated M2S
Req or M2S RwD. For devices that do not, this field is a don’t care.

MetaValue 2

Meta Data Value – For M2S Req, for devices that support memory
with meta data, this is the initial value of the Meta Data Field as
read from memory. For M2S RwD and for devices that do not
support memory with meta data, this field is a don’t care.

Tag 16 Tag - This is a reflection of the Tag field sent with the associated
M2S Req or M2S RwD.

Poison 1
This indicates that the data contains an error. The handling of
poisoned data is Host specific. Please refer to the Chapter 12 for
more details.

RSVD 15

Total 40

Table 33. S2M DRS Opcodes

Opcode Description Encoding

MemData Memory read data. Sent in response to Reads. ‘000

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 66
Revision 1.0

• On CXL.mem, a strongly ordered write request needs to be completed before
another transaction is issued to the same address.

• CXL.mem requests need to make forward progress at the device without any
dependency on any device initiated request. This includes any request from the
device on CXL.io or CXL.cache.

3.4 Transaction Flows to Device-Attached Memory

3.4.1 Flows for Type 1 and Type 2 Devices

3.4.1.1 Notes and Assumptions

The transaction flow diagrams below are intended to be illustrative of the flows
between the Host and device for access to device-attached Memory using the Bias
Based Coherency mechanism described in Section 2.0. However, these flows are not
comprehensive of every Host and device interaction. The diagrams below make the
following assumptions:

• The device contains a coherency engine which is called DCOH in the diagrams
below.

• The DCOH contains a Snoop Filter which tracks any caches (called Dev cache)
implemented on the device. This is not strictly required and the device is free to
choose an implementation specific mechanism as long as the coherency rules are
obeyed.

• The DCOH contains a Bias Table lookup mechanism. The implementation of this is
device specific.

• The device specific aspects of the flow, illustrated using Red flow arrows, need not
conform exactly to the pictures below. These can be implemented in a device
specific manner.

3.4.1.2 Requests from Host

Please note that the flows shown in this section (Requests from Host) do not change on
the CXL interface regardless of the bias state of the target region. This effectively
means that the device needs to give the Host a consistent response, as expected by the
Host and shown below.

Figure 24. Legend

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 67
Revision 1.0

In the above example, the Host requested a cacheable non-exclusive copy of the line.
The non-exclusive aspect of the request is communicated using the “SnpData”
semantic. In this example, the request got a snoop filter hit in the DCOH, which caused
the device cache to be snooped. The device cache downgraded the state from Exclusive
to Shared and returned the Shared data copy to the Host. The Host is told of the state
of the line using the Cmp-S semantic.

Figure 25. Example Cacheable Read from Host

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 68
Revision 1.0

In the above example, the Host requested a cacheable exclusive copy of the line. The
exclusive aspect of the request is communicated using the “SnpInv” semantic, which
asks the device to invalidate its caches. In this example, the request got a snoop filter
hit in the DCOH, which caused the device cache to be snooped. The device cache
downgraded the state from Exclusive to Invalid and returned the Exclusive data copy to
the Host. The Host is told of the state of the line using the Cmp-E semantic.

Figure 26. Example Read for Ownership from Host

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 69
Revision 1.0

In the above example, the Host requested a non-cacheable copy of the line. The non-
cacheable aspect of the request is communicated using the “SnpCurr” semantic. In this
example, the request got a snoop filter hit in the DCOH, which caused the device cache
to be snooped. The device cache did not need to change its caching state; however, it
gave the current snapshot of the data. The Host is told that it is not allowed to cache
the line using the Cmp semantic.

In the above example, the Host requested exclusive access to a line without requiring
the device to send data. It communicates that to the device using an opcode of MemInv
with a MetaValue of ‘10 (Any), which is significant in this case. It also asks the device to
invalidate its caches with the SnpInv command. The device invalidates its caches and
gives exclusive ownership to the Host as communicated using the Cmp-E semantic.

Figure 27. Example Non Cacheable Read from Host

Figure 28. Example Ownership Request from Host - No Data Required

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 70
Revision 1.0

In the above example, the Host wants to flush a line from all caches, including the
device’s caches, to memory. To do so, it uses an opcode of MemInv with a MetaValue of
‘00 (Invalid) and a SnpInv. The device flushes its caches and returns a Cmp indication
to the Host.

In the above example, the Host issues a weakly ordered write (partial or full line). The
weakly ordered semantic is communicated by the embedded SnpInv. In this example,
the device had a copy of the line cached. This resulted in a merge within the device
before writing it back to memory and sending a Cmp indication to the Host.

Figure 29. Example Flush from Host

Figure 30. Example Weakly Ordered Write from Host

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 71
Revision 1.0

In the above example, the Host performed a strongly ordered write while guaranteeing
to the device that it no longer has a valid cached copy of the line. The strong ordering
is demonstrated by the fact that the Host didn’t need to snoop the device’s caches
which means it previously acquired an exclusive copy of the line. The guarantee on no
valid cached copy is indicated by a MetaValue of ‘00 (Invalid).

The above example is the same as the previous one except that the Host chose to
retain a valid cacheable copy of the line after the write. This is communicated to the
device using a MetaValue of not ‘00 (Invalid).

Figure 31. Example Strongly Ordered Write from Host with Invalid Host Caches

Figure 32. Example Strongly Ordered Write from Host with Valid Caches

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 72
Revision 1.0

3.4.1.3 Requests from Device in Host & Device Bias

There are two flows shown above.

In the first one, a device read to device attached memory happened to find the line in
Host bias. Since it is in Host bias, the device needs to send the request to the Host to
resolve coherency. The Host, after resolving coherency, sends a MemRdFwd on
CXL.mem to complete the transaction, at which point the device can complete the read
internally.

In the second flow, the device read happened to find the line in Device Bias. Since it is
in Device Bias, the read can be completed entirely within the device itself and no
request needs to be sent to the Host.

Figure 33. Example Device Read to Device-Attached Memory

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 73
Revision 1.0

There are two flows shown above, both with the line in Host Bias: a weakly ordered
write request and a strongly ordered write request.

In the case of the weakly ordered write request, the request is issued by the device to
the Host to resolve coherency. The Host resolves coherency and sends a CXL.mem
MemWrFwd opcode which carries the completion for the WOWrInv* command on
CXL.cache. The CQID associated with the CXL.cache WOWrInv* command is reflected
in the Tag of the CXL.mem MemWrFwd command. At this point, the device is allowed to
complete the write internally. After sending the MemWrFwd, since the Host no longer
fences against other accesses to the same line, this is considered a weakly ordered
write.

In the second flow, the write is strongly ordered. To preserve the strongly ordered
semantic, the Host fences against other accesses while this write completes. However,
as can be seen, this involves two transfers of the data across the link, which is not
efficient. Unless strongly ordered writes are absolutely required, better performance
can be achieved with weakly ordered writes.

Figure 34. Example Device Write to Device-Attached Memory in Host Bias

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 74
Revision 1.0

Again, two flows are shown above. In the first case, if a weakly or strongly ordered
write finds the line in Device Bias, the write can be completed entirely within the device
without having to send any indication to the Host.

The second flow shows a device writeback to device-attached memory. Please note that
if the device is doing a writeback to device-attached memory, regardless of bias state,
the request can be completed within the device without having to send a request to the
Host.

Figure 35. Example Device Write to Device-Attached Memory

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 75
Revision 1.0

Please note that the MemRdFwd will carry the CQID of the RdOwnNoData transaction in
the Tag. The reason for putting the RdOwnNoData completion (MemRdFwd) on
CXL.mem is to ensure that subsequent requests from the Host to the same address are
ordered behind the MemRdFwd. This allows the device to assume ownership of a line as
soon as it receives a MemRdFwd without having to monitor requests from the Host.

3.5 Flows for Type 3 Devices
Type 3 devices are memory expanders which neither cache host memory, nor require
active management of a device cache by the Host. Thus, Type 3 devices do not have a
DCOH agent. As such, the Host treats these devices as disaggregated memory
controllers. This allows the transaction flows to Type 3 devices to be simplified to just
two classes, reads and writes, as shown below. The legend shown in Figure 24 also
applies to the transaction flows shown below.

Figure 36. Example Host to Device Bias Flip

Compute Express Link Transaction Layer

 Compute Express Link Specification
March 2019 76
Revision 1.0

The key difference between reads to Type 1 and Type 2 devices versus Type 3 devices is
that there is no S2M NDR associated with it. Writes to Type 3 device always complete
with a S2M NDR Cmp message.

§ §

Figure 37. Read from Host

Figure 38. Write from Host

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 77
Revision 1.0

4.0 Compute Express Link Link Layers

4.1 CXL.io Link Layer
The CXL.io link layer acts as an intermediate stage between the CXL.io transaction
layer and the Flex Bus Physical layer. Its primary responsibility is to provide a reliable
mechanism for exchanging transaction layer packets (TLPs) between two components
on the link. The PCIe Data Link Layer is utilized as the link layer for CXL.io Link layer.
Please refer to chapter titled “Data Link Layer Specification” in PCI Express Base
Specification for details.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 78
Revision 1.0

In addition, the CXL.io link layer implements the framing/deframing of CXL.io packets.
CXL.io utilizes the Encoding for 8.0 GT/s and Higher data rates only, refer to section
entitled “Encoding for 8.0GT/s and Higher Data Rates” in the PCI Express Base
Specification for details.

This chapter highlights the notable framing and application of symbols to lanes that are
specific for CXL.io. Note that when viewed on the link, the framing symbol to lane
mapping will be shifted due to additional CXL framing (i.e., two bytes of Protocol ID and
two reserved bytes) and also due to interleaving with other CXL protocols.

Figure 39. Flex Bus Layers -- CXL.io Link Layer Highlighted

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 79
Revision 1.0

For CXL.io, only the x16 Link transmitter and receiver framing requirements described
in the PCI Express Base Specification apply irrespective of the negotiated link width.
The framing related rules for N = 1, 2, 4 and 8 do not apply. For downgraded Link
widths, where number of active lanes is less than x16, a single x16 data stream is
formed using x16 framing rules and transferred over x16/(degraded link width)
degraded link width streams.

CXL.io link layer forwards a framed IO packet to the Flex Bus Physical layer. The Flex
Bus Physical layer framing rules are defined in Section 6.0.

4.2 CXL.mem and CXL.cache Common Link Layer

4.2.1 Introduction

The figure below shows where the CXL.cache and CXL.mem link layer exists in the Flex
Bus layered hierarchy.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 80
Revision 1.0

As previously mentioned, CXL.cache & CXL.mem protocols use a common Link Layer.
This chapter defines the properties of this common Link Layer. Protocol information,
including definition of fields, opcodes, transaction flows etc can be found in Section 3.2
and Section 3.3.

4.2.2 High-Level CXL.cache/CXL.mem Flit Overview

Figure 40. Flex Bus Layers -- CXL.cache + CXL.mem Link Layer Highlighted

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 81
Revision 1.0

The CXL.cache/mem flit size is a fixed 528b. There are 2B of CRC code and 4 slots of
16B each as shown below.

A “Header” Slot is defined as one that carries a “Header” of link-layer specific
information, including the definition of the protocol-level messages contained in the
rest of the header as well as in the other slots in the flit.

A “Generic Request/Response Slot” is defined as one that holds one or more small
CXL.cache messages.

A “Generic Data Slot” carries just 16B of data. A 64B Cache-line is transferred with 4
such generic data slots.

The flit can be composed of a Header Slot and 3 Generic Slots or possibly with only
Generic data Slots.

Figure 41. CXL.cache/.mem Protocol Flit Overview

Figure 42. CXL.cache/.mem All Data Flit Overview

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 82
Revision 1.0

The flit header utilizes the same definition for both the Upstream as well as the
Downstream ports summarized in the table below.

In general, bits or encodings that are not defined will be marked “Reserved” or “RSVD”
in this specification. These bits should be set to 0 by the sender of the packet and the
receiver should ignore them. Please also note that certain fields with static 0/1 values
will be checked by the receiving Link Layer when decoding a packet. Checking of these
bits reduces the probability of silent error under conditions where the CRC check fails to
detect a long burst error. For example, LLCTRL (control flits) have several static bits
defined. A LLCTRL flit that passes the CRC check but fails the static bit check should be
treated as a fatal error. Logging and reporting of such errors is device specific.

The following describes how the flit header information is encoded.

The Acknowledgment field is used as part of the link layer retry protocol to signal
CRC-passing receipt of flits from the remote transmitter. The transmitter sets the Ak bit
to acknowledge successful receipt of 8 flits; a clear Ak bit is ignored by the receiver.

The Byte Enable and Size fields have to do with the variable size of data messages. To
reach its efficiency targets, the CXL.cache/mem link layer assumes that generally all
bytes are enabled for most data, and that data is transmitted at the full cache line
granularity. When all bytes are enabled, the link layer does not transmit the byte
enable bits, but instead clears the Byte Enable field of the corresponding flit header.
When the receiver decodes that the Byte Enable field is clear, it must regenerate the
byte enable bits as all ones before passing the data message on to the transaction
layer. If the Byte Enable bit is set, the link layer Rx expects an additional data chunk
slot containing byte enable information. Note that this will always be the last slot of
data sent.

Table 34. CXL.cache/CXL.mem Flit Header Definition

Field Name Brief Description Size

Flit Type This field distinguishes between a Protocol or a Control Flit 1

Acknowledgment This is an acknowledgment of 8 successful flit transfers 1

BE Byte Enable 1

Sz Size 1

ReqCrd Request Credit Return 4

DataCrd Data Credit Return 4

RspCrd Response Credit Return 4

Slot 0 Slot 0 Format Type 3

Slot 1 Slot 1 Format Type 3

Slot 2 Slot 2 Format Type 3

Slot 3 Slot 3 Format Type 3

RSVD Reserved 4

Total 32

Table 35. Flit Type Encoding

Flit Type Description

0 Protocol This is a flit that carries CXL.cache or CXL.mem protocol related
information

1 Control This is a flit inserted by the link layer purely for link layer specific
functionality. These flits are not exposed to the upper layers.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 83
Revision 1.0

Similarly, the Size field reflects the fact that the CXL.cache protocol allows
transmission of data at the half cache line granularity. When the Size bit is set, the link
layer Rx expects four slots of data chunks, corresponding to a full cache line. When the
Size bit is clear, it expects only two slots of data chunks. In the latter case, each half
cache line transmission will be accompanied by its own data header. A critical
assumption of packing the Size and Byte Enable information in the flit header is that
the Tx flit packer may begin at most one data message per flit.

The following table describes legal values of Sz and BE for various data transfers.

The transmitter sets the Credit Return fields to indicate resources available in the co-
located receiver for use by the remote transmitter. Credits are given for transmission
per message class, which is why the flit header contains independent Request,
Response, and Data Credit Return fields. The granularity of credits is per transfer. For
data transfers, this means 1 credit allows for one data transfer, regardless of whether
the transfer is 64B, 32B or contains Byte Enables. These fields are encoded
exponentially, as delineated in the table below.

Finally, the Slot Format Type fields encode the Slot Format of both the header itself and
of the other generic slots in the flit (if the Flit Type bit specifies that the flit is a Protocol
Flit). The subsequent sections detail the protocol message contents of each slot format,
but the table below provides a quick reference for the Slot Format field encoding.

Table 36. Legal values of Sz & BE Fields

Type of Data Transfer 32B Transfer Possible? BE Possible?

CXL.cache H2D Data Yes No

CXL.mem M2S Data No Yes

CXL.cache D2H Data Yes Yes

CXL.mem S2M Data Yes No

Table 37. CXL.cache/CXL.mem Credit Return Encodings

Credit Return Encoding[3] Protocol

0 CXL.cache

1 CXL.mem

Credit Return Encoding[2:0] Number of Credits

000 0

001 1

010 2

011 4

100 8

101 16

110 32

111 64

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 84
Revision 1.0

The following tables describe the actual slot format and the type of message contained
by each format for both directions.

Table 38. Slot Format Field Encoding

Slot Format
Encoding H2D/M2S D2H/S2M

Slot 0 Slots 1,2 and 3 Slot 0 Slots 1, 2 and 3

000 H0 G0 H0 G0

001 H1 G1 H1 G1

010 H2 G2 H2 G2

011 H3 G3 H3 G3

100 H4 G4 H4 G4

101 H5 G5 H5 G5

110 RSVD RSVD RSVD G6

111 RSVD RSVD RSVD RSVD

Table 39. H2D/M2S Slot Formats

Format to Req Type Mapping H2D/M2S

Type Size

H0 CXL.cache Req + CXL.cache Resp 96

H1 CXL.cache Data Header + 2 CXL.cache
Resp 88

H2 CXL.cache Req + CXL.cache Data
Header 88

H3 4 CXL.cache Data Header 96

H4 CXL.mem RwD Header 87

H5 CXL.mem Req Only 87

G0 CXL.cache/ CXL.mem Data Chunk 128

G1 4 CXL.cache Resp 128

G2 CXL.cache Req + CXL.cache Data
Header + CXL.cache Resp 120

G3 4 CXL.cache Data Header + CXL.cache
Resp 128

G4 CXL.mem Req + CXL.cache Data Header 111

G5 CXL.mem RwD Header + CXL.cache
Resp 119

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 85
Revision 1.0

4.2.3 Slot Format Definition

4.2.3.1 RSVD Fields

Flit, slot and message bits that are not defined will be marked “RSVD” in this
specification. RSVD bits should be set to 0 by the sender and the receiver should ignore
them.

4.2.3.2 H2D & M2S Formats

Table 40. D2H/S2M Slot Formats

Format to Req Type Mapping D2H/S2M

Type Size

H0 CXL.cache Data Header + 2 CXL.cache Resp +
CXL.mem NDR 85

H1 CXL.cache Req + CXL.cache Data Header 96

H2 4 CXL.cache Data Header + CXL.cache Resp 88

H3 CXL.mem DRS Header + CXL.mem NDR 68

H4 2 CXL.mem NDR 56

H5 2 CXL.mem DRS Header 80

G0 CXL.cache/ CXL.mem Data Chunk 128

G1 CXL.cache Req + 2 CXL.cache Resp 119

G2 CXL.cache Req + CXL.cache Data Header +
CXL.cache Resp 116

G3 4 CXL.cache Data Header 68

G4 CXL.mem DRS Header + 2 CXL.mem NDR 96

G5 3 CXL.mem NDR 84

G6 3 CXL.mem DRS Header 120

Figure 43. H0 - H2D Req + H2D Resp

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 86
Revision 1.0

Figure 44. H1 - H2D Data Header + H2D Resp + H2D Resp

Figure 45. H2 - H2D Req + H2D Data Header

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 87
Revision 1.0

Figure 46. H3 - 4 H2D Data Header

Figure 47. H4 - M2S RwD Header

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 88
Revision 1.0

Figure 48. H5 - M2S Req

Figure 49. G0 - H2D/M2S Data

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 89
Revision 1.0

Figure 50. G0 - M2S Byte Enable

Figure 51. G1 - 4 H2D Resp

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 90
Revision 1.0

Figure 52. G2 - H2D Req + H2D Data Header + H2D Resp

Figure 53. G3 - 4 H2D Data Header + H2D Resp

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 91
Revision 1.0

Figure 54. G4 - M2S Req + H2D Data Header

Figure 55. G5 - M2S RwD Header + H2D Resp

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 92
Revision 1.0

4.2.3.3 D2H & S2M Formats

Figure 56. H0 - D2H Data Header + 2 D2H Resp + S2M NDR

Figure 57. H1 - D2H Req + D2H Data Header

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 93
Revision 1.0

Figure 58. H2 - 4 D2H Data Header + D2H Resp

Figure 59. H3 - S2M DRS Header + S2M NDR

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 94
Revision 1.0

Figure 60. H4 - 2 S2M NDR

Figure 61. H5 - 2 S2M DRS

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 95
Revision 1.0

Figure 62. G0 - D2H Data

Figure 63. G0 - D2H/S2M Byte Enable

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 96
Revision 1.0

Figure 64. G1 - D2H Req + 2 D2H Resp

Figure 65. G2 - D2H Req + D2H Data Header + D2H Resp

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 97
Revision 1.0

Figure 66. G3 - 4 D2H Data Header

Figure 67. G4 - S2M DRS Header + 2 S2M NDR

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 98
Revision 1.0

4.2.4 Link Layer Registers

Architectural registers associated with CXL.cache and CXL.mem have been defined in
Section 7.2.2.1.15

4.2.5 Flit Packing Rules

The packing rules are defined below. Here, for the purpose of bidding, it is assumed
that a given queue has credits towards the RX and any protocol dependencies (SNP-GO
ordering, for example) have already been considered:

• Rollover is defined as any time a data transfer needs more than one flit. Note that a
data chunk which contains 128b (format G0), can only be scheduled in Slots 1, 2
and 3 of a protocol flit since Slot 0 has only 96b available, as 32b are taken up by
the flit header. The following rules apply to Rollover data chunks.

Figure 68. G5 - 3 S2M NDR

Figure 69. G6 - 3 S2M DRS

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 99
Revision 1.0

— If there's a rollover of more than 3 16B data chunks, the next flit must
necessarily be an all data flit.

— If there’s a rollover of 3 16B data chunks, Slots 1, Slots 2 and Slots 3 must
necessarily contain the 3 rollover data chunks. Slot 0 will be packed
independently (it is allowed for Slot 0 to have the Data Header for the next
data transfer).

— If there’s a rollover of 2 16B data chunks, Slots 1 and Slots 2 must necessarily
contain the 2 rollover data chunks. Slot 0 and Slot 3 will be packed
independently.

— If there’s a rollover of 1 16B data chunk, Slot 1 must necessarily contain the
rollover data chunk. Slot 0, Slot 2 and Slot 3 will be packed independently.

— If there’s no rollover, each of the 4 slots will be packed independently.
• Care must be taken to ensure fairness between packing of CXL.mem & CXL.cache

transactions. Similarly, care must be taken to ensure fairness between channels
within a given protocol. The exact mechanism to ensure fairness is implementation
specific.

• Valid messages within a given slot need to be tightly packed. Which means, if a slot
contains multiple possible locations for a given message, the Tx must pack the
message in the first available location before advancing to the next available
location.

• Valid messages within a given flit need to be tightly packed. Which means, if a flit
contains multiple possible slots for a given message, the Tx must pack the message
in the first available slot before advancing to the next available slot.

• If a valid Data Header is packed in a given slot, the next available “data-slots” (Slot
1, Slot 2, Slot 3 or an all-data flit) will be guaranteed to have data associated with
the header. The Rx will use this property to maintain a shadow copy of the Tx
Rollover counts. This enables the Rx to expect all-data flits where a flit header is
not present.

• For data transfers, the Tx must send 16B data chunks in cacheline order. That is,
chunk order 01 for 32B transfers and chunk order 0123 for 64B transfers.

• A slot with more than one data header (e.g. H4 in the S2M direction, or G3 in the
H2D direction) is called a multi-data header slot or a MDH slot. MDH slots can only
be sent for full cache line transfers when both 32B chunks are available to pack
immediately. That is, BE = 0, Sz = 1. A MDH slot can only be used if both end
points support MDH (defeature defined in Section 7.2.2.1.22)

• A MDH slot format must be chosen by the Tx only if there is more than 1 valid Data
Header to pack in that slot.

• Control flits cannot be interleaved with all data flits. This also implies that when an
all-data flit is expected following a protocol flit (due to Rollover), the Tx cannot
send a Control flit before the all data flit.

• For non-MDH containing flits, there can be at most 1 valid Data Header in that flit.
Also, a MDH containing flit cannot be packed with another valid Data Header in the
same flit.

• The maximum number of messages that can be sent in a given flit (sum, across all
slots) is:
D2H Request --> 4
D2H Response --> 2
D2H Data Header --> 4
D2H Data --> 4*16B
S2M NDR --> 2
S2M DRS Header --> 3
S2M DRS Data --> 4*16B

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 100
Revision 1.0

H2D Request --> 2
H2D Response --> 4
H2D Data Header --> 4
H2D Data --> 4*16B
M2S Req --> 2
M2S DRS Header --> 1
M2D DRS Data --> 4*16B

4.2.6 Link Layer Control Flit

Link Layer Control flits do not follow flow control rules applicable to protocol flits. That
is, they can be sent from an entity without any credits. These flits must be processed
and consumed by the receiver within the period to transmit a flit on the channel since
there are no storage or flow control mechanisms for these flits. The following table lists
all the Controls Flits supported by the CXL.cache/CXL.mem link layer.

A detailed description of the control flits is present below.

Table 41. CXL.cache/CXL.mem Link Layer Control Types

LLCTRL Type
Encoding

LLCTRL Type
Name Description

Retriable?
(Enters the

LLRB)

0b0001 RETRY Link layer retry flit No

0b0000 LLCRD Flit containing only link layer credit return and/or Ack information, but
no protocol information. Yes

0b1100 INIT Link layer initialization flit Yes

Table 42. CXL.cache/CXL.mem Link Layer Control Details (Sheet 1 of 2)

Flit Type LLCTRL SubType SubType
Description Payload Payload Description

LLCRD 0000 0000 NA NA NA

0001 Acknowledge 2:0 Acknowledge[2:0]

3 RSVD

7:4 Acknowledge[7:4]

63:8 RSVD

Others RSVD NA NA

Retry 0001 0000 RETRY.Idle 63:0 RSVD

0001 RETRY.Req 7:0 Requester’s Retry Sequence Number
(Eseq)

15:8 RSVD

20:16 Contains NUM_RETRY

25:21 Contains NUM_PHY_REINIT (for
debug)

63:26 RSVD

0010 RETRY.Ack 0

Empty: The Empty indicates that the
LLR contains no valid data and
therefore the NUM_RETRY value
should be reset

1 Viral: The Viral bit indicates that the
transmitting agent is in a Viral state

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 101
Revision 1.0

In the LLCRD flit, the total number of flit acknowledgments being returned is
determined by creating the Full_Ack return value, where

Full_Ack = {Acknowledgment[7:4],Ak,Acknowledgment[2:0]}, where the Ak bit is
from the flit header.

2 RSVD

7:3 Contain an echo of the NUM_RETRY
value from the LLR.Req

15:8 Contains the WrPtr value of the retry
queue for debug purposes

23:16 Contains an echo of the Eseq from
the LLR.Req

31:24 Contains the NumFreeBuf value of
the retry queue for debug purposes

63:32 RSVD

0011 RETRY.Frame NA

Flit required to be sent before a
RETRY.Req or RETRY.Ack flit to allow
said flit to be decoded without risk of
aliasing.

Others RSVD NA NA

Init 1100 1000 INIT.Param 3:0

Interconnect Version: Version of AL
the port is compliant with.
CXL 1.0 = '0001
Others Reserved

7:4 RSVD

12:8 RSVD

23:13 RSVD

31:24

LLR Wrap Value: Value after which
LLR sequence counter should wrap to
zero.
The default value of this field is 9,
until an error-free INIT.Param flit is
received.

Others RSVD NA NA

Table 42. CXL.cache/CXL.mem Link Layer Control Details (Sheet 2 of 2)

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 102
Revision 1.0

The flit formats for the control flit are illustrated below.
Figure 70. LLCRD Flit Format (Only Slot 0 is Valid. Others are Reserved)

Figure 71. Retry Flit Format (Only Slot 0 is Valid. Others are Reserved)

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 103
Revision 1.0

Note: The RETRY.Req and RETRY.Ack flits belong to the type of flit that receiving devices must
respond to even in the shadow of a previous CRC error. In addition to checking the CRC
of a RETRY flit, the receiving device should also check as many defined bits (those
listed as having hardcoded 1/0 values) as possible in order to increase confidence in
qualifying an incoming flit as a RETRY message.

4.2.7 Link Layer Initialization

Link Layer Initialization is expected to be started after any physical layer reset is
complete and the link has trained successfully to L0. After reset, the Cache/Mem Link
Layer can only send LLCTRL-Retry flits until Link Initialization is complete. The following
describes how the link layer is initialized and credits are exchanged.

• The Tx portion of the Link Layer must wait until the Rx portion of the Link Layer has
received at least one valid flit that is CRC clean before sending the LLCTRL-
INIT.Param flit. Before this condition is met, the Link Layer must transmit only
LLCTRL-Retry flits.
— If for any reason the Rx portion of the Link Layer is not ready to begin

processing flits beyond LLCTRL-INIT and LLCTRL-Retry, the Tx will stall
transmission of LLCTR-INIT.Param flit

• The LLCTRL-INIT.Param flit must be the first non-LLCTRL-Retry flit transmitted by
the Link Layer

• The Rx portion of the Link Layer must be able to receive an LLCTRL-INIT.Param flit
immediately upon completion of Physical Layer initialization because the very first
valid flit may be a LLCTRL-INIT.Param

• Received LLCTRL-INIT.Param values (i.e., LLR Wrap Value) must be made “active”,
that is, applied to their respective hardware states within 8 flit clocks of error-free
reception of LLCTRL-INIT.Param flit.

• Any non-Retry flits received before LLCTRL-INIT.Param flit will trigger an
Uncorrectable Error.

• Only a single LLCTRL-INIT.Param flit should be created by the Tx portion of the Link
Layer after reset. Any CRC error conditions with an LLCTRL-INIT.Param flit will be
dealt with by the Retry state machine and replaced from the Link Layer Retry
Buffer.

Figure 72. Init Flit Format (Only Slot 0 is Valid. Others are Reserved)

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 104
Revision 1.0

• Receipt of an LLCTRL-INIT.Param flit after an LLCTRL-INIT.Param flit has already
been received should be considered an Uncorrectable Error.

• It is the responsibility of the Rx to transmit credits to the sender using standard
credit return mechanisms after link initialization. Each entity should know how
many buffers it has and set its credit return counters to these values. Then, during
normal operation, the standard credit return logic will return these credits to the
sender.

• Immediately after link initialization, the credit exchange mechanism will use the
LLCRD flit format.

• It is possible that the receiver will make available more credits than the sender can
track for a given message class. For correct operation, it is therefore required that
the credit counters at the sender be saturating.

• Credits should be sized to achieve desired levels of bandwidth considering round-
trip time of credit return latency. This is implementation and usage dependent.

4.2.8 CXL.cache/CXL.mem Link Layer Retry

The link layer provides recovery from transmission errors using retransmission, or Link
Layer Retry (LLR). The sender buffers every flit sent in a local link layer retry buffer
(LLRB). To uniquely identify flits in this buffer, the retry scheme relies on sequence
numbers which are maintained within each device. Unlike in PCIe, CXL.cache/.mem
sequence numbers are not communicated between devices with each flit to optimize
link efficiency. The exchange of sequence numbers occurs only through link layer
control (LLCTRL) flits during a LLR sequence. The sequence numbers are set to a
predetermined value (zero) during reset and they are implemented using a wrap-
around counter. The counter wraps back to zero after reaching the depth of the retry
buffer. This scheme makes the following assumptions:

• The round-trip delay between devices is more than the maximum of the link layer
clock or flit period.

• All protocol flits are stored in the retry buffer. See Section 4.2.8.5.1 for further
details on the handling of non-retryable control flits.

Note that for efficient operation, the size of the retry buffer must be more than the
round-trip delay. This includes:

• Time to send a flit from the sender
• Flight time of the flit from sender to receiver
• Processing time at the receiver to detect an error in the flit
• Time to accumulate and, if needed, force Ack return and send embedded Ack

return back to the sender
• Flight time of the Ack return from the receiver to the sender
• Processing time of Ack return at the original sender

Otherwise, the LLR scheme will introduce latency, as the transmitter will have to wait
for the receiver to confirm correct receipt of a previous flit before the transmitter can
free space in its LLRB and send a new flit. Note that the error case is not significant
because transmission of new flits is effectively stalled until successful retransmission of
the erroneous flit anyway.

4.2.8.1 LLR Variables

The retry scheme maintains two state machines and several state variables. Although
the following text describes them in terms of one transmitter and one receiver, both the
transmitter and receiver side of the retry state machines and the corresponding state
variables are present at each device because of the bidirectional nature of the link.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 105
Revision 1.0

Since both sides of the link implement both transmitter and receiver state machines,
for clarity this discussion will use the term “local” to refer to the entity that detects a
CRC error, and “remote” to refer to the entity that sent the flit that was received
erroneously.

The receiving device uses the following state variables to keep track of the sequence
number of the next flit to arrive.

• ESeq: This indicates the expected sequence number of the next valid flit at the
receiving link layer entity. ESeq is incremented by one (modulo the size of the
LLRB) on error-free reception of a retryable flit. ESeq stops incrementing after an
error is detected on a received flit until retransmission begins (RETRY.Ack message
is received). Link layer reset initializes ESeq to 0. Note that there is no way for the
receiver to tell whether it has detected an error on a non-retryable control flit. In
this case it will initiate the link layer retry flow as usual, and effectively the
transmitter will replay from the first retryable flit sent after that non-retryable
control flit.

The sending entity maintains two indices into its LLRB, as indicated below.
• WrPtr: This indexes the entry of the LLRB that will record the next new flit. When

an entity sends a flit, it copies that flit into the LLRB entry indicated by the WrPtr
and then increments the WrPtr by one (modulo the size of the LLRB). This is
implemented using a wrap-around counter that wraps around to 0 after reaching
the depth of the LLRB. Certain LLCTRL flits do not affect the WrPtr. WrPtr stops
incrementing after receiving an error indication at the remote entity (RETRY.Req
message), until normal operation resumes again (all flits from the LLRB have been
retransmitted). WrPtr is initialized to 0 and is incremented only when a flit is put
into the LLRB.

• RdPtr: This is used to read the contents out of the LLRB during a retry scenario.
The value of this pointer is set by the sequence number sent with the
retransmission request (RETRY.Req message). The RdPtr is incremented by one
(modulo the size of the LLRB) whenever a flit is sent, either from the LLRB in
response to a retry request or when a new flit arrives from the transaction layer
and irrespective of the states of the local or remote retry state machines. If a flit is
being sent when the RdPtr and WrPtr are the same, then it indicates that a new flit
is being sent, otherwise it must be a flit from the retry queue.

The LLR scheme uses an explicit acknowledgment that is sent from the receiver to the
sender to remove flits from the LLRB at the sender. The acknowledgment is indicated
via an ACK bit in the headers of flits flowing in the reverse direction. In CXL.cache, a
single ACK bit represents 8 acknowledgments. Each entity keeps track of the number of
available LLRB entries and the number of received flits pending acknowledgment
through the following variables.

• NumFreeBuf: This indicates the number of free LLRB entries at the entity.
NumFreeBuf is decremented by 1 whenever an LLRB entry is used to store a
transmitted flit. NumFreeBuf is incremented by the value encoded in the Ack/
Full_Ack field of a received flit. NumFreeBuf is initialized at reset time to the size of
the LLRB. The maximum number of retry queues at any entity is limited to 255 (8
bit counter). Also, note that the retry buffer at any entity is never filled to its
capacity, therefore NumFreeBuf is never ‘0. If there is only 1 retry buffer entry
available, then the sender cannot send an ACK bearing flit. This restriction is
required to avoid ambiguity between a full or an empty retry buffer during a retry
sequence that may result into incorrect operation. This implies if there are only 2
retry buffer entries left (NumFreeBuf = 2), then the sender can send an Ack
bearing flit only if the outgoing flit encodes a value of at least 1, else a LLCRD
control flit is sent. This is required to avoid deadlock at the link layer due to retry
buffer becoming full at both entities on a link and their inability to send ACK
through header flits.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 106
Revision 1.0

• NumAck: This indicates the number of acknowledgments accumulated at the
receiver. NumAck increments by 1 when a retryable flit is received. NumAck is
decremented by 8 when the ACK bit is set in the header of an outgoing flit. If the
outgoing flit is coming from the LLRB and its ACK bit is set, NumAck does not
decrement. At initialization, NumAck is set to 0. The minimum size of the NumAck
field is the size of the LLRB. NumAck at each entity must be able to keep track of at
least 255 acknowledgments.

The LLR protocol requires that the number of retry queue entries at each entity must
be at least 23 entries (Size of Forced Ack (16) + Max All-Data-Flit (5) + 2) to prevent
deadlock.

4.2.8.2 ACK Forcing

Recall that the LLR protocol requires space available in the LLRB to transmit a new flit,
and that the sender must receive explicit acknowledgment from the receiver before
freeing space in the LLRB. In scenarios where the traffic flow is very asymmetric, this
requirement could result in traffic throttling and possibly even starvation.

Suppose that the A→B direction has very heavy traffic, but there is no traffic at all in
the B→A direction. In this case A could exhaust its LLRB size, while B never has any
return traffic in which to embed Acks. In CXL we want to minimize injected traffic to
reserve bandwidth for the other traffic stream(s) sharing the link.

To avoid starvation, CXL must still permit Ack forcing (injection of a non-traffic flit to
carry an Ack return), but this function is more heavily constrained so as not to waste
bandwidth. In CXL, when B has accumulated at least 16 Acks to return, B’s CXL.cache/
mem link layer will inject a LLCRD flit for Ack return.

The CXL.cache link layer must accumulate a minimum of 8 Acks to set the ACK bit. If
Ack forcing occurred after the accumulation of 8 Acks, it could result in a negative beat
pattern where real traffic always arrives soon after a forced Ack, but not long enough
after for enough Acks to re-accumulate to set the ACK bit. In the worst case this could
double the bandwidth consumption of the CXL.cache side. By waiting for at least16
Acks to accumulate, the CXL.cache/mem link layer ensures that it can still
opportunistically return Acks in any real traffic that arrives after a forced Ack return.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 107
Revision 1.0

4.2.8.3 LLR Control Flits

The LLR Scheme uses several LLCTRL (link layer control) flits of the RETRY format to
communicate the state information and the implicit sequence numbers between the
entities.

• RETRY.Req: This flit is sent from the entity that received a flit in error to the
sending entity. The flit contains the expected sequence number (ESeq) at the
receiving entity, indicating the index of the flit in the retry queue at the remote
entity that must be retransmitted. It also contains the NUM_RETRY value of the
sending entity.

• RETRY.Ack: This flit is sent from the entity that is responding to an error detected
at the remote entity. It contains a reflection of the NUM_RETRY value from the
corresponding Retry.Req message. The flit contains the WrPtr value at the sending
entity for debug purposes only. The WrPtr value should not be used by the retry
state machines in any way. This flit will be followed by the flit identified for retry by
the ESeq number.

• RETRY.Idle: This flit is sent during the retry sequence when there are no other
protocol flits to be sent (see Section 4.2.8.5.2 for details) or a retry queue is not
ready to be sent. For example, it can be used for debug purposes for designs that
need additional time between sending the RETRY.Ack and the actual contents of
the LLR queue.

• RETRY.Frame: This flit is sent in conjunction with a RETRY.Req or RETRY.Ack flit to
prevent aliased decoding of these flits. See Section Section 4.2.8.5 for further
details.

Figure 73. Retry Buffer and Related Pointers.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 108
Revision 1.0

The table below describes the impact of RETRY messages on the local and remote retry
state machines. In this context, the “sender” refers to the Device sending the message
and the “receiver” refers to the Device receiving the message. Note that how this maps
to which device detected the CRC error and which sent the erroneous message depends
on the message type; e.g., for a RETRY.Req sequence, the sender detected the CRC
error, but for a RETRY.Ack sequence, it’s the receiver that detected the CRC error.

4.2.8.4 RETRY Framing Sequences

Recall that the CXL.cache flit formatting specifies an all-data flit for link efficiency. This
flit is encoded as part of the header of the preceding flit and contains no header
information of its own. This introduces the possibility that the data contained in this flit
could happen to match the encoding of a RETRY flit.

This introduces a problem at the receiver. It must be certain to decode the actual
RETRY flit, but it must not falsely decode an aliasing data flit as a RETRY flit. In theory
it might use the header information of the stream it receives in the shadow of a CRC
error to determine whether it should attempt to decode the subsequent flit. Therefore
the receiver cannot know with certainty which flits to treat as header-containing
(decode) and which to ignore (all-data).

CXL introduces the RETRY.Frame flit for this purpose to disambiguate a control
sequence from an all-data flit (ADF). Due to MDH, 5 ADF can be sent back-to-back.
Hence, a RETRY.Req sequence comprises 5 RETRY.Frame flits immediately followed by a
RETRY.Req flit, and a RETRY.Ack sequence comprises 5 RETRY.Frame flits immediately
followed by a RETRY.Ack flit. This is shown in Figure 74.

Note: A RETRY.Ack sequence that arrives when a RETRY.Ack is not expected will be treated as
an error by the receiver. Error resolution in this case is device specific though it is
recommended that this results in the machine halting operation. It is recommended
that this error condition not change the state of the LRSM.

4.2.8.5 LLR State Machines

The LLR scheme is implemented with two state machines: Remote Retry State Machine
(RRSM) and Local Retry State Machine (LRSM). These state machines are implemented
by each entity and together determine the overall state of the transmitter and receiver
at the entity. The states of the retry state machines are used by the send and receive
controllers to determine what flit to send and the actions needed to process a received
flit.

Table 43. Control Flits and Their Effect on Sender and Receiver States

RETRY Message Sender State Receiver State

RETRY.Idle Unchanged. Unchanged.

RETRY.Frame + RETRY.Req
Sequence

Local Retry State Machine
(LRSM) is updated. NUM_RETRY
is incremented. See
Section 4.2.8.5.1

Remote Retry State Machine
(RRSM) is updated. RdPtr is set
to ESeq sent with the flit. See
Section 4.2.8.5.3

RETRY.Frame + RETRY.Ack
Sequence RRSM is updated. LRSM is updated.

RETRY.Frame, RETRY.Req, or
RETRY.Ack message that is not
as part of a valid framed
sequence

Unchanged. Unchanged (drop the flit).

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 109
Revision 1.0

4.2.8.5.1 Local Retry State Machine (LRSM)

This state machine is activated at the entity that detects an error on a received flit. The
possible states for this state machine are:

• RETRY_LOCAL_NORMAL: This is the initial or default state indicating normal
operation (no CRC error has been detected).

• RETRY_LLRREQ: This state indicates that the receiver has detected an error on a
received flit and a RETRY.Req sequence must be sent to the remote entity.

• RETRY_LOCAL_IDLE: This state indicates that the receiver is waiting for a
RETRY.Ack sequence from the remote entity in response to its RETRY.Req
sequence. The implementation may require sub-states of RETRY_LOCAL_IDLE to
capture, for example, the case where the last flit received is a Frame flit and the
next flit expected is a RETRY.Ack.

• RETRY_PHY_REINIT: The state machine remains in this state for the duration of a
physical layer reset.

• RETRY_ABORT: This state indicates that the retry attempt has failed and the link
cannot recover. Error logging and reporting in this case is device specific. This is a
terminal state.

The local retry state machine also has the three counters described below. The
counters and thresholds described below are implementation specific.

• TIMEOUT: This counter is enabled whenever a RETRY.Req request is sent from an
entity and the LRSM state becomes RETRY_LOCAL_IDLE. The TIMEOUT counter is
disabled and the counting stops when the LRSM state changes to some state other
than RETRY_LOCAL_IDLE. The TIMEOUT counter is reset to 0 at link layer
initialization and whenever the LRSM state changes from RETRY_LOCAL_IDLE to
RETRY_LOCAL_NORMAL or RETRY_LLRREQ. The TIMEOUT counter is also reset
when the Physical layer returns from re-initialization (the LRSM transition through
RETRY_PHY_REINIT to RETRY_LLRREQ). If the counter has reached its threshold
without receiving a Retry.Ack sequence, then the RETRY.Req request is sent again
to retry the same flit. See Section 4.2.8.5.2 for a description of when TIMEOUT
increments. Note: It is suggested that the value of TIMEOUT should be no less than
4096 transfers.

• NUM_RETRY: This counter is used to count the number of RETRY.Req requests
sent to retry the same flit. The counter remains enabled during the whole retry
sequence (state is not RETRY_LOCAL_NORMAL). It is reset to 0 at initialization. It is
also reset to 0 when a RETRY.Ack sequence is received or whenever the LRSM state
is RETRY_LOCAL_NORMAL and an error-free retryable flit is received. The counter
is incremented whenever the LRSM state changes from RETRY_LOCAL_LLRREQ to
RETRY_LOCAL_IDLE. If the counter reaches a threshold (called MAX_NUM_RETRY),
then the local retry state machine transitions to the RETRY_PHY_REINIT. The
NUM_RETRY counter is also reset when the Physical layer returns from re-
initialization (the LRSM transition through RETRY_PHY_REINIT to RETRY_LLRREQ).
Note: It is suggested that the value of MAX_NUM_RETRY should be no less than
0xA.

• NUM_PHY_REINIT: This counter is used to count the number of physical layer re-
initializations generated during a LLR sequence. The counter remains enabled
during the whole retry sequence (state is not RETRY_LOCAL_NORMAL). It is reset
to 0 at initialization and when receipt of a retryable flit triggers a transition from
RETRY_LOCAL_IDLE or RETRY_LOCAL_NORMAL to RETRY_LOCAL_NORMAL. The
counter is incremented whenever the LRSM changes from RETRY_LLRREQ to
RETRY_PHY_REINIT. If the counter reaches a threshold (called
MAX_NUM_PHY_REINIT) instead of transitioning from RETRY_LLRREQ to
RETRY_PHY_REINIT, the LRSM will transition to RETRY_ABORT. The
NUM_PHY_REINIT counter is also reset whenever a Retry.Ack sequence is received

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 110
Revision 1.0

with the Empty bit set. Note: It is suggested that the value of
MAX_NUM_PHY_REINIT should be no less than 0xA.

Note that the condition of TIMEOUT reaching its threshold is not mutually exclusive
with other conditions that cause the LRSM state transitions. Retry.Ack sequences can
be assumed to never arrive at the time that the retry requesting device times out and
sends a new RETRY.Req sequence (by appropriately setting the value of TIMEOUT – see
Section Section 4.2.8.5.2). If this case occurs, no guarantees are made regarding the
behavior of the device (behavior is “undefined” from a Spec perspective and is not
validated from an implementation perspective). Consequently, the LLR Timeout value
should not be reduced unless it can be certain this case will not occur. If an error is
detected at the same time as TIMEOUT reaches its threshold, then the error on the
received flit is ignored, TIMEOUT is taken and a repeat Retry.Req sequence is sent to
the remote entity.

Table 44. Local Retry State Transitions (Sheet 1 of 2)

Current Local Retry
State Condition Next Local Retry State Actions

RETRY_LOCAL_NORMAL An error free retryable flit is
received. RETRY_LOCAL_NORMAL

Increment NumFreeBuf using the
amount specified in the ACK or
Full_Ack fields.
Increment NumAck by 1.
Increment Eseq by 1.
NUM_RETRY is reset to 0.
NUM_PHY_REINIT is reset to 0.
Received flit is processed
normally by the link layer.

RETRY_LOCAL_NORMAL
Error free non-retryable flit
(other than Retry.Req
sequence) is received.

RETRY_LOCAL_NORMAL Received flit is processed.

RETRY_LOCAL_NORMAL Error free Retry.Req sequence is
received. RETRY_LOCAL_NORMAL RRSM is updated.

RETRY_LOCAL_NORMAL Error is detected on a received
flit. RETRY_LLRREQ Received flit is discarded.

RETRY_LOCAL_NORMAL PHY_RESET / PHY_REINIT
detected. RETRY_PHY_REINIT None.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT ==
MAX_NUM_PHY_REINIT

RETRY_ABORT Indicate link failure.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT <
MAX_NUM_PHY_REINIT

RETRY_PHY_REINIT

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.
Reset sent to physical layer.
Increment NUM_PHY_REINIT.

RETRY_LLREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has not
been sent.

RETRY_LLRREQ

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has been
sent.

RETRY_LOCAL_IDLE

If an error free Retry.Req or
Retry.Ack sequence is received,
process the flit.
Any other flit is discarded.
Increment NUM_RETRY.

RETRY_LLRREQ PHY_RESET/PHY_REINIT
detected. RETRY_PHY_REINIT None.

RETRY_LLREQ Error is detected on a received
flit RETRY_LLREQ Received flit is discarded.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 111
Revision 1.0

4.2.8.5.2 TIMEOUT Definition

After the local receiver has detected a CRC error, triggering the LRSM, the local Tx
sends a RETRY.Req sequence to initiate LLR. At this time, the local Tx also starts its
TIMEOUT counter.

The purpose of this counter is to decide that either the Retry.Req sequence or
corresponding Retry.Ack sequence has been lost, and that another RETRY.Req attempt
should be made. Recall that it is a fatal error to receive multiple Retry.Ack sequences
(i.e., a subsequent Ack without a corresponding Req is unexpected). Therefore, the link
layer must guarantee that it not send another Retry.Req sequence until it is certain it
will not receive a Retry.Ack sequence for a previously sent Req. Thus the purpose of the
TIMEOUT counter is to estimate the worst-case latency for a Retry.Req sequence to
reach the remote side and for the corresponding Retry.Ack sequence to return.

Certain unpredictable events (such as physical layer re-initialization, low power
transitions, etc.) that interrupt link availability could add a very large amount of latency
to the RETRY round-trip. To make the TIMEOUT robust to such events, instead of
incrementing per link layer clock, TIMEOUT increments whenever the local Tx transmits
a flit, protocol or control. Due to the TIMEOUT protocol, it must force injection of
RETRY.Idle flits if it has no real traffic to send, so that the TIMEOUT counter continues
to increment.

4.2.8.5.3 Remote Retry State Machine (RRSM)

The remote retry state machine is activated at an entity if a flit sent from that entity is
received in error by the local receiver, resulting in a link layer retry request (Retry.Req
sequence) from the remote entity. The possible states for this state machine are:

RETRY_PHY_REINIT Physical layer still in reinit. RETRY_PHY_REINIT None.

RETRY_PHY_REINIT Physical layer returns from
Reinit. RETRY_LLRREQ

Received flit is discarded.
NUM_RETRY is reset to 0.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
matches the value in the local
entity

RETRY_LOCAL_NORMAL

TIMEOUT is reset to 0.
If Retry.Ack sequence is received
with Empty bit set, NUM_RETRY is
reset to 0 and NUM_PHY_REINIT
is reset to 0.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
does NOT match the value in
the local entity

RETRY_LOCAL_IDLE Any received retryable flit is
discarded

RETRY_LOCAL_IDLE TIMEOUT has reached its
threshold. RETRY_LLRREQ TIMEOUT is reset to 0.

RETRY_LOCAL_IDLE Error is detected on a received
flit. RETRY_LOCAL_IDLE Any received retryable flit is

discarded.

RETRY_LOCAL_IDLE A flit other than RETRY.Ack/
Retry.Req sequence is received. RETRY_LOCAL_IDLE Any received retryable flit is

discarded.

RETRY_LOCAL_IDLE A Retry.Req sequence is
received. RETRY_LOCAL_IDLE RRSM is updated.

RETRY_LOCAL_IDLE PHY_RESET / PHY_REINIT
detected. RETRY_PHY_REINIT None.

RETRY_ABORT A flit is received. RETRY_ABORT Any received retryable flit is
discarded.

Table 44. Local Retry State Transitions (Sheet 2 of 2)

Current Local Retry
State Condition Next Local Retry State Actions

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 112
Revision 1.0

• RETRY_REMOTE_NORMAL: This is the initial or default state indicating normal
operation.

• RETRY_LLRACK: This state indicates that a link layer retry request (Retry.Req
sequence) has been received from the remote entity and a Retry.Ack sequence
followed by flits from the retry queue must be (re)sent.

The remote retry state machine transitions are described in the table below.

Note: In order to select the priority of sending flits, the following rules apply:

1. Whenever the RRSM state becomes RETRY_LLRACK, the entity must give priority to
sending the LLCTRL flit with Retry.Ack

2. Except RRSM state of RETRY_LLRACK, the priority goes to LRSM state of
RETRY_LLRREQ and in that case the entity must send a LLCTRL flit with Retry.Req over
all other flits.

The overall sequence of replay is shown in Figure 74.

4.2.8.6 Interaction with Physical Layer Reset or Reinitialization

On detection of a physical layer reset or reinitialization, the receiver side of the link
layer must force a link layer retry on the next flit. Forcing an error will either initiate
LLR or cause a current LLR to follow the correct error path. The LLR will ensure that no
flits are dropped during the physical layer reset. Without initiating a LLR it is possible
that packets/flits in flight on the physical wires could be lost or the sequence numbers
could get mismatched.

Table 45. Remote Retry State Transition

Current Remote Retry State Condition Next Remote Retry State

RETRY_REMOTE_NORMAL Any flit, other than error free Retry.Req sequence, is
received. RETRY_REMOTE_NORMAL

RETRY_REMOTE_NORMAL Error free Retry.Req sequence received. RETRY_LLRACK

RETRY_LLRACK Retry.Ack sequence not sent. RETRY_LLRACK

RETRY_LLRACK Retry.Ack sequence sent. RETRY_REMOTE_NORMAL

RETRY_LLRACK Physical Layer Reinitialization RETRY_REMOTE_NORMAL

Figure 74. CXL.cache/mem Replay Diagram

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 113
Revision 1.0

Upon detection of a physical layer reset, the LLR RRSM needs to be reset to its initial
state and any instance of Retry.Ack sequence needs to be cleared in the link layer and
physical layer. The device needs to make sure it receives a Retry.Req sequence before it
ever transmits a RETRY.Ack sequence.

4.2.8.7 CXL.cache/CXL.mem Flit CRC

The CXL.cache Link Layer uses a 16b CRC for transmission error detection. The 16b
CRC is over the 528 bit flit. The assumptions about the type errors is as follows:

• Bit ordering runs down each lane
• Bit Errors occur randomly or in bursts down a lane, with majority of errors single bit

random errors.
• Random errors can statistically cause multiple bit errors in a single flit, so it is more

likely to get 2 errors in a flit then 3 errors, and more likely to get 3 errors in a flit
then 4 errors, and so on...

• There is no requirement for primitive polynomial (a polynomial that generates all
elements of an extension field from a base field) since we do have a fixed payload.
Primitive may be the result, but it's not required.

4.2.8.7.1 CRC-16 Polynomial and Detection Properties

The CRC polynomial to be used is 0x1f053.

The 16b CRC Polynomial has the following properties:
• 16 Bit Burst Detection – Provides 2 Adjacent wire protection for 8UI flit
• All Single, double, and triple bit errors detected
• Polynomial selection based on best 4-bit error detection characteristics and perfect

1, 2, 3-bit error detection

4.2.8.7.2 CRC-16 Computation

Below are the 384 bit data masks for use with an XOR tree to produce the 16 CRC bits.
The mask bit order is CRC[N]=DM[527:016]. Data Mask bits [527:016] are applied to
the Flit bits [527:016], as flit bits [015:000] are defined to be CRC[15:00].

The Flit Data Mask for the 16 CRC bits is located in the table below.

Compute Express Link Link Layers

 Compute Express Link Specification
March 2019 114
Revision 1.0

4.2.9 CXL.cache-Side Poison and Viral

4.2.9.1 Viral

Viral is a containment feature as described in Section 11.4, “CXL Viral Handling” on
page 197. As such, when the local socket is in a viral state, it is the responsibility of all
off-die interfaces to convey this state to the remote side for appropriate handling.
CXL.cache/mem side conveys viral status information. As soon as the viral status is
detected locally, the link layer forces a CRC error on the next outgoing flit. If there is no
traffic to send, the transmitter will send a LLCRD flit with a CRC error. It then embeds
viral status information in the LLR.Ack message it generates as part of the defined CRC
error recovery flow.

There are two primary benefits to this methodology. First, by using the LLR.Ack to
convey viral status, we do not have to allocate a bit for this in protocol flits. Second, it
allows immediate indication of viral and reduces the risk of race conditions between the
viral distribution path and the datapath. These risks could be particularly exacerbated
by the large CXL.cache flit size and the potential limitations in which components
(header, slots) allocate dedicated fields for viral indication.

§ §

Figure 75. CRC Data Mask for 527 bit Flit

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 115
Revision 1.0

5.0 Compute Express Link ARB/MUX

The figure below shows where the CXL ARB/MUX exists in the Flex Bus layered
hierarchy. The ARB/MUX provides dynamic muxing of the CXL.io and CXL.cache/
CXL.mem link layer control and data signals to interface with the Flex Bus physical
layer.

Figure 76. Flex Bus Layers -- CXL ARB/MUX Highlighted

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 116
Revision 1.0

In the transmit direction, the ARB/MUX arbitrates between requests from the CXL link
layers and multiplexes the data. It also processes power state transition requests from
the link layers: resolving them to a single request to forward to the physical layer,
maintaining virtual link state machines (vLSMs) for each link layer interface, and
generating ARB/MUX link management packets (ALMPs) to communicate the power
state transition requests across the link on behalf of each link layer. Please refer to
Section 9.4, Section 9.5, and Section 9.6 for more details on how the ALMPs are
utilized in the overall flow for power state transitions. In PCIe mode or single protocol
mode, the ARB/MUX is bypassed, and thus ALMP generation by the ARB/MUX is
disabled.

In the receive direction, the ARB/MUX determines the protocol associated with the CXL
flit and forwards the flit to the appropriate link layer. It also processes the ALMP
packets, participating in any required handshakes and updating its vLSMs as
appropriate.

5.1 Virtual LSM States
The ARB/MUX maintains vLSMs for each CXL link layer it interfaces with, transitioning
the state based on power state transition requests it receives from the local link layer
or from the remote ARB/MUX on behalf of a remote link layer. Table 46 below lists the
different possible states for the vLSMs. PM States and Retrain are virtual states that
can differ across interfaces (CXL.io and CXL.cache and CXL.mem), however all other
states such as LinkReset, LinkDisable and LinkError are forwarded to the Link Layer and
are therefore synchronized across interfaces.

Note: When the Physical Layer enters Hot-Reset or LinkDisable state, that state is
communicated to all link layers as LinkReset or LinkDisable respectively. No ALMPs are
exchanged, irrespective of who requested, for these transitions.

Table 46. Virtual LSM States Maintained Per Link Layer Interface

Virtual LSM State Description

Reset Power-on default state during which initialization occurs

Active Normal operational state

L1.1 Power savings state, from which the link can enter Active via Retrain

L1.2 Power savings state, from which the link can enter Active via Retrain

L1.3 Power savings state, from which the link can enter Active via Retrain

L1.4 Power savings state, from which the link can enter Active via Retrain

DAPM Deepest Allowable PM State (not a resolved state; a request that resolves to an L1 substate)

SLEEP_L2 Power savings state, from which the link must go through Reset to reach Active

LinkReset Reset propagation state resulting from software or hardware initiated reset

LinkError Link Error state due to hardware detected errors

LinkDisable Software controlled link disable state

Retrain Transitory state that transitions to Active

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 117
Revision 1.0

The ARB/MUX looks at the status of each vLSM to resolve to a single state request to
forward to the physical layer as specified in Table 47. For Example if current vLSM[0]
state is L1.1 (row = L1.1) and current vLSM[1] state is Active (column = Active), then
the resolved request from the ARB/MUX to the Physical layer will be Active.

Note: Table 47 is presented as a suggestion, not a requirement.

When any of the above link layers request for LinkReset or LinkError, the ARB/MUX will
unconditionally propagate the request to the Physical layer ignoring the direction of the
state consolidator.

Table 48 describes the conditions under which a vLSM transitions from one state to the
next. A transition to the next state happens after all the steps in the trigger conditions
column are complete. Some of the trigger conditions are sequential and indicate a
series of actions from multiple sources. For example, on the transition from Active to
L1.x state on an upstream port, the state transition will not occur until the vLSM has
received a request to enter L1.x from the Link Layer followed by the vLSM sending a
Request ALMP{L1.x} to the remote vLSM. Next the vLSM must wait to receive a Status
ALMP{L1.x} from the remote vLSM. Once all these conditions are met in sequence, the
vLSM will transition to the L1.x state as requested.

Table 47. ARB/MUX Multiple Virtual LSM Resolution Table

Resolved Request from ARB/MUX
to Flex Bus Physical Layer

(Row = current vLSM[0] state;
Column = current vLSM[1] state)

Reset Active L1.1 L1.2 L1.3 L1.4 SLEEP_L2

Reset RESET Active L1.1 L1.2 L1.3 L1.4 SLEEP_L2

Active Active Active Active Active Active Active Active

L1.1 L1.1 Active L1.1 L1.1 L1.1 L1.1 L1.1

L1.2 L1.2 Active L1.1 L1.2 L1.2 L1.2 L1.2

L1.3 L1.3 Active L1.1 L1.2 L1.3 L1.3 L1.3

L1.4 L1.4 Active L1.1 L1.2 L1.3 L1.4 L1.4

SLEEP_L2 SLEEP_L2 Active L1.1 L1.2 L1.3 L1.4 SLEEP_L2

Table 48. ARB/MUX State Transition Table

Current vLSM State Next State Upstream Port Trigger
Condition

Downstream Port Trigger
Condition

Active

L1.x

Upon receiving a Request to
enter L1.x from Link Layer, the
ARB/MUX must initiate a
Request ALMP{L1.x} and
receive a Status ALMP{L1.x}
from the remote vLSM

Upon receiving a Request to
enter L1.x from Link Layer and
receiving a Request ALMP{L1.x}
from the Remote vLSM, the
ARB/MUX must send Status
ALMP{L1.x} to the remote vLSM

L2

Upon receiving a Request to
enter L2 from Link Layer the
ARB/MUX must initiate a
Request ALMP{L2} and receive
a Status ALMP{L2} from the
remote vLSM

Upon receiving a Request to
enter L2 from Link Layer and
receiving a Request ALMP{L2}
from the Remote vLSM the ARB/
MUX must send Status
ALMP{L2} to the remote vLSM

Retrain

Upon Receiving a Request to
Retrain from the Link Layer or
autonomous notification of
Retrain from the Physical Layer

Upon Receiving a Request to
Retrain from the Link Layer or
autonomous notification of
Retrain from the Physical Layer

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 118
Revision 1.0

5.1.1 Rules for Virtual LSM State Transitions Across Link

This section refers to vLSM state transitions.

5.1.1.1 General Rules

• The link cannot operate for any other protocols if CXL.io protocol is down. (CXL.io
operation is a minimum requirement)

5.1.1.2 State Request ALMP

The ARB/MUX must not send a State Request ALMP for a particular state if the last
thing that it sent was a State Status ALMP indicating the same state (Except for
Active).

5.1.1.2.1 For Entry Into Active

• An ALMP State Request is sent to initiate the entry into Active State.

L1 (Physical Layer
LTSSM also in L1)

Retrain (Physical
LTSSM in Recovery)

Upon receiving a Request to
enter Active from Link Layer the
ARB/MUX must request Retrain
to the Physical Layer

Upon receiving a Request to
enter Active from the Link Layer
the ARB/MUX must request
Retrain to the Physical Layer

L1 (Physical Layer
LTSSM in L0)

Retrain (Physical
Layer LTSSM in L0)

Upon receiving a Request to
enter Active from Link Layer

Upon receiving a Request to
enter Active from Link Layer

Retrain Active Link Layer stops requesting
Retrain

Link Layer stops requesting
Retrain

ANY (Except Disable/
LinkError) LinkReset

Directed to enter LinkReset from
Link Layer or indication of
LinkReset from Physical Layer

Directed to enter LinkReset from
Link Layer or indication of
LinkReset from Physical Layer

ANY (Except
LinkError) Disabled

Directed to enter Disabled from
Link Layer or indication of
Disabled from Physical Layer

Directed to enter Disabled from
Link Layer or indication of
Disabled from Physical Layer

ANY LinkError
Directed to enter LinkError from
Link Layer or indication of
LinkError from Physical Layer

Directed to enter LinkError from
Link Layer or indication of
LinkError from Physical Layer

ANY Reset Assertion of Reset signal Assertion of Reset signal

Retrain LinkError Implementation Specific Implementation Specific

LinkError Reset Implementation Specific Implementation Specific

LinkReset Reset Implementation Specific Implementation Specific

Reset Active

Upon Request of Active from
Link Layer and indication of
Active from the Physical Layer
the ARB/MUX must initiate a
Request ALMP{ACTIVE} and
receive a State Status
ALMP{ACTIVE} from the remote
vLSM
OR
Upon receiving a Request
ALMP{ACTIVE} from the remote
vLSM and sending a State
Status ALMP{ACTIVE}

Upon Request of Active from
Link Layer and indication of
Active from the Physical Layer
the ARB/MUX must initiate a
Request ALMP{ACTIVE} and
receive a State Status
ALMP{ACTIVE} from the remote
vLSM
OR
Upon receiving a Request
ALMP{ACTIVE} from the remote
vLSM and sending a State
Status ALMP{ACTIVE}

Table 48. ARB/MUX State Transition Table

Current vLSM State Next State Upstream Port Trigger
Condition

Downstream Port Trigger
Condition

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 119
Revision 1.0

• A vLSM must send a Request and receive a Status before the transmitter is
considered active.

Figure 77 shows an example of entry into the Active state. The flows in Figure 77 show
four independent actions (ALMP handshakes) that may not necessarily happen in the
order or small time-frame shown. The vLSM transmitter and receiver may become
active independently. Both transmitter and receiver must be active before the vLSM
state is Active. The transmitter becomes active after a vLSM sends a Request
ALMP{Active} and receives a Status ALMP{Active} in return. The receiver becomes
active after a LSM receives a Request ALMP{Active} and sends a Status ALMP{Active}
in return.

Figure 77. CXL Entry to Active Flow

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 120
Revision 1.0

5.1.1.2.2 For Entry into PM State (L1/L2)

• An ALMP State Request is sent to initiate the entry into PM States
• A vLSM must send a Request and receive a Status before the transmitter is placed

into a low power state.

Figure 78 shows an example of Entry to PM State (L1) initiated by the device side ARB/
MUX. Each vLSM will be ready to enter L1 State once the vLSM has sent a Request
ALMP{L1} and received a Status ALMP{L1} in return or the vLSM has received a
Request ALMP{L1} and sent a Status ALMP{L1} in return. The vLSMs operate
independently and actions may not complete in the order or the timeframe shown.
Once all vLSMs are ready to enter PM State (L1), the Channel will complete EIOS
exchange and enter L1.

5.1.1.3 State Status ALMP

5.1.1.3.1 When State Request ALMP is received

• A State Status ALMP is sent after a State Request ALMP is received for entry into
Active State or PM States when entry to the PM state is accepted. No State Status
ALMP is sent if the PM state is not accepted. See Section 9.4, “Compute Express
Link Power Management” on page 184 for more details.

5.1.1.3.2 Recovery State

• As a part of Recovery, all vLSMs transition into the Retrain state. While in a the
Retrain state, a State Status ALMP is sent by each vLSM after the indication of
LTSSM Recovery exit is received, as shown in Figure 79 and Figure 80. The
exchange of State Status ALMPs is all that is needed to synchronize the vLSM. The
state indicated in the State Status ALMPs for synchronization is the state of the
vLSM before entry to Retrain. Therefore the ARB/MUX must take a snapshot of its
vLSM states when notified that the Physical Layer enters Recovery and before it
transitions its vLSMs to Retrain.

• A vLSM cannot conduct any other communication on the link coming out of
recovery until it has sent and received State Status ALMP.

• The vLSM will enter Recovery if a State Status ALMP is received without a State
Request first being sent by the vLSM except when the vLSM is coming out of
Retrain, as shown in Figure 81.

Figure 78. CXL Entry to PM State

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 121
Revision 1.0

Figure 79 shows a general example of Recovery exit. The state sent in the State Status
ALMP exchange is the state of the vLSM prior to it going into the Retrain state.

On Exit from Recovery, the vLSMs on either side of the channel will send a Status ALMP
in order to synchronize the LSMs. The Status ALMP will provide the state of the vLSM
prior to it entering Retrain. The Status ALMPs for synchronization may trigger a State
Request ALMP if the provided state and the requested state are not the same, as seen
in Figure 80. The ALMP for synchronization may trigger a re-entry to recovery if the
vLSMs on either side of the channel are not in the same state out of Retrain, as seen in
Figure 81. If the provided states from both vLSMs are the same as the requested state
prior to the Recovery, the vLSMs are considered synchronized and will continue normal
operation, see figure Figure 79.

Figure 79. CXL Recovery Exit Flow

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 122
Revision 1.0

Figure 80 shows an example of the exit from a PM State (L1) through Recovery. The
Host LSM[0] in L1 state receives the Active Request, and the link enters Recovery. After
the exit from recovery, each vLSM sends Status ALMP{L1} (State of the vLSM before
Recovery entry) to synchronize the vLSMs. Because the state in the Status ALMP for
synchronization is not equal to the requested state that triggered the entry to recovery,
Request ALMP{Active} and Status ALMP{Active} handshakes are completed to enter
Active State.

Figure 80. CXL Exit from PM State

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 123
Revision 1.0

Figure 81 shows an example of error in the Recovery flow. The error shown is one
example of how an error may occur where the device does not properly receive the
request to go to Retrain and therefore remains in Active. On indication of exit from
Recovery from the LTSSM the Host LSMs send Status ALMP{Active} to synchronize
vLSM across the Channel. Since the Device side received Status ALMP{Active} without
first sending a Request ALMP or being in Retrain State, the Device LSM requests the
Physical Layer to enter recovery. Recovery flow is then entered by both Host and
Device and exited and synchronized correctly.

5.2 ARB/MUX Link Management Packets
The ARB/MUX uses ALMPs to communicate virtual link state transition requests and
responses associated with each link layer to the remote ARB/MUX.

An ALMP is a 1DW packet with format shown in Figure 82 below. The message code
used in Byte 1 of the ALMP is 0000_1000b. This 1DW packet is replicated four times on
the lower 16-bytes of a 528-bit flit to provide data integrity protection; the flit is zero
padded on the upper bits. If the ARB/MUX detects an error in the ALMP, it initiates a
retrain of the link.

Figure 81. CXL Recovery Error Flow

Figure 82. ARB/MUX Link Management Packet Format

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 124
Revision 1.0

Bytes 2 and 3 of the ALMP packet is as shown in Table 49 below. ALMPs can be request
or status type. The local ARB/MUX initiates transition of a remote vLSM using a request
ALMP. After receiving a request ALMP, the local ARB/MUX processes the transition
request and returns a status ALMP to indicate that the transition has occurred. If the
transition request is not accepted, no status ALMP is sent and both local and remote
vLSMs remain in their current state.

5.2.1 ARB/MUX Bypass Feature

The ARB/MUX must have the ability to disable generation of ALMPs when there is no
dynamic multiplexing of CXL.io with other CXL protocols, e.g., when the Flex Bus link is
operating in PCIe mode or when only CXL.io protocol is enabled. Determination of the
bypass condition can be via hwinit or during link training.

5.3 Arbitration and Data Multiplexing/Demultiplexing
The ARB/MUX is responsible for arbitrating between requests from the CXL link layers
and multiplexing the data based on the arbitration results. The arbitration policy is
implementation specific as long as it satisfies the timing requirements of the higher
level protocols being transferred over the Flex Bus link. Additionally, there must be a
way to program the relative arbitration weightages associated with the CXL.io and

Table 49. ALMP Byte 2 and Byte 3 Encoding

Byte2 Bit Description

3:0

Virtual LSM State Encoding:
0000: NOP/Reset (for Status ALMP only)
0001: ACTIVE
0010: Reserved
0011: DEEPEST ALLOWABLE PM STATE/Reserved (for Status ALMP only)
0100: IDLE_L1.1
0101: IDLE_L1.2
0110: IDLE_L1.3
0111: IDLE_L1.4
1000: L2
1001: LINKRESET (for Status ALMP only)
1010: LINKERROR (for Status ALMP only)
1011: Retrain (for Status ALMP only)
1100: DISABLE (for Status ALMP only)
1101: Reserved
1110: Reserved
1111: Reserved

6:4 Reserved

7
Request/Status Type
1: Virtual LSM Request ALMP
0: Virtual LSM Status ALMP

Byte3 Bit Description

3:0

Virtual LSM Instance Number: Indicates the targeted Virtual LSM interface
when there are multiple Virtual LSMs present.

0000: Reserved
0001: ALMP for CXL.io
0010: ALMP for CXL.cache and CXL.mem

Note: When a single Virtual LSM is present, the ARB/MUX should be bypassed.

7:4 Reserved

Compute Express Link ARB/MUX

 Compute Express Link Specification
March 2019 125
Revision 1.0

CXL.cache+CXL.mem link layers as they arbitrate to transmit traffic over the Flex Bus
link. See Section 7.2.2.2.1 for more details. Interleaving of traffic between different
CXL protocols is done at the 528-bit flit boundary.

§ §

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 126
Revision 1.0

6.0 Flex Bus Physical Layer

6.1 Overview

The figure above shows where the Flex Bus physical layer exists in the Flex Bus layered
hierarchy. On the transmit side, the Flex Bus physical layer prepares data received from
either the PCIe link layer or the CXL link layer for transmission across the Flex Bus link.

Figure 83. Flex Bus Layers -- Physical Layer Highlighted

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 127
Revision 1.0

On the receive side, the Flex Bus physical layer deserializes the data received on the
Flex Bus link and converts it to the appropriate format to forward to the PCIe/CXL link
layer. The Flex Bus physical layer consists of a logical sub-block, aka the logical PHY,
and an electrical sub-block. The logical PHY operates in PCIe mode during initial link
training and switches over to CXL mode, if appropriate, depending on the results of
alternate mode negotiation, during recovery after training to 2.5 GT/s. The electrical
sub-block follows the PCIe specification.

In CXL mode, normal operation occurs at x16 link width and 32 GT/s link speed.
Bifurcation (aka link subdivision) into x8 and x4 widths is supported in CXL mode.
Degraded modes of operation include 8 GT/s or 16 GT/s link speed and smaller link
widths down to x1. Table 50 summarizes the supported CXL combinations. In PCIe
mode, the link supports all widths and speeds defined in the PCIe specification, as well
as the ability to bifurcate.

This chapter focuses on the details of the logical PHY. The Flex Bus logical PHY is based
on the PCIe logical PHY; PCIe mode of operation follows the PCIe specification exactly
while Flex Bus.CXL mode has deltas from PCIe that affect link training and framing.
Please refer to the “Physical Layer Logical Block” chapter of the PCI Express Base
Specification for details on PCIe mode of operation. The Flex Bus.CXL deltas are
described in this chapter.

6.2 Flex Bus.CXL Framing and Packet Layout
The Flex Bus.CXL framing and packet layout is described in this section for x16,x8,x4,
x2, and x1 widths.

6.2.1 Ordered Set Blocks and Data Blocks

Flex Bus.CXL uses the PCIe concept of ordered set blocks and data blocks. Each block
spans 128 bits per lane and potentially two bits of sync header per lane.

Ordered set blocks are used for training, entering and exiting electrical idle, transitions
to data blocks, and clock tolerance compensation; they are the same as defined in the
PCIe base specification. A 2-bit sync header with value 10b is inserted before each 128
bits transmitted per lane in an ordered set block when 128/130b encoding is used; in
the latency optimized mode, there is no sync header.

Data blocks are used for transmission of the flits received from the CXL link layer. A 16-
bit Protocol ID field is associated with each 528-bit flit payload (512 bits of payload +
16 bits of CRC) received from the link layer, which is striped across the lanes on an 8-

Table 50. Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode

Link Speed Native Width Degraded Modes Supported

32 GT/s x16
x16 @16 GT/s or 8 GT/s;
x8, x4, x2, or x1 @32 GT/s or 16
GT/s or 8 GT/s

32 GT/s x8
x8 @16 GT/s or 8 GT/s;
x4, x2, or x1 @32 GT/s or 16 GT/s
or 8 GT/s

32 GT/s x4
x4 @16 GT/s or 8 GT/s;
x2 or x1 @32 GT/s or 16 GT/s or 8
GT/s

32 GT/s x2
x2 @16 GT/s or 8 GT/s;
x1 @32 GT/s or 16 GT/s or 8 GT/s

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 128
Revision 1.0

bit granularity; the placement of the protocol ID depends on the width. A 2-bit sync
header with value 01b is inserted before every 128 bits transmitted per lane in a data
block when 128/130b encoding is used; in the latency optimized mode, there is no sync
header. A 528-bit flit may traverse the boundary between data blocks.

Transitions between ordered set blocks and data blocks are indicated in a couple of
ways. One way is via the 2-bit sync header of 10b for ordered set blocks and 01b for
data blocks. The second way is via the use of Start of Data Stream (SDS) ordered sets
and End of Data Stream (EDS) tokens. Unlike PCIe where the EDS token is explicit, Flex
Bus.CXL encodes the EDS token in the protocol ID value.

6.2.2 Protocol ID[15:0]

The 16-bit protocol ID field specifies whether the transmitted flit is CXL.io, CXL.cache/
CXL.mem, or some other payload. The table below provides a list of valid 16-bit
protocol ID encodings. Encodings that include an implied EDS token signify that the
next block is an ordered set block. Implied EDS tokens can only occur with the last flit
transmitted in a data block; flits that cross the data block boundary cannot be
associated with an implied EDS token.

NULL flits are inserted into the data stream by the physical layer when there are no
valid flits available from the link layer. A NULL flit transferred with an implied EDS token
ends precisely at the data block boundary; these are variable length flits, up to 528
bits, intended to facilitate transition to ordered set blocks as quickly as possible. A
NULL flit is comprised of all zeros payload.

An 8-bit encoding with a hamming distance of four is replicated to create the 16-bit
encoding for error protection against bit flips. A correctable protocol ID framing error is
logged but no further error handling action is taken if only one 8-bit encoding group
looks incorrect; the correct 8-bit encoding group is used for normal processing. If both
8-bit encoding groups are incorrect, an uncorrectable protocol ID framing error is
logged, the flit is dropped, and the physical layer enters into recovery to retrain the
link.

The physical layer is responsible for dropping any flits it receives with invalid protocol
IDs. This includes dropping any flits with unexpected protocol IDs that correspond to
Flex Bus defined protocols that have not been enabled during negotiation. When a flit is
dropped due to an unexpected protocol ID, the physical layer logs an unexpected
protocol ID error in the Flex Bus DVSEC Port Status register.

Table 51. Flex Bus.CXL Protocol IDs

Protocol ID[15:0] Description

0000_0000_0000_0000 Reserved

1111_1111_1111_1111 CXL.io

1101_0010_1101_0010 CXL.io with implied EDS token

0101_0101_0101_0101 CXL.cache/CXL.mem

1000_0111_1000_0111 CXL.cache/CXL.mem with implied EDS token

1001_1001_1001_1001 NULL flit (generated by the Physical Layer)

0100_1011_0100_1011
NULL flit with implied EDS token: Variable length flit containing
NULLs that ends precisely at the data block boundary (generated
by the Physical Layer)

1100_1100_1100_1100 CXL ARB/MUX Link Management Packets (ALMPs)

0001_1110_0001_1110 CXL ARB/MUX Link Management Packets (ALMPs) with implied
EDS token

All Others Reserved

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 129
Revision 1.0

6.2.3 x16 Packet Layout

Figure 84 below shows the x16 packet layout. First, the 16-bits of protocol ID are
transferred, split on an 8-bit granularity across consecutive lanes; this is followed by
transfer of the 528-bit flit, striped across the lanes on an 8-bit granularity. Depending
on the symbol time, as labeled on the leftmost column in the figure, the Protocol ID
plus flit transfer may start on lane 0, lane 4, lane 8, or lane 12. The pattern of transfer
repeats after every 17 symbol times. The two-bit sync header shown in the figure,
inserted after every 128 bits transferred per lane, is not present for the latency
optimized mode where sync header bypass is negotiated.

Figure 85 provides an example where CXL.io and CXL.cache/CXL.mem traffic is
interleaved with an interleave granularity of two flits on a x16 link. The top figure
shows what the CXL.io stream looks like before mapping to the Flex Bus lanes and
before interleaving with CXL.cache/CXL.mem traffic; the framing rules follow the x16
framing rules specified in the PCI Express specification, as stated in Section 4.1. The
bottom figure shows the final result when the two streams are interleaved on the Flex
Bus lanes. For CXL.io flits, after transferring the 16-bit protocol ID, 512 bits are used to
transfer CXL.io traffic and 16 bits are unused. For CXL.cachemem flits, after
transferring the 16-bit protocol ID, 528 bits are used to transfer a CXL.cachemem flit.
Please refer to Chapter 4.0, “Compute Express Link Link Layers” for more details on the

Figure 84. Flex Bus x16 Packet Layout

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 130
Revision 1.0

flit format. As this example illustrates, the PCIe TLPs and DLLPs encapsulated within
the CXL.io stream may be interrupted by non-related CXL traffic if they cross a flit
boundary.

6.2.4 x8 Packet Layout

Figure 86 below shows the x8 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. Depending on the symbol
time, the Protocol ID plus flit transfer may start on lane 0 or lane 4. The pattern of
transfer repeats after every 17 symbols. The two-bit sync header shown in the figure is
not present for the latency optimized mode.

Figure 85. Flex Bus x16 Protocol Interleaving Example

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 131
Revision 1.0

Figure 86. Flex Bus x8 Packet Layout

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 132
Revision 1.0

Figure 87 illustrates how CXL.io and CXL.cache/CXL.mem traffic is interleaved on a x8
Flex Bus link. The same traffic from the x16 example in Figure 85 is mapped to a x8
link.

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 133
Revision 1.0

Figure 87. Flex Bus x8 Protocol Interleaving Example

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 134
Revision 1.0

6.2.5 x4 Packet Layout

Figure 88 below shows the x4 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. The Protocol ID plus flit
transfer always starts on lane 0; the entire transfer takes 17 symbols. The two-bit sync
header shown in the figure is not present for the latency optimized mode.

6.2.6 x2 Packet Layout

The x2 packet layout looks very similar to the x4 packet layout in that the Protocol ID
aligns to lane 0. 16-bits of Protocol ID followed by a 528-bit flit are striped across two
lanes on an 8-bit granularity, taking 34 symbols to complete the transfer.

6.2.7 x1 Packet Layout

The x1 packet layout is used only in degraded mode. The 16-bits of Protocol ID
followed by 528-bit flit are transferred on a single lane, taking 68 symbols to complete
the transfer.

6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary

For CXL.io traffic, if a TLP ends on a flit boundary and there is no additional CXL.io
traffic to send, the receiver still requires a subsequent EDB indication if it is a nullified
TLP or all IDLE flit to confirm it is a good TLP before processing the TLP. Figure 89
illustrates a scenario where the first CXL.io flit encapsulates a TLP that ends at the flit
boundary, and the transmitter has no more TLPs or DLLPs to send. To ensure that the

Figure 88. Flex Bus x4 Packet Layout

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 135
Revision 1.0

transmitted TLP that ended on the flit boundary is processed by the receiver, a
subsequent CXL.io flit containing PCIe IDLE tokens is transmitted; this flit is generated
by the link layer.

6.2.9 Framing Errors

The physical layer is responsible for detecting framing errors and, subsequently,
initiating entry into recovery to retrain the link.

The following are framing errors detected by the physical layer:
• Sync header errors
• Protocol ID framing errors
• PCIe framing errors located within the 528-bit CXL.io flit

Protocol ID framing errors are described in Section 6.2.2 and summarized below in
Table 52.

Figure 89. CXL.io TLP Ending on Flit Boundary Example

Table 52. Protocol ID Framing Errors

Detected Protocol ID Error Expected Action

(Unexpected Protocol ID Error = TRUE) and
(Correctable Protocol ID Error = Don’t Care)

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dropped in
DVSEC Flex Bus Port Status register.

(Unexpected Protocol ID Error = TRUE) and
(Uncorrectable Protocol ID Error = TRUE) This case cannot happen.

(Uncorrectable Protocol ID Error = TRUE)

Drop flit and log as
CXL_Uncorrectable_Protocol_ID_Framing_Error
in DVSEC Flex Bus Port Status register; enter
recovery to retrain the link.

(Unexpected Protocol ID Error = FALSE) and
(Correctable Protocol ID Error = TRUE)

Process normally using correct 8-bit encoding
group; log as
CXL_Correctable_Protocol_ID_Framing_Error in
DVSEC Flex Bus Port Status register.

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 136
Revision 1.0

6.3 Link Training

6.3.1 PCIe vs Flex Bus.CXL mode selection

After reset, an Flex Bus link begins training and completes link width negotiation and
speed negotiation according to the PCIe LTSSM rules. During link training, the CPU
initiates Flex Bus mode negotiation via the PCIe alternate mode negotiation
mechanism. Flex Bus mode negotiation is completed before entering L0 at 2.5 GT/s. If
sync header bypass is negotiated, sync headers are bypassed as soon as the link has
transitioned to a speed of 8GT/s or higher. The Flex Bus logical PHY transmits NULL flits
as soon as it transitions to 8GT/s or higher link speeds if CXL mode was negotiated
earlier in the training process. These NULL flits are used in place of PCIe Idle Symbols
to facilitate certain LTSSM transitions to L0 as described in Section 6.4. After the link
has transitioned to its final speed, it can start sending CXL traffic on behalf of the upper
layers after the SDS Ordered Set is transmitted if that was what was negotiated earlier
in the training process. For upstream facing ports, the physical layer notifies the upper
layers that the link is up and available for transmission only after it has received a flit
that was not generated by the physical layer of the partner downstream port (refer to
Table 51). To operate in CXL mode, the link speed must be at least 8 GT/s. If the link is
unable to transition to a speed of 8 GT/s or greater after committing to CXL mode
during link training at 2.5 GT/s, the link may ultimately fail to link up even if the device
is PCIe capable.

6.3.1.1 Hardware Autonomous Mode Negotiation

Dynamic hardware negotiation of Flex Bus mode occurs during link training in
Configuration before entering L0 at Gen1 speeds using the alternate protocol
negotiation mechanism, facilitated by exchanging modified TS1 and TS2 Ordered Sets.
The host initiates the negotiation process by sending TS1 Ordered Sets advertising its
Flex Bus capabilities. The device responds with a proposal based on its own capabilities
and those advertised by the host. The host communicates the final decision of which
capabilities to enable by sending modified TS2 Ordered Sets before or during
Configuration.Complete.

Please refer to the PCIe 5.0 base specification for details on how the various fields of
the modified TS1/TS2 OS are set. Table 53 shows how the modified TS1/TS2 OS is
used for Flex Bus mode negotiation. The “Flex Bus Mode Negotiation Usage” column
describes the deltas from the PCIe base specification definition that are applicable for
Flex Bus mode negotiation. Additional explanation is provided in Table 55. The
presence of retimer1 and retimer2 must be programmed into the Flex Bus DVSEC by
software before the negotiation begins; if retimers are present the relevant retimer bits
in the modified TS1/TS2 OS are used.

Table 53. Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation (Sheet 1 of 2)

Symbol Number PCIe Description Flex Bus Mode Negotiation Usage

0 thru 4 See PCIe 5.0 Base Spec Symbol

5

Training Control
Bits 0:6: See PCIe 5.0 Base
Bit 7: Modified TS1/TS2 supported (see PCIe
5.0 Base Spec for details

Bit 7:6 = 11b

6

For Modified TS1: TS1 Identifier, encoded as
D10.2 (4Ah)
For Modified TS2: TS2 Identifier, encoded as
D5.2 (45h)

TS1 Identifier during Phase 1 of Flex Bus mode
negotiation
TS2 Identifier during Phase 2 of Flex Bus mode
negotiation

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 137
Revision 1.0

7

For Modified TS1: TS1 Identifier, encoded as
D10.2 (4Ah)
For Modified TS2: TS2 Identifier, encoded as
D5.2 (45h)

TS1 Identifier during Phase 1 of Flex Bus mode
negotiation
TS2 Identifier during Phase 2 of Flex Bus mode
negotiation

8-9

Bits 0:2: Usage (see PCIe 5.0 Base Spec)
Bits 3:4: Alternate Protocol Negotiation
Status if Usage is 010b, Reserved Otherwise
(see PCIe 5.0 Base Spec for details)
Bits 5:15: Alternate Protocol Details

Bits 2:0 = 010b (indicating alternate protocols)
Bits 4:3 = Alternate Protocol Negotiation Status per
PCIe spec

Bit 7:5 = Alternate Protocol ID (3’d0 = ‘Flex Bus’)
Bit 8: Common Clock
Bits 15:8: Reserved

10-11

Alternate Protocol ID/Vendor ID if Usage =
010b
See PCIe 5.0 Base Spec for other
descriptions applicable to other Usage
values

8086h
Note: This may change to include the PCI SIG

assigned Vendor ID for CXL.

12-14
See PCIe 5.0 Base Spec
If Usage = 010b, Specific proprietary usage

Bits 7:0 = Flex Bus Mode Selection, where
Bit 0: PCIe capable/enable
Bit 1: CXL.io capable/enable
Bit 2: CXL.mem capable/enable
Bit 3: CXL.cache capable/enable
Bit 7:4: Reserved
Bits 23:8 = Flex Bus Additional Info, where
Bit 8: Reserved
Bit 9: Reserved
Bit 10: Sync Header Bypass capable/enable
Bit 11: Reserved
Bit 12: Retimer1 CXL aware1

Bit 13: Reserved
Bit 14: Retimer2 CXL aware2

Bits 23:15: Reserved

15 See PCIe 5.0 Base Spec

Notes:

1. Retimer1 is equivalent to Retimer X or Retimer Z in the PCI Express Specification
2. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Table 54. Additional Information on Symbols 8-9 of Modifed TS1/TS2 Ordered Set

Bit Field in Symbols 8-9 Description

Alternate Protocol ID[2:0] This is set to 3’d0 to indicate Flex Bus

Common Clock
The CPU uses this bit to communicate to retimers that there is a
common reference clock. Depending on implementation, retimers may
use this information to determine what features to enable.

Table 53. Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation (Sheet 2 of 2)

Symbol Number PCIe Description Flex Bus Mode Negotiation Usage

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 138
Revision 1.0

Hardware autonomous mode negotiation is a two phase process that occurs while in
Configuration.Lanenum.Wait, Configuration.Lanenum.Accept, and
Configuration.Complete before entering L0 at Gen1 speed:

• Phase 1: The root complex sends a stream of modified TS1 Ordered Sets
advertising its Flex Bus capabilities; the endpoint device responds by sending a
stream of modified TS1 Ordered Sets indicating which Flex Bus capabilities it
wishes to enable. This exchange occurs during Configuration.Lanenum.Wait and/or
Configuration.Lanenum.Accept. At the end of this phase, the root complex has
enough information to make a final selection of which capabilities to enable.

• Phase 2: The root complex sends a stream of modified TS2 Ordered Sets to the
endpoint device to indicate whether the link should operate in PCIe mode or in CXL
mode; for CXL mode, it also specifies which CXL protocols to enable. The endpoint
acknowledges the enable request by sending modified TS2 Ordered Sets with the
same Flex Bus enable bits set. This exchange occurs during
Configuration.Complete.

The Flex Bus negotiation process is complete before entering L0 at 2.5GT/s. At this
point the upper layers may be notified of the decision. If CXL mode is negotiated, the
physical layer enables all the negotiated modes and features only after reaching L0 at
8GT/s or higher speed.

Note: If CXL is negotiated but the link does not achieve a speed of at least 8GT/s, the link
with fail to link up.

A flow chart describing the mode negotiation process during link training is provided in
the figure below. Note, while this flow chart represents the flow for several scenarios, it
is not intended to cover all possible scenarios.

Table 55. Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets

Bit Field in Symbols 12-14 Description

PCIe capable/enable The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.1

CXL.io capable/enable The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

CXL.mem capable/enable The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

CXL.cache capable/enable The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

Sync Header Bypass capable/
enable

The CPU, endpoint, and any retimers advertise their capability in Phase
1. The CPU communicates the results of the negotiation in Phase 2.
Note: The Retimer must pass this bit unmodified from its Upstream
Pseudo Port to its Downstream Pseudo Port. The retimer clears this bit if
it does not support this feature when passing from its Downstream
Pseudo Port to its Upstream Pseudo Port but it must never set it (only
the endpoint can set this bit in that direction). If the Retimer(s) do not
advertise that they are CXL aware, the CPU assumes this feature is not
supported by the Retimer(s) regardless of how this bit is set.

Retimer1 CXL aware Retimer1 advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.2

Retimer2 CXL aware Retimer2 advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.3

Notes:
1. PCIe mode and CXL mode are mutually exclusive; when the CPU communicates the results of the

negotiation in Phase 2.
2. Retimer1 is equivalent to Retimer X or Retimer Z in the PCI Express Specification
3. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 139
Revision 1.0

6.3.1.2 Flex Bus.CXL Negotiation with Maximum Supported Link
Speed of 8GT/s or 16GT/s

If a Flex Bus physical layer implementation supports Flex Bus.CXL operation only at a
maximum speed of 8GT/s or 16GT/s, it must still advertise support of 32GT/s speed
during link training at 2.5GT/s to perform alternate protocol negotiation using modified

Figure 90. Flex Bus Mode Negotiation During Link Training (Sample Flow)

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 140
Revision 1.0

TS1 and TS2 Ordered Sets. Once the alternate protocol negotiation is complete, the
Flex Bus logical PHY can then advertise the true maximum link speed that it supports
as per the PCIe Specification.

6.3.1.3 Link Width Degradation and Speed Downgrade

If the link is operating in Flex Bus.CXL and degrades to a lower speed or lower link
width that is still compatible with Flex Bus.CXL mode, the link should remain in Flex
Bus.CXL mode after exiting recovery without having to go through the process of mode
negotiation again. If the link drops to a speed or width not compatible with Flex
Bus.CXL, it must go through the Detect state and come up in PCIe mode, if supported.

6.4 Recovery.Idle and Config.Idle Transitions to L0
The PCI Express Specification requires transmission and receipt of a specific number of
consecutive Idle data Symbols on configured lanes to transition from Recovery.Idle to
L0 or Config.Idle to L0 (see sections 4.2.6.4.5 and 4.2.6.3.6 of the PCI Express
Specification, revision 5.0). When the Flex Bus logical PHY is in CXL mode, it looks for
NULL flits instead of Idle Symbols to initiate the transition to L0. When in CXL mode and
either Recovery.Idle or Config.Idle, the next state is L0 if four consecutive NULL flits are
received and eight NULL flits are sent after receiving one NULL flit; all other rules called
out in the PCI Express Specification regarding these transitions apply.

6.5 L1 Abort Scenario
Since the CXL ARB/MUX virtualizes the link state seen by the link layers and only
requests the physical layer to transition to L1 when the link layers are in agreement,
there may be a race condition that results in an L1 abort scenario. In this case, the
physical layer may receive an EIOS or detect Electrical Idle when the ARB/MUX is no
longer requesting entry to L1. In this scenario, the physical layer is required to initiate
recovery on the link to bring it back to L0.

6.6 Retimers and Low Latency Mode
The Flex Bus specification supports the following features that can be enabled to
optimize latency: bypass of sync hdr insertion and use of a drift buffer instead of an
elastic buffer. Enablement of sync hdr bypass is negotiated during the Flex Bus mode
negotiation process described in Section 6.3.1.1. The CPU, endpoint, and any retimers
advertise their sync hdr bypass capability during Phase 1; and the CPU communicates
the final decision on whether to enable sync header bypass during Phase 2. Drift buffer
mode is decided locally by each component. The rules for enabling each feature are
summarized in Table 56; these rules are expected to be enforced by hardware.

Flex Bus Physical Layer

 Compute Express Link Specification
March 2019 141
Revision 1.0

6.6.1 Control SKP Ordered Set Frequency and L1/Recovery Entry

In Flex Bus.CXL mode, if sync header bypass is enabled, the following rules apply:
• After the SDS, the physical layer must schedule a control SKP Ordered Set or SKP

Ordered Set after every 340 data blocks, unless it is exiting the data stream. Note:
The control SKP OSs are alternated with regular SKP OSs

• When exiting the data stream, the physical layer must replace the scheduled
control SKP OS (or SKP OS) with either an EIOS (for L1 entry) or EIEOS (for all
other cases including recovery).

When the sync hdr bypass optimization is enabled, retimers rely on the above
mechanism to know when L1/recovery entry is occurring. When sync hdr bypass is not
enabled, retimers must not rely on the above mechanism.

§ §

Table 56. Rules of Enable Low Latency Mode Features

Feature Conditions For Enabling Notes

Sync Hdr Bypass

1) All components support
2) Common reference clock
3) No retimer present or retimer
cannot add or delete SKPS (e.g., in
low latency bypass mode)
4) Not in loopback mode

Drift Buffer (instead of elastic
buffer) 1) Common reference clock

Each component can enable this
independently (i.e., does not have
to be coordinated). The physical
logs in the Flex Bus DVSEC when
this is enabled.

Control and Status Registers

 Compute Express Link Specification
March 2019 142
Revision 1.0

7.0 Control and Status Registers

The Compute Express Link device control and status registers are mapped into
separate spaces: configuration space and memory mapped space. Configuration
space registers are accessed using configuration reads and configuration writes.
Memory mapped registers are accessed using memory reads and memory writes.
Table 57 has a list of the attributes for the register bits defined in this chapter.

7.1 Configuration Space Registers
CXL configuration space registers are implemented only by the RCiEP(s) in the
downstream device. The CXL upstream and downstream ports do not map any
registers into configuration space.

7.1.1 PCI Express Designated Vendor-Specific Extended
Capability (DVSEC) for CXL Device

CXL device creates a new PCIe enumeration hierarchy. As such, it spawns a new Root
Bus and can expose one or more PCIe device numbers and function numbers at this
bus number. These are exposed as Root Complex Integrated Endpoints (RCiEP). The
PCIe configuration space of Device 0, Function 0 shall include the CXL PCI Express
Designated Vendor-Specific Extended Capability (DVSEC) as shown in the figure below.
The capability, status and control fields in Device 0, Function 0 DVSEC control the CXL
functionality of the entire CXL device.

Please refer to the PCIe Specification for a description of the standard DVSEC register
fields.

Table 57. Register Attributes

Attribute Description

RO Read Only

RO-V Read-Only-Variant

RW Read-Write

RWS Read-Write-Sticky

RWO Read-Write-Once

RWL Read-Write-Lockable

RW1CS Read-Write-One-To-Clear-Sticky

Control and Status Registers

 Compute Express Link Specification
March 2019 143
Revision 1.0

To advertise Flex Bus capability, the standard DVSEC register fields should be set to the
values shown in the table below. The DVSEC Length field is set to 16 bytes to
accommodate the Flex Bus registers included in the DVSEC. The DVSEC ID is set to 0x0
to advertise that this is an Flex Bus feature capability structure.

The Flex Bus device specific registers are described in the following subsections.

Figure 91. PCIe DVSEC for Flex Bus Device

Table 58. PCI Express DVSEC Register Settings for Flex Bus Device

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (offset 04h) 15:0 DVSEC Vendor ID 0x8086

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0x0

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 0x38

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID 0x0

Control and Status Registers

 Compute Express Link Specification
March 2019 144
Revision 1.0

7.1.1.1 DVSEC Flex Bus Capability (Offset 0Ah)

7.1.1.2 DVSEC Flex Bus Control (Offset 0Ch)

Bit Attributes Description

0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex Bus.AL mode.

1 RO IO_Capable: If set, indicates CXL.io protocol support when operating in Flex Bus.AL mode. Must be 1.

2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex Bus.AL mode.

3 RO

Mem_HwInit_Mode: If set, indicates this CXL.mem capable device initializes memory with assistance
from hardware and firmware located on the device. If clear, indicates memory is initialized by host
software such as device driver.
This bit should be ignored if CXL.mem Capable=0.

5:4 RO

HDM_Count: Number of HDM ranges implemented by the CXL device and reported through this
function.
00 - Zero ranges. This setting is illegal if CXL.mem Capable=1.
01 - One HDM range.
10 - Two HDM ranges
11 - Reserved
This field must return 00 if CXL.mem Capable=0.

13:6 N/A Reserved (RSVD).

14 RO Viral_Capable: If set, indicates CXL device supports Viral handling.

15 N/A Reserved (RSVD).

Bit Attributes Description

0 RWL Cache_Enable: When set, enables CXL.cache protocol operation when in Flex Bus.AL mode. Locked by
CONFIG_LOCK.

1 RO IO_Enable: When set, enables CXL.io protocol operation when in Flex Bus.AL mode.

2 RWL Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.AL mode. Locked by
CONFIG_LOCK.

7:3 RWL

Cache_SF_Coverage: Performance hint to the device. Locked by CONFIG_LOCK.
0x00: Indicates no Snoop Filter coverage on the Host
For all other values of N: Indicates Snoop Filter coverage on the Host of 2^(N+15d) Bytes.
For example, if this field contains the value 5, it indicates snoop filter coverage of 1 MB.

10:8 RWL

Cache_SF_Granularity: Performance hint to the device. Locked by CONFIG_LOCK.
000: Indicates 64B granular tracking on the Host
001: Indicates 128B granular tracking on the Host
010: Indicates 256B granular tracking on the Host
011: Indicates 512B granular tracking on the Host
100: Indicates 1KB granular tracking on the Host
101: Indicates 2KB granular tracking on the Host
110: Indicates 4KB granular tracking on the Host
111: Reserved (RSVD)

11 RWL
Cache_Clean_Eviction: Performance hint to the device. Locked by CONFIG_LOCK.
0: Indicates clean evictions from device caches are needed for best performance
1: Indicates clean evictions from device caches are NOT needed for best performance

13:12 N/A Reserved (RSVD).

14 RWL
Viral_Enable: When set, enables Viral handling in the CXL device.
Locked by CONFIG_LOCK.

15 N/A Reserved (RSVD).

Control and Status Registers

 Compute Express Link Specification
March 2019 145
Revision 1.0

7.1.1.3 DVSEC Flex Bus Status (Offset 0Eh)

7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)

7.1.1.5 DVSEC Flex Bus Status2 (Offset 12h)

7.1.1.6 DVSEC Flex Bus Lock (Offset 14h)

7.1.1.7 DVSEC Flex Bus Range registers

DVSEC Flex Bus Range 1 register set must be implemented if CXL.mem Capable=1.
DVSEC Flex Bus Range 2 register set must be implemented if (CXL.mem Capable=1
and HDM_Count=10) . Each set contains 4 registers - Size High, Size Low, Base High,
Base Low.

7.1.1.7.1 DVSEC Flex Bus Range 1 Size High (Offset 18h)

Bit Attributes Description

13:0 N/A Reserved (RSVD).

14 RW Viral_Status: When set, indicates that the CXL device has entered Viral self-isolation mode. See
Section 11.4, “CXL Viral Handling” on page 197 for more details.

15 N/A Reserved (RSVD).

Bit Attributes Description

15:0 N/A Reserved (RSVD).

Bit Attributes Description

15:0 N/A Reserved (RSVD).

Bit Attributes Description

0 RWO CONFIG_LOCK: When set, control register, Memory Base Low and Memory Base High registers become
read only.

15:1 N/A Reserved (RSVD).

Bit Attributes Description

31:0 RO Memory_Size_High: Corresponds to bits 63:32 of Flex Bus Range 1 memory size.

Control and Status Registers

 Compute Express Link Specification
March 2019 146
Revision 1.0

7.1.1.7.2 DVSEC Flex Bus Range1 Size Low (Offset 1Ch)

7.1.1.7.3 DVSEC Flex Bus Range 1 Base High (Offset 20h)

7.1.1.7.4 DVSEC Flex Bus Range 1 Base Low (Offset 24h)

A CXL.mem capable device directs host accesses to an address A its local HDM memory
if the following two equations are satisfied -

Memory_Base[63:20] <= (A <<20) < Memory_ Base[63:20]+Memory_Size[63:20]

Memory_Active AND Mem_Enable=1

7.1.1.7.5 DVSEC Flex Bus Range 2 Size High (Offset 28h)

Bit Attributes Description

0 RO Memory_Info_Valid: When set, indicates that the Flex Bus Range 1 Size high and Size Low registers
are valid. Must be set within 1 second of deassertion of reset to CXL device.

1 RO
Memory_Active: When set, indicates that the Flex Bus Range 1 memory is fully initialized and available
for software use. Must be set within 1 second of deassertion of reset to CXL device if CXL.mem HwInit
Mode=1.

4:2 RO

Media_Type: Indicates the memory media characteristics
000 - Volatile memory
001 - Non-volatile memory
Other encodings are reserved.

7:5 RO

Memory_Class: Indicates the class of memory
000 - Memory Class (e.g., normal DRAM)
001 - Storage Class (e.g., Intel 3D XPoint))
All other encodings are reserved.

10:8 RO

Desired_Interleave: If a CXL.mem capable device is connected to a single CPU via multiple Flex Bus
links, this field represents the memory interleaving desired by the device. BIOS will configure the CPU
to interleave accesses to this HDM range across links at this granularity.
00 - No Interleave
01 - 256 Byte Granularity
10 - 4K Interleave
all other settings are reserved

19:11 N/A Reserved (RSVD).

31:20 RO Memory_Size_Low: Corresponds to bits 31:20 of Flex Bus Range 1 memory size.

Bit Attributes Description

31:0 RWL Memory_Base_High: Corresponds to bits 63:32 of Flex Bus Range 1 base in the host address space.
Configured by system BIOS.

Bit Attributes Description

19:0 N/A Reserved (RSVD).

31:20 RWL Memory_Base_Low: Corresponds to bits 31:20 of Flex Bus Range 1 base in the host address space.

Bit Attributes Description

31:0 RO Memory_Size_High: Corresponds to bits 63:32 of Flex Bus Range 2 memory size.

Control and Status Registers

 Compute Express Link Specification
March 2019 147
Revision 1.0

7.1.1.7.6 DVSEC Flex Bus Range 2 Size Low (Offset 2Ch)

7.1.1.7.7 DVSEC Flex Bus Range 2 Base High (Offset 30h)

7.1.1.7.8 DVSEC Flex Bus Range 2 Base Low (Offset 34h)

7.2 Memory Mapped Registers
CXL memory mapped registers are located in four general regions as specified in
Table 59. Notably, the CXL downstream port and CXL upstream port are not
discoverable through PCIe configuration space. Instead the downstream and upstream
port registers are implemented using PCIe root complex registers blocks (RCRBs).
Additionally, the CXL downstream and upstream ports each implement an MEMBAR0
region to host registers for configuring the CXL subsystem components associated with
the respective port.

The four memory mapped register regions appear in memory space as shown in
Figure 92. Note that the RCRBs do not overlap with the MEMBAR0 regions. Also, note
that the upstream port’s MEMBAR0 region must fall within the range specified by the

Bit Attributes Description

0 RO Memory_Info_Valid: When set, indicates that the Flex Bus Range 2 Size high and Size Low registers
are valid. Must be set within 1 second of deassertion of reset to CXL device.

1 RO
Memory_Active: When set, indicates that the Flex Bus Range 2 memory is fully initialized and available
for software use. Must be set within 1 second of deassertion of reset to CXL device if CXL.mem HwInit
Mode=1.

4:2 RO

Media_Type: Indicates the memory media characteristics
000 - Volatile memory
001 - Non-volatile memory
111 - Not Memory.
Other encodings are reserved.

7:5 RO

Memory_Class: Indicates the class of memory
000 - Memory Class (e.g., normal DRAM)
001 - Storage Class (e.g., Intel 3D XPoint)
All other encodings are reserved.

10:8 RO

Desired_Interleave: If a CXL.mem capable device is connected to a single CPU via multiple Flex Bus
links, this field represents the memory interleaving desired by the device. BIOS will configure the CPU
to interleave accesses to this HDM range across links at this granularity.
00 - No Interleave
01 - 256 Byte Granularity
10 - 4K Interleave
all other settings are reserved

19:11 N/A Reserved (RSVD).

31:20 RO Memory_Size_Low: Corresponds to bits 31:20 of Flex Bus Range 2 memory size.

Bit Attributes Description

31:0 RWL Memory_Base_High: Corresponds to bits 63:32 of Flex Bus Range 2 base in the host address space.
Configured by system BIOS.

Bit Attributes Description

19:0 N/A Reserved (RSVD).

31:20 RWL Memory_Base_Low: Corresponds to bits 31:20 of Flex Bus Range 2 base in the host address space.

Control and Status Registers

 Compute Express Link Specification
March 2019 148
Revision 1.0

downstream port’s memory base and limit register. So long as these requirements are
satisfied, the details of how the RCRBs are mapped into memory space are
implementation specific.

Table 59. CXL Memory Mapped Registers Regions

Memory Mapped Region Description Location

CXL Downstream Port RCRB

This is a 4K region with registers
based upon PCIe defined registers
for a root port with deltas listed in
this chapter. Includes registers
from PCIe Type 1 Config Header
and PCIe capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the downstream port’s
MEMBAR0 region. Note: The
combined CXL Downstream and
Upstream Port RCRBs are a
contiguous 8K region.

CXL Upstream Port RCRB

This is a 4K region with registers
based upon PCIe defined registers
for an upstream port with deltas
listed in this chapter. Includes 64B
Config Header and PCIe
capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the upstream port’s
MEMBAR0 region. This region may
be located within the range
specified by the downstream port’s
memory base/limit registers, but
that is not a requirement. Note:
The combined CXL Downstream
and Upstream Port RCRBs are a
contiguous 8K region.

CXL Downstream Port MEMBAR0

This memory region hosts registers
that allow software to configure
CXL downstream port subsystem
components, such as the CXL
protocol, link, and physical layers
and the CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBAR0
register located at offset 0x10 and
0x14 of the downstream port’s
RCRB.

CXL Upstream Port MEMBAR0

This memory region hosts registers
that allow software to configure
CXL upstream port subsystem
components, such as CXL protocol,
link, and physical layers and the
CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBAR0
register located at offset 0x10 and
0x14 of the upstream port’s RCRB.
This MBAR0 region is located
within the range specified by the
downstream port’s memory base/
limit registers.

Control and Status Registers

 Compute Express Link Specification
March 2019 149
Revision 1.0

7.2.1 Upstream and Downstream Port Registers

7.2.1.1 CXL Downstream Port RCRB

The downstream port RCRB is a 4K memory region that contains registers based upon
the PCIe specification defined registers for a root port. Figure 93 illustrates the layout
of the CXL RCRB for a downstream port. With the exception of the first DW, the first 64
bytes of the CXL DP RCRB implement the registers from a PCIe Type 1 Configuration
Header. The first DW of the RCRB contains a NULL Extended Capability ID with a
Version of 0h and a Next Capability Offset pointer. A 64-bit MEMBAR0 is implemented at
offset 10h and 14h; this points to a private memory region that hosts registers for
configuring downstream port subsystem components as specified in Table 59. The
supported PCIe capabilities and extended capabilities are discovered by following the
linked lists of pointers. Supported PCIe capabilities are mapped into the offset range
from 040h to 0FFh. Supported PCIe extended capabilities are mapped into the offset
range from 100h to FFFh. The CXL downstream port supported PCIe capabilities and
extended capabilities are listed in Table 60; please refer to the PCIe 5.0 Base
Specification for definitions of the associated registers.

Figure 92. CXL Memory Mapped Register Regions

Control and Status Registers

 Compute Express Link Specification
March 2019 150
Revision 1.0

Figure 93. CXL Downstream Port RCRB

Table 60. CXL Downstream Port Supported PCIe Capabilities and Extended Capabilities
(Sheet 1 of 2)

Supported PCIe Capabilities
and Extended Capabilities Exceptions1 Notes

PCI Express Capability

Slot Capabilities, Slot Control, Slot
Status, Slot Capabilites 2, Slot
Control 2, and Slot Status 2
registers are not applicable.

N/A

PCI Power Management Capability None N/A

MSI Capability None N/A

Advanced Error Reporting
Extended Capability None N/A

ACS Extended Capability None N/A

Control and Status Registers

 Compute Express Link Specification
March 2019 151
Revision 1.0

7.2.1.2 CXL Upstream Port RCRB

The upstream port RCRB is a 4K memory region that contains registers based upon the
PCIe specification defined registers. The upstream port captures the upper address bits
[63:12] of the first memory access received after link initialization as the base address
for the upstream port RCRB. Figure 94 illustrates the layout of the CXL RCRB for an
upstream port. With the exception of the first DW, the first 64 bytes of the CXL UP
RCRB implement the registers from a PCIe Type 0 Configuration Header. The first DW of
the RCRB contains a NULL Extended Capability ID with a Version of 0h and a Next
Capability Offset pointer. A 64-bit MEMBAR0 is implemented at offset 10h and 14h; this
points to a memory region that hosts registers for configuring upstream port
subsystem CXL.mem as specified in Table 59. The supported PCIe capabilities and
extended capabilities are discovered by following the linked lists of pointers. Supported
PCIe capabilities are mapped into the offset range from 040h to 0FFh. Supported PCIe
extended capabilities are mapped into the offset range from 100h to FFFh. The CXL
upstream port supported PCIe capabilities and extended capabilities are listed in
Table 61; please refer to the PCIe 5.0 Base Specification for definitions of the
associated registers.

Multicast Extended Capability None N/A

Downstream Port Containment
Extended Capability None N/A

Designated Vendor-Specific
Extended Capability (DVSEC) None

Please refer to section
Figure 7.2.1.3 for Flex Bus Port
DVSEC definition.

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCIe and CXL mode.

Table 60. CXL Downstream Port Supported PCIe Capabilities and Extended Capabilities
(Sheet 2 of 2)

Supported PCIe Capabilities
and Extended Capabilities Exceptions1 Notes

Control and Status Registers

 Compute Express Link Specification
March 2019 152
Revision 1.0

Figure 94. CXL Upstream Port RCRB

Control and Status Registers

 Compute Express Link Specification
March 2019 153
Revision 1.0

7.2.1.3 Upstream and Downstream Flex Bus Port DVSEC

The upstream and downstream Flex Bus ports implement a Flex Bus Port DVSEC, which
is distinct from that implemented by a CXL device. This DVSEC is located in the RCRBs
of the upstream and downstream ports. Figure 95 shows the layout of the Flex Bus Port
DVSEC and Table 62 shows how the header1 and header2 registers should be set. The
following subsections give details of the registers defined in the Flex Bus Port DVSEC.

Table 61. CXL Upstream Port Supported PCIe Capabilities and Extended Capabilities

Support PCIe Capabilties and
Extended Capabilties Exceptions1 Notes

PCI Express Capability None N/A

Advanced Error Reporting
Extended Capability None N/A

Multicast Extended Capability None N/A

Virtual Channel Extended
Capability None VC0 and VC1

Designated Vendor-Specific
Extended Capability (DVSEC) None

Please refer to section
Figure 7.2.1.3 for Flex Bus Port
DVSEC definition.

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCIe and CXL mode.

Figure 95. PCIe DVSEC for Flex Bus Port

Table 62. PCI Express DVSEC Header Registers Settings for Flex Bus Port

Register Bit Location Field Value

Designated Vendor-Specific Header 1 (Offset 04h) 15:0 DVSEC Vendor ID 0x8086

Designated Vendor-Specific Header 1 (Offset 04h) 19:16 DVSEC Revision 0x0

Designated Vendor-Specific Header 1 (Offset 04h) 31:20 DVSEC Length 0x8

Designated Vendor-Specific Header 2 (Offset 08h) 15:0 DVSEC ID 0x7

Control and Status Registers

 Compute Express Link Specification
March 2019 154
Revision 1.0

7.2.1.3.1 DVSEC Flex Bus Port Capability Offset (0Ah)

Note: The Mem_Capable, IO_Capable, and Cache_Capable fields are also present in the Flex
Bus DVSEC for the device. This allows for future scalability where multiple devices,
each with potentially different capabilities, may be populated behind a single port.

7.2.1.3.2 DVSEC Flex Bus Port Control (Offset 0Ch)

7.2.1.3.3 DVSEC Flex Bus Port Status (Offset 0Eh)

Bit Attributes Description

0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex Bus.AL mode.

1 RO IO_Capable: If set, indicates CXL.io protocol support when operating in Flex Bus.AL mode. Must be 1.

2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex Bus.AL mode.

15:3 N/A Reserved (RSVD).

Bit Attributes Description

0 RW Cache_Enable: When set, enables CXL.cache protocol operation when in Flex Bus.AL mode.

1 RO IO_Enable: When set, enables CXL.io protocol operation when in Flex Bus.AL mode. (Must always be
set to 1)

2 RW Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.AL mode.

3 RW CXL_Sync_Hdr_Bypass_Enable: When set, enables bypass of the 2-bit sync header by the Flex Bus
physical layer when operating in Flex Bus.AL mode. This is a performance optimization.

4 RW Drift_Buffer_Enable: When set, enables drift buffer (instead of elastic buffer) if there is a common
reference clock

7:5 N/A Reserved (RSVD)

8 RW Retimer1_Present: When set, indicates presence of retimer1. This bit is defined only for a downstream
port. This bit is reserved for an upstream port.

9 RW Retimer2_Present: When set, indicates presence of retimer2. This bit is defined only for a downstream
port. This bit is reserved for an upstream port.

15:10 N/A Reserved (RSVD).

Bit Attributes Description

0 RO-V Cache_Enabled: When set, indicates that CXL.cache protocol operation has been enabled as a result of
PCIe alternate protocol negotation for Flex Bus.

1 RO-V IO_Enabled: When set, indicates that CXL.io protocol operation has been enabled as a result of PCIe
alternate protocol negotiation for Flex Bus.

2 RO-V Mem_Enabled: When set, indicates that CXL.mem protocol operation has been enabled as a result of
PCIe alternate protocol negotiation for Flex Bus..

3 RO-V
CXL_Sync_Hdr_Bypass_Enabled: When set, indicates that bypass of the 2-bit sync header by the Flex
Bus physical layer has been enabled when operating in Flex Bus.AL mode as a result of PCIe alternate
protocol negotiation for Flex Bus..

4 RO-V Drift_Buffer_Enabled: When set, indicates that the physical layer has enabled its drift bufferinstead of
its elastic buffer.

7:5 N/A Reserved (RSVD)

8 RW1CS CXL_Correctable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.

Control and Status Registers

 Compute Express Link Specification
March 2019 155
Revision 1.0

7.2.2 CXL Upstream and Downstream Port Subsystem Component
Registers

The CXL upstream and downstream port subsystem components implement registers in
memory space allocated via the MEMBAR0 register. In general, these registers are
expected to be implementation specific; this section defines the architected registers.
Table 63 lists the relevant offset ranges from MEMBAR0 for CXL.io, CXL.cache,
CXL.mem, and CXL ARB/MUX registers.

7.2.2.1 CXL.cache and CXL.mem Registers

Within the 4KB region of memory space assigned to CXL.cache and CXL.mem, the
location of architecturally specified registers will be described using an array of
pointers. The array, described in Table 64, will be located starting at offset 0x0 of this
4KB region. The first element of the array will declare the version of CXL.cache and
CXL.mem protocol as well as the size of the array. Each subsequent element will then
host the pointers to capability specific register blocks within the 4KB region.

9 RW1CS CXL_Uncorrectable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.

10 RW1CS
CXL_Unexpected_Protocol_ID_Dropped: When set, indicates that the physical layer dropped a flit with
an unexpected protocol ID that is not due to an Uncorrectable Protocol ID Framing Error. See Section
6.2.2 for more details

15:11 N/A Reserved (RSVD).

Bit Attributes Description

Table 63. CXL Subsystem Component Register Ranges in MEMBAR0

Range Size Destination

0000_0000h - 0000_0FFFh 4K CXL.io registers

0000_1000h - 0000_1FFFh 4K CXL.cache and CXL.mem registers

0000_2000h - 0000_DFFFh 48K Implementation specific

0000_E000 - 0000_E3FFh 1K CXL ARB/MUX registers

Table 64. CXL.cache and CXL.mem Architectural Registers

Offset Register Name

0x0 CXL_Capability_Header

0x4 CXL_RAS_Capability_Pointer

0x8 CXL_Security_Capability_Pointer

0xC CXL_Link_Capability_Pointer

Control and Status Registers

 Compute Express Link Specification
March 2019 156
Revision 1.0

7.2.2.1.1 CXL Capability Header Register (Offset 0x0)

7.2.2.1.2 CXL RAS Capability Header (Offset 0x4)

7.2.2.1.3 CXL Security Capability Header (Offset 0x8)

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_Capability_Header register,
this field must be 0x1.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

23:20 RO
CXL_Cache_Mem_Version: This defines the version of the
CXL Cache Mem Protocol supported. For the first generation,
this field must be 0x1.

31:24 RO

Array_Size: This defines the number of elements present in
the CXL_Capability array, not including the
CXL_Capability_Header element. Each element is 1 DWORD in
size and is located contiguous with previous elements.

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_RAS_Capability_Pointer
register, this field should be 0x2.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

31:20 RO
CXL_RAS_Capability_Pointer: This defines the offset of the
CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 7.2.2.1.4.

Bit Location Attributes Description

15:0 RO

CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the
CXL_Security_Capability_Pointer register, this field should be
0x3.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

31:20 RO
CXL_Security_Capability_Pointer: This defines the offset of
the CXL_Capability relative to beginning of
CXL_Capability_Header register. Details in Section 7.2.2.1.13

Control and Status Registers

 Compute Express Link Specification
March 2019 157
Revision 1.0

7.2.2.1.4 CXL Link Capability Header (Offset 0xC)

7.2.2.1.5 CXL RAS Capability Structure

7.2.2.1.6 Uncorrectable Error Status Register (Offset 0x0)

Bit Location Attributes Description

15:0 RO
CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_Link_Capability_Pointer
register, this field should be 0x4.

19:16 RO
CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

31:20 RO
CXL_Link_Capability_Pointer: This defines the offset of the
CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 7.2.2.1.15

Offset Register Name

0x0 Uncorrectable Error Status Register

0x4 Uncorrectable Error Mask Register

0x8 Uncorrectable Error Severity Register

0xC Correctable Error Status Register

0x10 Correctable Error Mask Register

0x14 Error Capability and Control Register

0x54 - 0x18 Header Log Registers

Bit Location Attributes Description

0 RW1CS Cache_Data_Parity: Internal Data Parity error on CXL.cache.
Header Log contains H2D Data Header.

1 RW1CS Cache_Address _Parity: Internal Address Parity error on
CXL.cache. Header Log contains H2D Data Header.

2 RW1CS Cache_BE_Parity: Internal Byte Enable Parity error on
CXL.cache. Header Log contains H2D Data Header.

3 RW1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.
Header Log contains H2D Data Header.

4 RW1CS Mem_Data_Parity: Internal Data Parity error on CXL.mem.
Header Log contains M2S RwD Data Header.

5 RW1CS

Mem_Address_Parity: Internal Address Parity error on
CXL.mem. If Bit 0 of Header Log is '0, rest of Header Log
contains M2S Req. If Bit 0 of Header Log is '1, rest of Header
Log contains M2S RwD Data Header.

6 RW1CS Mem_BE_Parity: Internal Byte Enable Parity error on
CXL.mem. Header Log contains M2S RwD Data Header.

7 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.
Header Log contains M2S RwD Data Header.

Control and Status Registers

 Compute Express Link Specification
March 2019 158
Revision 1.0

7.2.2.1.7 Uncorrectable Error Mask Register (Offset 0x4)

7.2.2.1.8 Uncorrectable Error Severity Register (Offset 0x8)

8 RW1CS REINIT_Threshold: REINIT Threshold Hit. Header Log not
applicable.

9 RW1CS Rsvd_Encoding_Violation: Received unrecognized encoding.
Header Log contains the entire flit received.

10 RW1CS Poison_Received: Received Poison from the peer. Header Log
contains the entire flit received.

11 RW1CS

Receiver_Overflow: First 3b of the Header Log are relevant
and should be interpreted as such:
3'b000 --> D2H Req
3'b001 --> D2H Rsp
3'b010 --> D2H Data
3'b100 --> S2M NDR
3'b101 --> S2M DRS
The above shows which buffer had the overflow

Bit Location Attributes Description

Bit Location Attributes Description

0 RWS Cache_Data_Parity_Mask

1 RWS Cache_Address _Parity_Mask

2 RWS Cache_BE_Parity_Mask

3 RWS Cache_Data_ECC_Mask

4 RWS Mem_Data_Parity_Mask

5 RWS Mem_Address_Parity_Mask

6 RWS Mem_BE_Parity_Mask

7 RWS Mem_Data_ECC_Mask

8 RWS REINIT_Threshold_Mask

9 RWS Rsvd_Encoding_Violation_Mask

10 RWS Poison_Received_Mask

11 RWS Receiver_Overflow_Mask

Bit Location Attributes Description

0 RWS Cache_Data_Parity_Severity

1 RWS Cache_Address _Parity_Severity

2 RWS Cache_BE_Parity_Severity

3 RWS Cache_Data_ECC_Severity

4 RWS Mem_Data_Parity_Severity

5 RWS Mem_Address_Parity_Severity

6 RWS Mem_BE_Parity_Severity

7 RWS Mem_Data_ECC_Severity

8 RWS REINIT_Threshold_Severity

Control and Status Registers

 Compute Express Link Specification
March 2019 159
Revision 1.0

7.2.2.1.9 Correctable Error Status Register (Offset 0xC)

7.2.2.1.10 Correctable Error Mask Register (Offset 0x10)

7.2.2.1.11 Error Capabilities and Control Register (Offset 0x14)

9 RWS Rsvd_Encoding_Violation_Severity

10 RWS Poison_Received_Severity

11 RWS Receiver_Overflow_Severity

Bit Location Attributes Description

Bit Location Attributes Description

0 RW1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.

1 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.

2 RW1CS CRC_Threshold: CRC Threshold Hit

3 RW1CS Retry_Threshold: Retry Threshold Hit

4 RW1CS Cache_Poison_Received: Received Poison from the peer on
CXL.cache.

5 RW1CS Mem_Poison_Received: Received Poison from the peer on
CXL.mem.

6 RW1CS Physical_Layer_Error: Received error indication from
Physical Layer

Bit Location Attributes Description

0 RWS Cache_Data_ECC_Mask

1 RWS Mem_Data_ECC_Mask

2 RWS CRC_Threshold_Mask

3 RWS Retry_Threshold_Mask

4 RWS Cache_Poison_Received_Mask

5 RWS Mem_Poison_Received_Mask

6 RWS Physical_Layer_Error_Mask

Bit Location Attributes Description

3:0 ROS-V First_Error_Pointer: This identifies the bit position of the first
error reported in the Uncorrectable Error Status register.

9 RO
Multiple_Header_Recording_Capability: This indicates if
recording more than one error header is supported. For the
first generation, his will be set to ‘0.

13 RWS Poison_Enabled: This indicates if poison is supported.

Control and Status Registers

 Compute Express Link Specification
March 2019 160
Revision 1.0

7.2.2.1.12 Header Log Registers (Offset 0x54 - 0x18)

7.2.2.1.13 CXL Security Capability Structure

This capability structure only applies for CXL Downstream Port.

7.2.2.1.14 CXL Security Policy Register (Offset 0x0)

7.2.2.1.15 CXL Link Capability Structure

Bit Location Attributes Description

511:0 ROS
Header Log: The information logged here depends on the type
of Uncorrectable Error Status bit recorded as described in
Section 7.2.2.1.6

Offset Register Name

0x0 CXL Security Policy Register

Bit Location Attributes Description

1:0 RW

Device Trust Level:
'0 --> Trusted CXL Device. At this setting, a CXL Device will be
able to get access on CXL.cache for both host-attached and
device attached memory ranges. The Host can still protect
security sensitive memory regions.
'1 --> Trusted for Device Attached Memory Range Only. At this
setting, a CXL Device will be able to get access on CXL.cache
for device attached memory ranges only. Requests on
CXL.cache for host-attached memory ranges will be aborted by
the Host.
'2 --> Untrusted IAL Device. At this setting, all requests on
CXL.cache will be aborted by the Host.
Please note that these settings only apply to requests on
CXL.cache. The device can still source requests on CXL.io
regardless of these settings. Protection on CXL.io will be
implemented using IOMMU based page tables.

Offset Register Name

0x0 CXL Link Layer Capability Register

0x8 CXL Link Control and Status Register

0x10 CXL Link Rx Credit Control Register

0x18 CXL Link Rx Credit Return Status Register

0x20 CXL Link Tx Credit Status Register

0x28 CXL Link Ack Timer Control Register

0x30 CXL Link Defeature

Control and Status Registers

 Compute Express Link Specification
March 2019 161
Revision 1.0

7.2.2.1.16 CXL Link Layer Capability Register (Offset 0x0)

7.2.2.1.17 CXL Link Layer Control and Status Register (Offset 0x8)

Bit Location Attributes Description

3:0 RWS CXL Link Version Supported: Version of AL the port is
compliant with. For CXL 1.0, this should be ‘0001.

7:4 RO-V CXL Link Version Received: Version of AL received from
INIT.Param flit. Used for debug.

15:8 RWS LLR Wrap Value Supported: LLR Wrap value supported by
this entity. Used for debug.

23:16 RO-V LLR Wrap Value Received: LLR Wrap value received from
INIT.Param flit. Used for debug.

28:24 RO-V NUM_Retry_Received: Num_Retry value reflected in the last
Retry.Req message received. Used for debug.

33:29 RO-V NUM_Phy_Reinit_Received: Num_Phy_Reinit value reflected
in the last Retry.Req message received. Used for debug.

41:34 RO-V Wr_Ptr_Received: Wr_Ptr value reflected in the last
Retry.Ack message received

49:42 RO-V Echo_Eseq_Received: Echo_Eseq value reflected in the last
Retry.Ack message received

57:50 RO-V Num_Free_Buf_Received: Num_Free_Buf value reflected in
the last Retry.Ack message received

Bit Location Attributes Description

0 RW-V

LL_Reset: Re-initialize without resetting values in sticky
registers.
Write '1 to reset link - this is a destructive reset all link layer
state. When link layer reset completes, HW will clear the bit to
'0.
Entity triggering soft reset should ensure that link is quiesced

1 RWS LL_Init_Stall: If set, link layer stalls the transmission of the
LLCTRL-INIT.Param flit until this bit is cleared

2 RWS LL_Crd_Stall: If set, link layer stalls credit initialization until
this bit is cleared

4:3 RO-V

INIT_State:
This field reflects the current initialization status of the Link
Layer, including any stall conditions controlled by bits 2:1
'00 --> NOT_RDY_FOR_INIT (stalled or unstalled): LLCTRL-
INIT.Param flit not sent
'01 --> PARAM_EX: LLCTRL-INIT.Param sent and waiting to
receive it
'10 --> CRD_RETURN_STALL: Parameter exchanged
successfully and Credit return is stalled
'11 --> INIT_DONE: Link Initialization Done - LLCTRL-
INIT.Param flit sent and received, and initial credit refund not
stalled

12:5 RO-V LL_Retry_Buffer_Consumed: Snapshot of link layer retry
buffer consumed

Control and Status Registers

 Compute Express Link Specification
March 2019 162
Revision 1.0

7.2.2.1.18 CXL Link Layer Rx Credit Control Register (Offset 0x10)

7.2.2.1.19 CXL Link Layer Rx Credit Return Status Register (Offset 0x18)

7.2.2.1.20 CXL Link Layer Tx Credit Status Register (Offset 0x20)

Bit Location Attributes Description

9:0 RWS Cache Req Credits: Credits to advertise for Cache Request
channel at init

19:10 RWS Cache Rsp Credits: Credits to advertise for Cache Response
channel at init

29:20 RWS Cache Data Credits: Credits to advertise for Cache Data
channel at init

39:30 RWS Mem Req _Rsp Credits: Credits to advertise for Mem Request
or Response channel at init

49:40 RWS Mem Data Credits: Credits to advertise for Mem Data channel
at init

Bit Location Attributes Description

9:0 RO-V Cache Req Credits: Running snapshot of accumulated Cache
Request credits to be returned

19:10 RO-V Cache Rsp Credits: Running snapshot of accumulated Cache
Response credits to be returned

29:20 RO-V Cache Data Credits: Running snapshot of accumulated Cache
Data credits to be returned

39:30 RO-V Mem Req _Rsp Credits: Running snapshot of accumulated
Mem Request or Response credits to be returned

49:40 RO-V Mem Data Credits: Running snapshot of accumulated Mem
Data credits to be returned

Bit Location Attributes Description

9:0 RO-V Cache Req Credits: Running snapshot of Cache Request
credits for Tx

19:10 RO-V Cache Rsp Credits: Running snapshot of Cache Response
credits for Tx

29:20 RO-V Cache Data Credits: Running snapshot of Cache Data credits
for Tx

39:30 RO-V Mem Req _Rsp Credits: Running snapshot of Mem Req or
Response credits for Tx

49:40 RO-V Mem Data Credits: Running snapshot of Mem Data credits for
Tx

Control and Status Registers

 Compute Express Link Specification
March 2019 163
Revision 1.0

7.2.2.1.21 CXL Link Layer Ack Timer Control Register (Offset 0x28)

7.2.2.1.22 CXL Link Layer Defeature Register (Offset 0x30)

7.2.2.2 CXL ARB/MUX Registers

7.2.2.2.1 ARB/MUX Arbitration Control Register for CXL.io (Offset 0x180)

7.2.2.2.2 ARB/MUX Arbitration Control Register for CXL.cache and CXL.mem
(Offset 0x1C0)

7.3 CXL RCRB Base Register
A register is required to communicate to software the memory address location of the
CXL RCRB for each CXL port.

Bit Location Attributes Description

7:0 RWS Ack Force Threshold: This specifies how many Flit Acks the
Link Layer should accumulate before injecting a LLCRD

17:8 RWS
Ack Flush Retimer: This specifies how many link layer clock
cycles the entity should wait in case of idle, before flushing
accumulated Acks using a LLCRD

Bit Location Attributes Description

0 RWS

MDH Disable: Write '1 to disable MDH. Software needs to
ensure it programs this value consistently on the UP & DP. After
programming, a warm reset is required for the disable to take
effect.

Bit Attributes Description

3:0 N/A Reserved (RSVD)

7:4 RW
CXL.io Weighted Round Robin Arbitration Weight:
This is the weight assigned to CXL.io in the weighted round robin arbitration between CXL protocols.

31:8 N/A Reserved (RSVD)

Bit Attributes Description

3:0 N/A Reserved (RSVD)

7:4 RW
CXL.cache and CXL.mem Weighted Round Robin Arbitration Weight:
This is the weight assigned to CXL.cache and CXL.mem in the weighted round robin arbitration
between CXL protocols.

31:8 N/A Reserved (RSVD)

Control and Status Registers

 Compute Express Link Specification
March 2019 164
Revision 1.0

§ §

Bit Attributes Description

0 RWO CXL RCRB Enable: When set, the RCRB region is enabled.

12:1 N/A Reserved (RSVD).

63:13 RWO CXL_RCRB_Base_Address: This points to an 8K memory region where the lower 4K hosts the
downstream port RCRB and the upper 4K hosts the upstream port RCRB.

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 165
Revision 1.0

8.0 Reset, Initialization, Configuration and
Manageability

8.1 Compute Express Link Boot and Reset Overview

8.1.1 General

Boot and Power-up sequencing of Flexbus devices follows the conventions of PCIE-CEM
and as such, will not be discussed in detail in this section. However, this section will
highlight the differences that exist between CXL and native PCIe for these operations.

Reset, Sx-entry and ADR flows require coordinated coherency domain shutdown before
the sequence can progress. Therefore, the CXL flow will adhere to the following rules:

• Warnings will be issued to all CXL devices before the above transitions are initiated,
including CXL.io.

• To extend the available messages, CXL PM messages will be used to communicate
between the host and the device. Devices must respond to these messages with
the proper acknowledge, even if no actions are actually performed on the said
device.

8.1.2 Comparing CXL and PCIe behavior

The following table summarizes the difference in event sequencing and signaling
methods across Reset, Sx and ADR flows, for discrete CXL.io/Cache/Cache+Mem and
PCIe.

The terms used in the table are as follows
• Warning: an early notification of the upcoming event. Devices with coherent cache

or memory are required to complete outstanding transactions, flush internal caches
as needed, and place system memory in a Self_refresh state as required. Devices
are required to complete all internal actions and then respond with a proper Ack to
the processor

• Signaling: Actual initiation of the state transition, using either wires and/or link-
layer messaging

• ADR: Asynchronous DRAM Refresh.

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 166
Revision 1.0

Notes:
1. All CXL profiles support CXL PM VDMs and use end-end (PM - PM controller) sequences where possible
2. CXL PM VDM with different encodings for different events. If CXL.io devices do not respond to the CXL

PM VDM, the host will still end up in the correct state due to timeouts
3. ADR on CXL.*: Device MUST respond with an ACK, even if no context to flush. Discrete Device shall

block all further IO traffic after completion. On Timeout, flow will abort and PCH reverts to cold-reset
4. Flex Bus Physical Layer link states across cold reset, warm reset, surprise reset, and Sx entry match

PCIe Physical Layer link states.

8.2 Compute Express Link Device Boot Flow
CXL devices will follow with PCIe CEM spec defined boot flows.

8.3 Compute Express Link Device Warm Reset Entry Flow

Note: In an OS orchestrated warm reset flow, it is expected that the CXL devices are already
in D3 state with their contexts flushed to the system memory before the platform warm
reset flow is triggered.

Note: In a platform triggered warm reset flow (due to unexpected CATERR etc.), a CXL.io
device can be in a D3 or D0.

Host issues a CXL PM VDM defined as ResetPrep (ResetType = Warm Reset; PrepType =
General Prep) to the CXL device as specified in Table 3. CXL device flushes any relevant
context to the host (if any), cleans up the data serving the host and puts any CXL
device connected memory into self-refresh. CXL device takes any additional steps for
the CXL host to enter LTSSM Hot-Reset. After all the Warm reset preparation is
completed, the CXL device will issue a CXL PM VDM defined as ResetPrepAck
(ResetType = Warm Reset; PrepType = General Prep) to the CXL device as specified in
Table 3.

Note: CXL device may or may not have PERST# asserted after warm reset handshake. If
PERST# is asserted, CXL device should clear any sticky content internal to the device.

Table 65. Event Sequencing for Reset, Sx, and ADR Flows

Case PCIe CXL

Cold Reset Entry

Warning: None;
Signaling:
LTSSM Hot-Reset followed by PERST#

Warning: PM2IP (CXL PM VDM)2;
Signaling:
LTSSM Hot-Reset, followed by PERST#

Warm Reset Entry
Warning: None;
Signaling:
LTSSM Hot-Reset

Warning: PM2IP (CXL PM VDM)2;
Signaling:
LTSSM Hot-Reset

Surprise Reset
Entry

Warning: None;
Signaling:
LTSSM detect-entry

Warning: None;
Signaling:
LTSSM detect-entry

Sx Entry

Warning:
PME-Turn_off/Ack;
Signaling:
PERST# (Power will go down)

Warning: PM2IP (CXL PM VDM)2;
Signaling:
PERST# (Power will go down)

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 167
Revision 1.0

8.4 Compute Express Link Device Cold Reset Entry Flow

Note: In an OS orchestrated cold reset flow, it is expected that the CXL devices are already in
D3 state with their contexts flushed to the system memory before the platform warm
reset flow is triggered.

Note: In a platform triggered cold reset flow (due to unexpected CATERR etc.), a CXL device
can be in a D3 or D0.

Note: Host cannot differentiate between a platform warm vs cold reset. The host issues a CXL
PM VDM defined as ResetPrep (ResetType = Warm Reset; PrepType = General Prep) to
the CXL device as specified in Table 3.

CXL device flushes any relevant context to the host (if any), cleans up the data serving
the host and puts any CXL device connected memory into self-refresh. CXL device
takes any additional steps for the CXL host to enter LTSSM hot reset. After all the Warm
reset preparation is completed, CXL device will issue a CXL PM VDM defined as
ResetPrepAck (ResetType = Warm Reset; PrepType = General Prep) to the CXL device
as specified in Table 3.

CXL device will have PERST# asserted after warm reset handshake on a Cold Reset. On
PERST# assertion, CXL device should clear any sticky content internal to the device.

Figure 96. CXL Device Warm Reset Entry Flow

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 168
Revision 1.0

8.5 Compute Express Link Device Sleep State Entry Flow

Note: Since OS is the orchestrator of Sx flows always, it is expected that the CXL devices are
already in D3 state with their contexts flushed to the CPU-attached or CXL-attached
memory before the platform Sx flow is triggered.

Note: The host issues a CXL PM VDM defined as ResetPrep (ResetType = S3/S4/S5; PrepType
= General Prep) to the CXL device as specified in Table 3. CXL device flushes any
relevant context to the host (if any), cleans up the data serving the host and puts any
CXL device connected memory into self-refresh. CXL device takes any additional steps
for the CXL host to initiate a L23 flow. After all the Warm reset preparation is
completed, the CXL device will issue a CXL PM VDM defined as ResetPrepAck
(ResetType = S3/S4/S5; PrepType = General Prep) to the CXL device as specified in
Table 3. PERST# to the CXL device can be asserted any time after this handshake is
completed. On PERST# assertion, CXL device should clear any sticky content internal to
the device.

Note: PERST# will always be asserted for CXL Sx Entry flows.

Figure 97. CXL Device Cold Reset Entry Flow

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 169
Revision 1.0

8.6 Function Level Reset (FLR)
PCIe FLR mechanism enables software to quiesce and reset Endpoint hardware with
Function-level granularity. CXL devices expose one or more PCIe functions to host
software. These functions can expose FLR capability and existing PCIe compatible
software can issue FLR to these functions. PCIe specification provides specific
guidelines on impact of FLR on PCIe function level state and control registers. For
compatibility with existing PCIe software, CXL PCIe functions should follow those
guidelines if they support FLR. For example, any software readable state that
potentially includes secret information associated with any preceding use of the
Function must be cleared by FLR.

FLR has no effect on CXL.cache and CXL.mem protocol. Any CXL.cache and CXL.mem
related control registers and state held by the CXL device is not affected by FLR. The
memory controller hosting HDM is not reset by FLR. Upon FLR, certain cache lines in a
CXL.cache device side cache may be flushed, but cache coherency must be maintained.

In some cases, system software uses FLR to attempt error recovery. In the context of
CXL devices, errors in CXL.mem and CXL.cache logic cannot be recovered by FLR. FLR
may succeed in recovering from CXL.io domain errors.

8.7 Hotplug
None of the current usage models for Flex Bus require hotplug support. Additionally,
surprise hot remove is not supported.

Figure 98. CXL Device Sleep State Entry Flow

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 170
Revision 1.0

8.8 Software Enumeration

8.8.1 Software Model

CXL device is exposed to the host software as one or more PCI express endpoints. PCIe
is the most widely used device model by various OSs. In addition to leveraging the SW
infrastructure and device driver writer expertise, this choice also enables us to readily
use PCIe extensions like SR-IOV and PASID.

The link itself is not exposed to the Operating System. This is different from PCIe model
where PCIe bus driver in OS is able to manage the PCIe link. Hiding CXL link ensures
100% compatibility with legacy PCIe software.

Since the link is not exposed to OS, each CXL device creates a new PCIe enumeration
hierarchy in the form of an ACPI defined PCIe Root Bridge (PNP ID PNP0A08). CXL
endpoints appear as Root Complex Integrated Endpoints (RCiEP).

CXL endpoints report “PCIe” interface errors to OS via Root Complex Event Collector
(RCEC) implemented in the host. This is enabled via an extension to the RCEC (Root
Complex Event Collector Bus Number Association ECN) to PCIe specification.

8.8.2 PCIe software view of the hierarchy

Since the CXL link is not exposed to OS, the BIOS view of the hierarchy is different than
that of the OS.

Figure 99. PCIe software view

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 171
Revision 1.0

8.8.2.1 BIOS View

The functionality of the CXL downstream port and the CXL upstream port can be
accessed via memory mapped registers. These will not show up in standard PCI bus
scan by existing Operating Systems. The base addresses of these registers are set up
by BIOS and BIOS can use that knowledge to configure CXL.

BIOS configures the downstream port to decode the memory resource needs of the CXL
device as expressed by PCIe BAR registers and upstream port BAR(s). PCIe BARs do
not decode any HDM associated with the CXL device.

8.8.2.2 OS View

The CXL device instantiates one or more ACPI root bridges. The _BBN method for this
root bridge matches the bus number that hosts CXL RCiEPs.

This ACPI root bridge spawns a legal PCIe hierarchy. All PCI/PCIe endpoints located in
the CXL device are children of this ACPI root bridge. These endpoints may appear
directly on the Root bus number or may appear behind a root port located on the Root
bus.

The _CRS method for PCIe rootbridge returns bus and memory resources claimed by
the CXL Endpoints. _CRS response does not include HDM on CXL.mem capable device.
Nor does it comprehend any Upstream Port BARs (hidden from OS).

CXL devices cannot claim IO resources.

8.8.3 BIOS Enumeration Flow

CXL device discovery
• Parse configuration space of device 0, function 0 on the Secondary bus # and

discover CXL specific attributes. These are exposed via Flex Bus DVSEC Capability
structures. See Section 7.0.

If the device supports CXL.cache, configure the CPU coherent bridge. Set Cache
Enable.

If the device supports CXL.mem, check Mem_HwInit_Mode.

If Mem_HwInit_Mode =1
• The device must set Memory_Info_Valid and Memory_Active within 1 second of

reset deassertion.
• When Memory_Info_Valid and Memory_Active are 1, BIOS reads

Memory_Size_High and Memory_Size_Low fields for each HDM range.
• BIOS computes the size of the HDM range and maps those in system address

space.
• BIOS programs Memory_Base_Low and Memory_Base_High for each HDM range.
• BIOS programs ARB/MUX arbitration control registers.
• BIOS sets CXL.mem Enable. Any subsequent accesses to HDM are decoded and

routed to the local memory by the device.
• Each HDM range is exposed as a separate, memory-only NUMA node via ACPI SRAT

table.
• BIOS obtains latency and bandwidth information from the UEFI device driver and

uses this information during construction of ACPI memory map and ACPI HMAT. The
latency information reported by UEFI driver is measured from the point of ingress
and must be adjusted to accommodate other hops.

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 172
Revision 1.0

If Mem_HwInit_Mode =0
• The device must set Memory_Info_Valid within 1 second of reset deassertion.
• When Memory_Info_Valid is 1, BIOS reads Memory_Size_High and

Memory_Size_Low fields for each HDM range.
• BIOS computes the size of the HDM range and maps those in system address

space.
• BIOS programs Memory_Base_Low and Memory_Base_High for each HDM range.
• BIOS programs ARB/MUX arbitration control registers.
• BIOS sets CXL.mem Enable. Any subsequent accesses to the HDM ranges are

decoded and completed by the device. The reads shall return all 1's and the writes
will be dropped.

• Each HDM range is exposed as a separate, memory-only NUMA node via ACPI SRAT
table.

• If the memory is initialized prior to OS boot by UEFI device driver,
— The UEFI driver is responsible for setting Memory_Active.
— Once Memory_Active is set, any subsequent accesses to the HDM range are

decoded and routed to the local memory by the device.
— The UEFI device driver is responsible for reporting presence of memory to BIOS

via UEFI APIs. UEFI driver reports the latency and bandwidth information
associated with HDM to BIOS.

— BIOS uses the information supplied by UEFI driver during construction of ACPI
memory map and ACPI HMAT. The latency information reported by UEFI driver
is measured from the point of ingress and must be adjusted to accommodate
other hops.

• If the memory is initialized by an OS device driver post OS boot,
— UEFI driver reports the latency and bandwidth information associated with each

HDM range to BIOS.
— BIOS uses the information supplied by UEFI driver during construction of ACPI

memory map and ACPI HMAT. The latency information reported by UEFI driver
is measured from the point of ingress and must be adjusted to accommodate
other hops.

— At OS hand-off, BIOS reports that the size of memory associated with HDM
NUMA node is zero.

— The OS device driver is responsible for setting Memory_Active after memory
initialization is complete. Any subsequent accesses to the HDM memory are
decoded and routed to the local memory by the device.

— Availability of memory is signaled to the OS via capacity add flow.

CXL.io resource needs are discovered as part of PCIe enumeration. PCIe Root Complex
registers including Downstream Port registers are appropriately configured to decode
these resources. CXL Downstream Port and Upstream Port requires MMIO resources.

BIOS programs the memory base and limit registers in the downstream port to decode
CXL Endpoint MMIO BARs, CXL Downstream Port MMIO BARs, CXL Upstream Port MMIO
BARs.

If an accelerator supports CXL.mem and Mem_HwInit_Mode=0, system BIOS will
unconditionally bind the accelerator to the appropriate UEFI driver by calling Start()
function

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 173
Revision 1.0

8.8.4 Software View of CXL.cache

Legacy OS or legacy PCIe bus driver is not made aware of CXL.cache capability. The
device driver is aware of this CXL.cache capability and manages the CXL cache. As
shown in the table below, software cannot assume that lines in device cache that map
to HDM will be flushed by CPU cache flush instructions. Software must use device
specific mechanism to flush these lines.

8.9 Accelerators with Multiple Flex Bus Links

8.9.1 Single CPU Topology

Table 66. Interaction Between CPU Cache Flush Instructions and CXL.cache

Lines held in CPU cache Lines held in device cache

Lines mapped to CPU attached
memory

Behavior specified in Intel
Software Developers Manual
(SDM)

Behavior specified in Intel
Software Developers Manual
(SDM)

Lines mapped to device attached
memory (HDM)

Behavior specified in Intel
Software Developers Manual
(SDM)

Implementation specific.

Figure 100. One CPU connected to one accelerator via two Flex Bus links

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 174
Revision 1.0

In this configuration, BIOS shall report two PCI root bridges to the Operating system,
one that hosts the left Device 0, Function 0 and the second one that hosts the Device 0,
function 0 on the right. Both Device 0, function 0 instances implement Flex Bus DVSEC
and a Device Serial Number PCIe Extended Capability. A vendor ID and serial number
match indicates that the two links are connected to a single accelerator and this
enables BIOS to perform certain optimizations.

In some cases, the accelerator may expose a single accelerator function that is
managed by the accelerator device driver, whereas the other Device 0/function 0
represents a dummy device. In this configuration, application software submits the
work to the single accelerator device instance. However, the accelerator hardware is
free to use both links for traffic and snoops as long as the programming model is not
violated.

The BIOS maps the HDM into system address space using the following rules.

Table 67. Memory Decode rules in presence of one CPU/two Flex Bus links

Left D0, F0
Mem_Capable

Left D0, F0
Mem_Size

Right D0, F0
Mem_ Capable

Right D0, F0
Mem_Size BIOS requirements

0 NA 0 NA No HDM

1 M 0 NA
Range of size M decoded by Left Flex Bus
link. Right Flex Bus link does not receive
CXL.mem traffic.

0 NA 1 N
Range of size N decoded by Right Flex Bus
link. Left Flex Bus link does not receive
CXL.mem traffic.

1 M 1 N
Two ranges set up, Range of size M decoded
by Left Flex Bus link, Range of size N decoded
by right Flex Bus link

1 M 1 0
Single range of size M. CXL.mem traffic is
interleaved across two links at a cache line
granularity

1 0 1 N
Single range of size N. CXL.mem traffic is
interleaved across two links at a cache line
granularity

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 175
Revision 1.0

8.9.2 Multiple CPU Topology

In this configuration, BIOS shall report two PCI root bridges to the Operating system,
one that hosts the left Device 0, Function 0 and the second one that host the Device 0,
function 0 on the right. Both Device 0, function 0 instances implement Flex Bus DVSEC
and a Device Serial Number PCIe Extended Capability. A vendor ID and serial number
match indicates that the two links are connected to a single accelerator and this
enables BIOS to perform certain optimizations.

In some cases, the accelerator may choose to expose a single accelerator function that
is managed by the accelerator device driver and handles all work requests. This may be
necessary if the accelerator framework or applications do not support distributing work
across multiple accelerator instances. Even in this case, both links should spawn a legal
PCIe root bridge hierarchy with at least one PCIe function. However, the accelerator
hardware is free to use both links for traffic and snoops as long as the programming
model is not violated. To minimize the snoop penalty, the accelerator needs to be able
to distinguish between the system memory range decoded by CPU 1 versus CPU 2. The
device driver can obtain this information via ACPI SRAT table and communicate it to the
accelerator using device specific mechanisms.

The BIOS maps the HDM into system address space using the following rules. Unlike
the single CPU case, the BIOS shall never interleave the memory range at a cache line
granularity across the two Flex Bus links.

Figure 101. Two CPU connected to one accelerator via two Flex Bus links

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 176
Revision 1.0

8.10 Software view of HDM
HDM is exposed to OS/VMM as normal memory. However, HDM likely has different
performance/latency attributes compared to host attached memory. Therefore, a
system with CXL.mem devices can be considered as a heterogeneous memory system.

ACPI HMAT table was introduced for such systems and can report memory latency and
bandwidth characteristics associated with different memory ranges. ACPI Specification
version 6.2 carries the definition of revision 1 of HMAT. As of August 2018, ACPI WG
has decided to deprecate revision 1 of HMAT table because it had a number of
shortcomings. As a result, the subsequent discussion refers to revision 2 of HMAT
table.In addition, ACPI has introduced a new type of Affinity structure called Generic
Affinity (GI) Structure. GI structure is useful for describing execution engines such as
accelerators that are not processors. Existing software ignores GI entries in SRAT, but
newer software can take advantage of it. As a result, CXL.mem accelerators will result
in two entries in SRAT - One GI entry to represent the accelerator cores and one
memory entry to represent the attached HDM. GI entry is especially useful when
describing CXL.cache accelerator. Previous to introduction of GI, CXL.cache accelerator
could not be described as a separate entity in SRAT/HMAT and had to be combined with
the attached CPU. With this specification change, CXL.cache accelerator can be
described as a separate proximity domain. _PXM method can be used to associate the
proximity domain associated with the PCI device . Since Legacy OSs do not understand
GI, BIOS is required to return the processor domain that is most closely associated with
the IO device when running such an OS. ASL code can use bit 17 of Platform-Wide
_OSC Capabilities DWORD 2 to detect whether the OS supports GI or not.

BIOS must construct and report HMAT table to OS in systems with CXL.mem devices
and CXL.cache devices. Since system BIOS is not aware of HDM properties, that
information must come from the UEFI driver for the CXL device in the format of HMAT
Fragment Table. The format of this table is described below.

BIOS combines the information it has about the host and CXL connectivity with the
HMAT Fragment Tables during construction of HMAT tables.

8.10.1 Accelerator HMAT Fragment table format

The fragment table is published by the accelerator UEFI driver and contains one or
more memory range entries. These entries, when combined together, must cover the
entire HDM range defined by CXL DVSEV base and limit registers.

Each memory range entry contains five fields:
• Memory base in system address space.

Table 68. Memory Decode rules in presence of two CPU/two Flex Bus links

Left D0, F0
Mem_Capable

Left D0, F0
Mem_Size

Right D0, F0
Mem_ Capable

Right D0, F0
Mem_Size BIOS requirements

0 NA 0 NA No HDM

1 M 0 NA Range of size M decoded by Left Flex Bus
link. Right Flex Bus link does not receive
CXL.mem traffic.1 M 1 0

0 NA 1 N Range of size N decoded by Right Flex Bus
link. Left Flex Bus link does not receive
CXL.mem traffic.1 0 1 N

1 M 1 N
Two ranges set up, Range of size M decoded
by Left Flex Bus link, Range of size N
decoded by right Flex Bus link

Reset, Initialization, Configuration and Manageability

 Compute Express Link Specification
March 2019 177
Revision 1.0

• Memory size -
• Memory Type – Represents whether the memory is available for host use or

reserved (may be dedicated for accelerator local use).
• Local Memory Latency – follows HMAT convention
• Local Bandwidth – Follows HMAT convention

8.11 Manageability Model for CXL Devices Matches PCIe
Manageability is the set of capabilities that a managed entity exposes to a management
entity. In the context of CXL, CXL device is the managed entity. These capabilities are
generally classified in sensors and effectors. Performance counter is an example of a
sensor, whereas ability to update the IA device firmware is an example of an effector.
Sensors and effectors can either be accessed in-band, i.e., by OS/VMM resident
software or out of band, i.e., by firmware running on a management controller that is
OS independent.

In band software can access CXL device's manageability capabilities by issuing PCIe
configuration read/write or MMIO read/write transactions. These accesses are generally
mediated by CXL device driver. This is consistent with how PCIe cards are managed.

Out of band manageability in S0 state can leverage MCTP over PCI express
infrastructure. This assumes CXL.io path will decode and forward MCTP over PCIe VDMs
in both directions. Flex Bus slot definition includes two SMBUS pins (clock and data).
The SMBUS path can be used for out of band manageability in Sx state or link down
case. This is consistent with PCIe. The exact set of sensors and effectors exposed by
the CXL card over SMBUS interface or PCIe are outside the scope of this specification.
These can either be found in class specific specifications such as NVMe-MI specification.

§ §

Power Management

 Compute Express Link Specification
March 2019 178
Revision 1.0

9.0 Power Management

9.1 Statement of Requirements
All CXL implementations are required to support the Physical Layer Power management
as defined in this chapter. CXL Power management is divided into protocol specific Link
Power management and CXL Physical layer power management. The Arb&Mux layer is
also responsible for managing protocol specific Link Power Management between the
Protocols on both sides of the link. The Arb&Mux co-ordinates the Power Managed
states between Multiple Protocols on both sides of the links, consolidates the Power
states and drives the Physical Layer Power Management.

9.2 Policy based Runtime Control - Idle Power - Protocol Flow

9.2.1 General

For CXL connected devices, there is a desire to optimize power management of the
whole system, with the device included.

As such, a hierarchical power management architecture is proposed, where the discrete
device is viewed as a single autonomous entity, with thermal and power management
executed locally, but in coordination with the processor socket. State transitions are
coordinated with the processor die using Vendor Defined Messages over CXL. The
coordination between primary power management controller and the device is best
accomplished via PM2IP and IP2PM messages that are encoded as VDMs.

Since native support of PCIe is also required, support of more simplified protocols is
also possible. The following table highlights the required and recommended handling
method for Idle transitions.

Notes:
1. All CXL profiles support VDMs and use end-end (PM - PM controller) sequences where possible
2. PM2IP: VDM carrying messages associated with different Reset/PM flows

9.2.2 Package-Level Idle (C-state) Entry and Exit Coordination

At a high level, a discrete CXL device, that is coherent with the processor, is treated like
another processor socket. Expectation is that there is coordination and agreement
between the processor and discrete device before the platform can enter idle power

Table 69. Runtime-Control - CXL Versus PCIe Control Methodologies

Case PCIe CXL1

Pkg-C Entry/Exit

Devices that do not share coherency with
CPU can work with the PCIe profile:
1. LTR-notifications from Device;
2. Allow-L1 signaling from CPU on Pkg_C
entry

Optimized handshake protocol, for all non-PCIe CXL
profiles
1. LTR-notifications from Device;
2. PMreq/Rsp (VDM) signaling between CPU and device
on Pkg_C entry and exit

Power Management

 Compute Express Link Specification
March 2019 179
Revision 1.0

state. Neither device nor processor can enter a low power state individually as long as
its memory resources are needed by the other die. As an example, in a case where the
device may contain shared High-BW memory (HBM) on it, while the processor controls
the system's DDR, if the device wants to be able to go into a low power state, it must
take into account the processor's need for accessing the HBM memory. Likewise, if
processor wants to go into a low power state, it must take into account, among other
things, the need for the device to access DDR. These requirements are encapsulated in
the LTR requirements that are provided by entities that need QOS for access to
memory. In this case, we would have a notion of LTR for DDR access and LTR for HBM
access. We would expect the device to inform the processor about its LTR wrt DDR, and
processor to inform the device about its LTR wrt HBM

Managing latency requirements can be done in two methods.
• CXL devices that do not share coherency with CPU (either a shared coherent

memory or a coherent cache), can notify the processor on changes in its latency
tolerance via the PMReq() and PMRsp() messages. When appropriate latency is
supported and processor execution has stopped, the processor will enter an Idle
state and proceed to transition the Link to L1 (see Link-Layer section, Section 9.4,
“Compute Express Link Power Management” on page 184).

• CXL devices that include a coherent cache or memory device are required to
coordinate their state transitions using the CXL optimized VDM based protocol,
which includes the ResetPrep(), PMReq(), PMRsp() and PMGo() messages, to
prevent loss of memory coherency.

Power Management

 Compute Express Link Specification
March 2019 180
Revision 1.0

9.2.3 PkgC Entry flows

Figure 102. PkgC Entry Flows

A device (or the processor) when wishing to enter a higher-latency Idle state, in which
CPU is not active, will issue a PMReq() with EA field set to '0' and LTR field marking the
memory access tolerance of the entity.

If Idle state is allowed, the peer entity will respond with a matching PMRsp() message,
with the negotiated allowable latency tolerance LTR. This flow is specifically designed to
support caching agents on the devices, by indicating the compute agents have stopped
using the coherent space or are planning to restart it (EA = 0/1 respectively). Both
entities can independently enter an Idle state without coordination, as long as the
shared resources remain accessible.

EA (execution allowed) is an indication from the device that informs the recipient that
the compute resources are no longer accessing coherent memory space, and other
active entities in the system can potentially cache their writes into coherent space
without the need for sending snoops into the processor and devices. This enables
reduction of snoops being sent into these agents which extends the residency in idle
power state. When a processor or device is expected to resume normal operation, it
must communicate this intent by sending an EA=1 indication, so that any entities that
were caching writes locally can flush out their writes to memory before processor/
devices are allowed to resume execution. This is required to ensure that memory
coherency is not compromised.

Power Management

 Compute Express Link Specification
March 2019 181
Revision 1.0

For a full package C entry, both entities need to negotiate as to the depth/latency
tolerance, by responding with a PMRsp() message with the agreeable latency tolerance.
Once the master power mgmt. agent has coordinated LTR across all the agents in the
system, it will send a PMGo() with the proper Latency field set, indicating local idle
power actions can be taken subject to the communicated latency tolerance value.

In case of a transition into deep-idle states (client systems mostly), device will initiate a
CXL transition into L2.

9.2.4 PkgC Exit Flows

Memory-Access Required

Link state during Idle may be in one of the select L1.x states or even in an L2, during
Deep-Idle (as depicted here). If in an L2 state, a side-band wake-up signal will be used
to wake the CPU up. If in L1, in-band wake signaling will be used to transition the link
back to L0. For more, see Section 9.4, “Compute Express Link Power Management” on
page 184.

Once CXL is out of L2, signaling can be used to transfer the device into a Package-C2
state, in which shared resources are available across CXL.

Since device only needs access to the shared system memory in this case (no CPU
processing), no PMGo() message will be used. The device will utilize the PMReq() to
indicate a no-execution (EA=0) low-latency QoS requirement state request to the
processor.

Processor will bring the shared resources out of Idle and acknowledge with a PMRsp()
to indicate low-latency QoS has been achieved.

Figure 103. PkgC Exit Flows - Triggered by device access to system memory

Power Management

 Compute Express Link Specification
March 2019 182
Revision 1.0

Execution Required - Device processing element/accelerator initiated:

Link state during Idle may be in one of the select L1.x states or even in an L2, during
Deep-Idle (as depicted here). If in an L2 state, a side-band wake-up signal will be used
to wake the CPU up. If in L1, in-band wake signaling will be used to transition the link
back to L0. For more, see Section 9.4, “Compute Express Link Power Management” on
page 184.

Once CXL is out of L2, in-band signaling can be used to transfer the device into a
Package-C2 state, in which shared resources are available across CXL.

Typically the PMGo with latency 0 is only sent when an agent is starting execution and
reports EA=1 via a PMReq message to the master PM agent. Any agent wishing to
resume execution must send an EA=1 PMReq, and must wait for a PMRsp w/ EA=1
before exiting the low power state on its compute resources. A device receiving PMGo
with latency 0 must ensure that further low power actions that might impede access to
memory are not taken.

Assuming the device's processing engine/accelerator requires coherent access to
memory, it will then request execution-state from the processors (PMReq(EA=1), and
receives the acknowledgment from the processor (PMRsp(EA=1)).

Figure 104. PkgC Exit Flows - Execution Required by Device

Power Management

 Compute Express Link Specification
March 2019 183
Revision 1.0

The processor, detecting traffic/wake (EA=1) from the device, will issue a
PMGo(Latentcy=0) notification, ensuring all memory subsystem sharing devices/
sockets are in an accessible state, and that coherent access is now a platform
requirement.

Execution Required - Processor Initiated:

In the case where the processor, or one of the peer devices connected to it requires to
have coherent low latency access to system memory, the processor will initiate a Link
L1/2 exit towards the device.

Once the link is running, the processor will follow with a PMGo(Latency=0), indicating
some device in the platform requires low latency access to coherent memory and
resources. A device receiving PMG0 with latency 0 must ensure that further low power
actions that might impede access to memory are not taken.

If the device also requires access to coherent caches (e.g. a processing element that
shares caches needs to start execution), the device must notify the processor that it
too needs execution (EA=1), to ensure that when the processor's EA=1 phase
completes, the devices' execution requirement state are still taken into account.

Figure 105. PkgC Exit Flows - Execution Required by Processor

Power Management

 Compute Express Link Specification
March 2019 184
Revision 1.0

9.3 Compute Express Link Physical Layer Power Management
States
CXL Physical layer supports L1 and L2 states as defined in PCI Express Base
Specification. CXL Physical layer does not support L0s. The entry and exit conditions
from these states are as defined in the PCI Express Base Specification. The notable
difference is that for CXL Physical Layer the entry and exit from Physical Layer Power
Managed states is directed by CXL ARB&MUX.

9.4 Compute Express Link Power Management
CXL Link Power Management supports Active Link State Power Management and L1 and
L2 are the only 2 Power states supported. The PM Entry/Exit process is further divided
into 3 phases as described below.

9.4.1 Compute Express Link PM Entry Phase 1

The CXL PM Entry phase 1 involves protocol specific mechanisms to negotiate entry into
PM state. Once the conditions to enter PM state as defined in the protocol section are
satisfied, transaction layer is ready for Phase 2 entry and directs the ARB&MUX to enter
PM State.

Power Management

 Compute Express Link Specification
March 2019 185
Revision 1.0

9.4.2 Compute Express Link PM Entry Phase 2

When directed by the transaction layer to enter PM, the Phase 2 entry process is
initiated by ARB&MUX. The second Phase of PM entry consists of bringing the ARB&MUX
interface of both sides of the Link into PM state. This entry into PM state is coordinated
using ALMPs as described below. The Phase 2 entry is independently managed for each
protocol. The Physical Layer continues to be in L0 until all the transaction layers enter
Phase 2 state.

Figure 106. CXL Link PM Phase 1

Power Management

 Compute Express Link Specification
March 2019 186
Revision 1.0

Rules for Phase 2 entry into ASPM are as follows:
1. The Phase 2 Entry into PM State is always initiated by ARB&MUX on the

Downstream Component.
2. When directed by the transaction layer the ARB&MUX on the Downstream

Component must transmit ALMP request to enter Virtual LSM state PM.
3. When the ARB&MUX on the Upstream Component is directed to enter L1 and

receives ALMP request from the Downstream Component, the Upstream
Component responds with an ALMP response indicating acceptance of entry into L1
state. The transaction layer on the Upstream Component must also be notified that
the ARB&MUX port has accepted entry into PM state.

4. The Upstream Component ARB&MUX port does not respond with an ALMP response
if not directed by protocol on the Upstream Component to enter PM.

5. When the ARB&MUX on the Downstream Component is directed to enter L1 and
receives ALMP response from the Upstream Component, it notifies acceptance of
entry into PM state to the transaction layer on the Downstream component.

Figure 107. CXL Link PM Phase 2

Power Management

 Compute Express Link Specification
March 2019 187
Revision 1.0

6. The Downstream Component ARB&MUX port must wait for <TBD> amount of time
for a response from the Upstream Component. If no response is received from the
Downstream component then the Upstream Component is permitted to abort the
PM entry or retry entry into PM again.

7. L2 entry is an exception to rule number 6. Protocol must ensure that Upstream
component is directed to enter L2 before setting up the conditions for the
Downstream Component to request entry into L2 state. This ensures that L2 abort
or L2 Retry conditions do not exist.

8. Transaction layer on either side of the Link is permitted to direct exit from L1 state
once the ARB&MUX interface reaches L1 state.

9.4.3 Compute Express Link PM Entry Phase 3

The third Phase is a conditional phase of PM entry and is executed only when all
Protocol interfaces of ARB&MUX have entered the same virtual PM state. The phase
consists of bringing the Tx lanes to electrical Idle and is always initiated by the
Downstream Component.

Power Management

 Compute Express Link Specification
March 2019 188
Revision 1.0

Figure 108. CXL PM Phase 3

Figure 109. Electrical Idle

Power Management

 Compute Express Link Specification
March 2019 189
Revision 1.0

9.4.4 Compute Express Link Exit from ASPM L1

Components on either end of the Link may initiate exit from the L1 Link State. The
ASMP L1 exit depends on whether the exit is from phase 3 or phase 2 of L1. The exit is
hierarchical and phase 3 must exit before phase 2.

Phase 3 exit is initiated when directed by the ARB&Mux from either end of the link. The
ARB&MUX layer initiates exit from Phase 3 when there is an exit requested on any one
of its primary protocol interfaces. The phase 3 ASPM L1 exit is the same as exit from L1
state as defined in PCI Express Base Specification. The steps are followed until the
LTSSM reaches L0 state. Protocol level information is not permitted to be exchanged
until the virtual LSM on the ARB&MUX interface has exited L1 state.

Phase 2 exit involves bringing the protocol interface at the ARB&MUX out of L1 state
independently. The transaction layer directs the ARB&MUX state to exit virtual LSM
state. If the PHY is in Phase 3 L1 then the ARB&MUX waits for the PHY LTSSM to reach
L0 state. Once the PHY is in L0 state, the following rules apply.

The ARB&MUX on the protocol side that is triggering an exit transmits a ALMP
requesting entry into Active state.

Any ARB&MUX interface that receives the ALMP request to enter Active State must
transmit an ALMP acknowledge response on behalf of that interface. The ALMP
acknowledge response is an indication that the corresponding protocol side is ready to
process received packets.

Any ARB&MUX interface that receives the ALMP request to enter Active State must also
transmit an ALMP Active State request on behalf of that interface if not sent already.

Protocol level transmission must be permitted by the ARB&MUX when an ALMP request
to enter Active state was transmitted and an Active State response was received. This
guarantees that the receiving protocol is ready to process packets.

9.5 CXL.io Link Power Management
CXL.io Link Power Management is as defined in PCIe Express Base Specification with
the following notable differences.

• Only ASPM L1 is supported
• L0s state is not supported
• PCI-PM is not supported

9.5.1 CXL.io ASPM Phase L1 Entry

• The first phase consists of completing the ASPM L1 negotiation rules as defined in
the PCI Express Base Specification with the following notable exceptions for the
rules in case of acceptance of ASPM L1 Entry. All rules upto the completion of the
ASPM L1 handshake are maintained, however the process of bringing the Transmit
Lanes into Electrical Idle state are divided into 2 additional phases described above.
Phase 1 flow is described below.

Power Management

 Compute Express Link Specification
March 2019 190
Revision 1.0

9.5.2 CXL.io ASPM Phase 2 Entry

The following conditions apply for Phase 2 Entry for CXL.io

Phase 2: The second Phase of L1 entry consists of bringing the CXL.io ARB&MUX
interface of both sides of the Link into L1 state. This entry into L1 state is coordinated
using ALMPs as described below.

Rules for Phase 2 entry into ASPM L1.
1. CXL.io on the Upstream Component must direct the ARB&MUX to be ready to enter

L1 before returning the PM_Request_Ack DLLPs as shown above in Phase 1.
2. When the PM_Request_Ack DLLPs are successfully received by the CXL.io on the

Downstream Component, it must direct the ARB&MUX on the Downstream
Component to transmit ALMP request to enter Virtual LSM state L1.

3. When the ARB&MUX on the Upstream Component is directed to enter L1 and
receives ALMP request from the Downstream Component, it notifies the CXL.io that
the interface has received ALMP request to enter L1 state and has entered L1 state

4. When the Upstream Component is notified entry into virtual LSM it ceases sending
PM_Request_Ack DLLP

5. When the ARB&MUX on the Downstream Component is directed to enter L1 and
receives ALMP request from the Upstream Component, it notifies the CXL.io that
the interface has entered L1 state

9.5.3 CXL.io ASPM Phase 3 Entry

The Phase 3 entry is dependent on the virtual LSM state of multiple protocols and is
managed by the ARB&MUX as described in the section on Phase 3 entry above.

Figure 110. ASPM L1 Entry Phase 1

Power Management

 Compute Express Link Specification
March 2019 191
Revision 1.0

9.6 CXL.cache + CXL.mem Link Power Management
CXL.cache and CXL.mem support Active Link State Power Management only, unlike
CXL.io there is no PM Entry handshake defined between the Link Layers. Each side
independently requests to the ARB&MUX to enter L1. The ARB&MUX layers on both
sides of the Link co-ordinate the entry into PM state using ALMPs. CXL.cache +
CXL.mem Link Power Management follows the process for PM entry and exit as defined
in section Compute Express Link Power Management.

§ §

Security

 Compute Express Link Specification
March 2019 192
Revision 1.0

10.0 Security

Security requirements are product specific and thus outside of the scope of this
specification.

§ §

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 193
Revision 1.0

11.0 Reliability, Availability and Serviceability

CXL RAS is defined to work with Client Hosts as well as Servers. Therefore RAS features
intended for server use must also consider the impact for client space or provide means
for disabling.

11.1 Supported RAS Features
The table below lists the RAS features supported by CXL and their applicability to
CXL.io vs. CXL.cache and CXL.mem.

11.2 CXL Error Handling
As shown in Figure 111, CXL can simultaneously carry three protocols: CXL.io,
CXL.cache and CXL.mem. CXL.io carries PCIe like semantics and must be supported by
all CXL endpoints. All RAS capabilities must address all of these protocols and usages.
For details of CXL architecture and all protocols, please refer to the other sections in
this document.

Figure 111 below is an illustration of CXL and the focus areas for CXL RAS. Namely,
Link & protocol RAS, which applies to the Host-CXL communication mechanism and
Device RAS which applies exclusively to the device itself. All errors are reflected to the
OS via PCIe AER mechanisms as “Correctable Internal Error” (CIE) or “Uncorrectable
Internal Error” (UIE). Errors may also be reflected to Platform SW if so configured.

Table 70. CXL RAS Features

Feature CXL.io CXL.cache and CXL.mem

Link CRC and Retry Required Required

Link Retraining and Recovery Required Required

eDPC Not Supported N/A

ECRC Optional N/A

Hot-Plug Not Supported Not Supported

Corrected Error Count Information Requied Required

Data Poisoning Required Required

Viral N/A Required

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 194
Revision 1.0

Referring to Figure 111, the Host/Root Complex is located on the north side and
contains all the usual error handling mechanisms such as MCA, PCIe AER, RCEC and
other platform level error reporting and handling mechanisms. CXL.mem and
CXL.cache errors encountered by the device are communicated to the CPU across
CXL.io. to be logged in PCIe AER registers. The following sections will focus on the link
layer and transaction layer error handling mechanisms as well as CXL device error
handling.

11.2.1 Protocol and Link Layer Error Reporting

Protocol and Link errors are detected and communicated to the Host where they can be
exposed and handled. There are no error pins connecting CXL devices to the Host.
Errors are communicated between the Host and the CXL device via messages over
CXL.io.

11.2.1.1 CXL Downstream Port (DP) Detected Errors.

Errors detected by the CXL are escalated and reported via the Root Complex error
reporting mechanisms as UIE/CIE.

Figure 111. CXL Error Handling

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 195
Revision 1.0

To handle the error, the OS would inspect the RCEC AER and handle as appropriate. For
Platform SW Error handling, the SW would interrogate the Platform specific error logs.

11.2.2 CXL Device Error Handling

CXL connected devices are required to support data poisoning and will use the Data
Poisoning mechanism to communicate uncorrectable data errors whenever possible (all
flavors of CXL.cache, CXL.mem, CXL.io support poison communication).

The Host may send poisoned data to the CXL connected device. How the CXL device
responds to Poison is device specific but must follow PCIe guidelines. The device must
consciously make a decision about what to make of poisoned data. In some cases,
simply ignoring poisoned data may lead to SDC (Silent Data Corruption).

Any device errors that cannot be handled with Poison indication will be signaled by the
device back to the Host as messages since there are no error pins. It’s highly desirable
to have the same nomenclature and reporting scheme. To that end, Table 71 below
shows a summary of the error types, their mappings and error reporting guidelines.

In keeping with the standard error logging requirements, all error logs must be sticky
across warm reset.

11.2.2.1 CXL.mem and CXL.cache Errors

If demand accesses to memory result in an uncorrected data error, the CXL device
must return data with poison. The requester (processor core or a peer device) is
responsible for dealing with the poison indication. The CXL device should not signal an
uncorrected error along with the poison. If the processor core consumes the poison,
the error will be logged and signaled by the Host.

Table 71. Device Specific Error Reporting and Nomenclature Guidelines

Error Severity Definition/
Example

Signaling Options
(SW picks one) Logging Host HW/FW/SW

Response

Corrected
Memory single bit
error corrected via
ECC

MSI to Device driver Device specific
registers

Device specific flow
in Device driver

Uncorrected
Recoverable

UC errors that device
can recover from,
with minimal or no
SW help (e.g., error
localized to single
computation)

MSI to driver Device specific
registers

Device specific flow
in driver (e.g.,
discard results of
suspect computation)

Uncorrected
NonFatal

Equivalent to PCIe
UCNF, contained by
the device (e.g.,
write failed, memory
error that affects
many computations)

MSI to Device Driver Device specific
registers

Device specific (e.g.,
reset affected device)
flow in driver. Driver
can escalate through
SW.

PCIe AER Internal
Error

Device specific
registers + PCIe AER

System FW/SW AER
flow, ends in reset.

Uncorrected
Fatal

Equivalent to PCIe
UCF, poses
containment risk
(e.g., command/
parity error, pUnit
ROM error)

PCIe AER Internal
error Device specific

registers + PCIe AER

System FW/SW AER
flow, ends in reset.

AER + Viral System FW/SW Viral
flow

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 196
Revision 1.0

It is recommended that the CXL device keep track of any poison data it receives while it
stores the data in its local storage including memory. It can optionally notify the device
driver of such an event. If the CXL device cannot keep track of poison, Device logic
shall ensure containment by signaling an uncorrected non-fatal error (AER_NONFATAL).

Any non-demand uncorrected errors (e.g., memory scrub logic in CXL device memory
controller) will be signaled to the device driver via device MSI. Any corrected memory
errors will be signaled to the device driver via device MSI. The driver may choose to
deallocate memory pages with repeated errors. Neither the platform firmware nor the
OS directly deal with these errors.

11.2.2.2 CXL Device Error Handling Flows

Device errors maybe sourced from a Root Port (RP) or Endpoint (RCiEP). For the
purpose of differentiation RCiEP sourced errors shall use tag value of zero whereas RP
sourced errors shall use tag of non-zero value. Errors detected by the CXL device shall
be communicated to the host via PCIe Error messages across the CXL.io link. Non-
function errors are reported to the Host via PCIe error messages where they can be
escalated to the platform.

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 197
Revision 1.0

11.3 CXL Link Down Handling
There is no expectation of a graceful Link Down. A Link Down condition will most likely
result in a timeout in the Host since it is quite possible that there are transactions
headed to or from the CXL device that will end up not making progress.

11.4 CXL Viral Handling
CXL link and CXL devices are expected to be Viral compliant. Viral is an error
containment mechanism. A platform must choose to enable Viral at boot time. The Host
implementation of Viral allows the platform to opt-in by writing into a register that
enables the Viral feature. Similarly, a BIOS accessible control register on the device will
be required to enable Viral behavior (both receiving and sending) on the device. Viral
support capability and control for enabling are reflected in DVSEC.

When enabled, a Viral indication is generated whenever an Uncorrected_Fatal error is
detected. Viral is not a replacement for existing error reporting mechanisms. Instead,
its purpose is an additional error containment mechanism. The detector of the error is
responsible for reporting the error through AER and generating a Viral indication. Any
entity that is capable of reporting Uncorrected_Fatal errors must also be capable of
generating a Viral indication.

CXL.mem and CXL.cache come enabled with the Viral concept. Viral needs to be
communicated in both directions. When Viral is enabled and the Host runs into a Viral
condition, it will communicate Viral across CXL.mem and/or CXL.cache. The Viral
indication must beat any data that may have been affected by the error (general Viral
requirement).

The device’s reaction to Viral is going to be device specific but the device is expected to
take error containment actions consistent with Viral requirements. Chiefly, it must
prevent bad data from being committed to permanent storage. Meaning, if the device is
connected to any permanent storage or an external interface that may be connected to
permanent storage, then the device is required to self-isolate in order to be Viral
compliant. This means that the device has to take containment actions without
depending on help from the Host.

The self-isolation actions taken by the device must not prevent the Host from making
forward progress. This is important for diagnostic purposes as well as error pollution
(e.g., withholding data for read transactions to device memory may cause cascading
timeouts in the Hosts). Therefore, on Viral detection, in addition to the containment
requirements, the device must:

• Drop writes to permanent storage on the device or connected to the device.
• Keep responding to snoops
• Complete pending writes to Host memory
• Complete all reads and writes to Device volatile memory.

When the device itself runs into a Viral condition and Viral is enabled, it must:
• Set the Viral Status bit to indicate that a Viral condition has occurred
• Self-Isolate – i.e., take steps to contain the error within the device as per Viral

requirements (i.e., ensure that Viral signaling beats any data affected by the error)
• Communicate the Viral condition back up CXL.{Mem,Cache} towards the Host.

— In reaction to this the CXL Downstream Port will trigger Viral on the host.
• Report the error as UIE via AER.

Reliability, Availability and Serviceability

 Compute Express Link Specification
March 2019 198
Revision 1.0

Viral Control and Status bits are defined in DVSEC (please refer to Section 7.0, “Control
and Status Registers” on page 142 for details).

When a CXL.AL device goes into Viral, the upstream CXL.io shall perform the following:
• Master Abort Upstream Requests
• Completer Abort Upstream Completions
• Signal Failed Response for Downstream Completions

11.5 CXL Error Injection
The major aim of error injection mechanisms is to allow system validation and system
FW/SW development …etc. the means to create error scenarios and error handling
flows. To this end, CXL UP and DP are recommended to implement the following error
injection hooks to a specified address (where applicable):

• One type of CXL.io UC error (optional - similar to PCIe).
— CXL.io is always present in any CXL connection

• One type of CXL.mem UC error (if applicable)
• One type of CXL.cache UC error (if applicable)
• Link Correctable errors

— Transient mode and
— Persistent mode

• Returning Poison on a read to a specified address (CXL.mem only)

CXL devices themselves might need error injection mechanisms for developing device
driver flows. But error injection into CXL devices is device specific and out of the scope
of this document.

Platform Architecture

 Compute Express Link Specification
March 2019 199
Revision 1.0

12.0 Platform Architecture

12.1 Flex Bus connector definition

12.1.1 Connector type

The current direction for x16 Flex Bus connector is to be the same as the standard x16
PCIe gen5 connector as specified in PCI_Express_CEM_r5.0 specification. This
connector is expected to scale up to 32GTs transfer rate being supported on the Flex
Bus interface.

12.1.2 Pin count

The x16 Flex Bus connector will have the same pin count and pin assignment as the
standard x16 PCIe gen4 connector as in PCI_Express_CEM_r5.0 specification. The
expectation is that all supported Flex Bus cards will not require additional signals (main
band, sideband, power, etc.) beyond what is provided by the standard x16 PCIe gen5
connector.

Note: The standard x16 PCIe gen4 connector does have 5 "RSVD" pins, but customers might
have used these pins for some unique implementations on their platform and Flex Bus
cards should not plan to use these "RSVD" pins.

The figure below shows the standard x16 PCIe connector pin list for reference purpose.

Platform Architecture

 Compute Express Link Specification
March 2019 200
Revision 1.0

Figure 112. Standard x16 PCIe Connector Pin List - For Reference Purpose Only

Platform Architecture

 Compute Express Link Specification
March 2019 201
Revision 1.0

12.2 Topologies
Since Flex Bus utilizes PCIe Gen4/5 electrical interface and PCIe gen5 connector, its
topologies will closely follow those of PCIe gen4/5 as well. Similar PCIe gen4/5 platform
enablers (lower loss PCB material, re-timer, etc.) are also applicable for Flex Bus in
order to achieve more challenging platform topologies (longer length, multiple
connectors).

Note: Flex Bus re-timer is essentially the same as PCIe gen4/5 retimer with the exception
that it requires a much lower latency on the retimer. Refer to Section 6.6, “Retimers
and Low Latency Mode” on page 140 and Section 1.4.2, “Flex Bus” on page 14 for more
details on Flex Bus re-timer support and requirements.

12.3 Protocol detection
Since Flex Bus or PCIe card can be installed in the same PCIe slot, platform will need to
be able to detect which card type is being installed in order to configure the link to the
correct protocol. Current direction on protocol detection (Flex Bus vs. PCIe) is "in-band"
methodology during link training. Refer to section Section 6.3.1, “PCIe vs Flex Bus.CXL
mode selection” on page 136 for more detail on detection mechanism during booting
up.

12.4 AIC form factor
Flex Bus card form factor will follow the standard PCI_Express_CEM_r5.0 specification.

12.5 AIC Power Envelope
Flex bus card power envelope will follow the standard PCI_Express_CEM_r4.0
specification, which supports up to 300W.

The x16 PCIe conn only supports up to 75W card. Auxiliary power connector will be
required to support >75W Flex Bus card (per CEM spec).

12.6 Flexbus Slot Auxiliary Power
For system with S3 power state support (e.g. Workstation platform), Flexbus slot is
required to support up to 375mA on the “+3.3Aux” pin. This is to accommodate CXL
cards with HDM. If a CXL card requires more than 375mA in S3 state, platform will
needs to supply additional aux power to the Add-card (platform implementation
dependent).

§ §

Performance Considerations

 Compute Express Link Specification
March 2019 202
Revision 1.0

13.0 Performance Considerations

Compute Express Link (CXL) provides a low-latency, high-bandwidth path for an
accelerator to access the system. Performance on CXL is dependent on a variety of
factors. The following table captures the key performance attributes of CXL.

In general, it is expected that the downstream-facing port and the upstream-facing
ports are rate-matched. However, if the implementations are not rate-matched, it
would require the faster of the implementations to limit the rate of its protocol traffic to
match the slower (including bursts), whenever there is no explicit flow-control loop.

CXL allows accelerators/devices to coherently access host memory and allows memory
attached to an accelerator/device to be mapped into the system address map and
accessed directly by the host as writeback memory. In order to support this, it supports
a Bias-based Coherency model as described in section Section 2.2.1. There are specific
performance considerations to take into account for selecting the method for mode
management. This is addressed in section Section 2.2.1.3.

In order to ensure system performance is not negatively impacted, the maximum
latency for a snoop-miss is 40ns from H2D snoop request seen on the CXL pins to a
D2H snoop-response back at the CXL pins. Similarly, the maximum latency for a H2D
Wr_Pull response to D2H Data response is 20ns.

§ §

Characteristic
Compute Express

Link
via Flex Bus (if

Gen 4)

Compute Express Link
via Flex Bus (if Gen 5)

Width 16 Lanes 16 Lanes

Link Speed 16 GT/s 32 GT/s

Total BW per link1

1. Achieved bandwidth depends on protocol and payload size. Expect
60-90% efficiency on CXL.cache and CXL.mem. Efficiency similar to
PCIe on CXL.io.

32 GB/s 64 GB/s

Taxonomy

 Compute Express Link Specification
March 2019 203
Revision 1.0

Appendix A Taxonomy

A.1 Accelerator Usage Taxonomy

Table 72. Accelerator Usage Taxonomy (Sheet 1 of 2)

Accelerator Type Description Challenges &
Opportunities CXL Support

Producer-Consumer
Accelerators that don’t
execute against
“Memory”
w/o special needs

Work on data streams or
large contiguous data
objects.
Little interaction with host
Standard P/C ordering
model works well.

Efficient work submission
Efficient exchange of meta-
data (flow control)

Basic PCIe + AiA
CXL.io

Producer-Consumer Plus
Accelerators that don’t
execute against
“Memory”
w/ special needs

Same as above, but…
P/C ordering model doesn’t
work well
Need special data operations
such as atomics

Device Coherency can be
used to implement varied
ordering models and special
data operations

CXL.cache on CXL w/
baseline snoop filter
support
CXL.io
CXL.cache

SW Assisted SVM
Memory
Accelerators that
execute against
“Memory” w/ software
supportable data
management

Local memory is often
needed for BW or latency
predictability
Little interaction with the
host
Data management easily
implemented in SW, e.g.,
few and simple data buffers

Host SW should be able to
interact directly with
accelerator memory (SVM,
Google)
Reduce copies, replication,
pinning
Optimizing coherency
impact on performance is a
challenge
SW can provide best
optimization of coherency
impact

CXL Bias model with
SW managed bias.
CXL.io
CXL.cache
CXL.mem

Taxonomy

 Compute Express Link Specification
March 2019 204
Revision 1.0

A.2 Bias Model Flow Example – From CPU
• Start with pages in Device Bias

— Pages guaranteed not to be cached in host cache hierarchy
• Software allocates pages from device memory

— Software pushes operands to allocated pages from peer CPU core:
— Software uses, e.g., OCL API to flip operand pages to Host Bias
— No data copies or cache flushes required
— Host CPUs generate operand data in target pages – data ends up in some

arbitrary location in the host cache hierarchy.
• Device uses operands to generate results

— Software uses, e.g., OCL API to flip operand pages back to Device Bias
— API call causes work descriptor submission to device; descriptor asks the

device to flush operand pages from host cache.
— Cache flush executed using CLFLUSH on CXL CXL.cache protocol.
— When Device Bias flip is compete, software submits work to the accelerator
— Accelerator executes with no host related coherency overhead
— Accelerator dumps data to results pages.

Autonomous SVM
Memory
Accelerators that
execute against
“Memory” where
software supported data
management is
impractical

Local memory often needed
for BW or latency
predictability
Interaction with the host is
common
Data movement very
difficult to manage in SW,
e.g., sparse data structures,
pointer based data
structures, etc.

Host SW should be able to
interact directly with
accelerator memory (SVM,
Google)
Reduce copies, replication,
pinning
Optimizing coherency
impact on performance is a
challenge
Cannot count on SW for
bias management

CXL Bias model with
HW managed bias.
CXL.io
CXL.cache
CXL.mem

Giant Cache
Accelerators that
execute against
“Memory”
where local memory and
caching is required.

Local memory needed for
BW or latency predictability
Data footprint is larger than
local memory
Interaction with the host is
common
Data must be cycled through
accelerator memory in small
blocks
Data movement very
difficult to manage in SW

Accelerator memory needs
to work like a cache (not
SVM/system memory)
Ideally cache misses
detected in HW, but cache
replacements can be
managed in SW

CXL.cache on CXL w/
“Enhanced
Directory” snoop
filter support
CXL.io
CXL.cache

Disaggregated Memory
Controller
Typically for memory
controllers with remote
persistent memory,
which may be in 2LM or
App Direct mode

PCIe semantics needed for
device enumeration, driver
support and device
management
Most operational flows rely
on being able to
communicate directly with a
Home Device or Near
Memory Controller on the
Host

Device needs high BW and
low latency path from
memory controller to Home
Device in the CPU

CXL.mem on CXL
CXL.io
CXL.mem

Table 72. Accelerator Usage Taxonomy (Sheet 2 of 2)

Accelerator Type Description Challenges &
Opportunities CXL Support

Taxonomy

 Compute Express Link Specification
March 2019 205
Revision 1.0

• Software pulls results from the allocated pages:
— Software uses, e.g., OCL API to flip results pages to Host Bias.
— This action causes some bias state to be changed but does not cause any

coherency or cache flushing actions.
— Host CPUs can access, cache and share results data as needed.

• Software releases the allocated pages.

A.3 CPU Support for Bias Modes
There are two envisaged models of support that the CPU would provide for Bias Modes.
These are described below.

A.3.1 Remote Snoop Filter

• Remote socket owned lines belonging to accelerator attached memory are tracked
by a Remote SF located in the C-CHA. Remote SF does not track lines belonging to
Host memory. The above obviates the need for directory in device memory. Please
note this is only possible in host bias mode since in device bias mode, local/remote
sockets can’t cache lines belonging to device memory.

• Local socket owned lines belonging to accelerator attached memory will be tracked
by local SF in the C-CHA. Please note this is only possible in host bias mode since in
device bias mode, local/remote sockets can’t cache lines belonging to device
memory.

• Device owned lines belonging to accelerator attached memory (in host bias mode)
will NOT be tracked by local SF in the C-CHA. These will be tracked by the Device
Coherency Engine (DCOH) using a device specific mechanism (device SF). In
device bias mode, SF in the C-CHA does not even see the requests.

• Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

13.0.1 Directory in Accelerator Attached Memory

• Remote socket owned lines belonging to device memory are tracked by directory in
device memory. C-CHA may choose to do OSB for some cases.

• Local socket owned lines belonging to device memory will be tracked by local SF in
the C-CHA. For access by device, local socket owned lines belonging to device
memory will also update directory.

• Device owned lines belonging to device memory will NOT be tracked by local SF in
the C-CHA. These will be tracked by the Device Coherency Engine (DCOH) using a
device specific mechanism (device SF).

• Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

• Bias Table is located in stolen memory in the device memory and is accessed
through the DCOH.

A.4 Giant Cache Model
For problems whose datasets exceed the size of device attached memory, the memory
attached to the accelerator really wants to be a cache, not memory:

• Typically the full dataset will live in processor attached memory.

Taxonomy

 Compute Express Link Specification
March 2019 206
Revision 1.0

• Subsets of this larger data set are cycled through the accelerator memory as the
computation proceeds.

• For such use cases, caching is the right solution:
— Accelerator memory is not mapped into system address map – data set is built

up in host memory
— Single page table entry per page in data set – no page table manipulation as

pages are cycled through accelerator memory
— Copies of data can be created under driver and/or hardware control with no OS

intervention

Critical issues with a Giant Cache:
• Cache is too big for tracking in the Host on-die snoop filter
• Snoop latency for a Giant Cache is likely to be much higher than standard on-die

cache snoop latency.

CXL recommended solution:
• Implements snoop filter in processor’s coherency directory (stored in DRAM ECC

bits) which essentially becomes a highly scalable snoop filter
• Minimizes impact to processor operations unrelated to accelerators
• Allows accelerator to access data over CXL.cache as a caching Device.
• Provides support on CXL.cache to allow an accelerator to explicitly request

directory snoop filtering for giant cache.
• Processor infrastructure differentiates between low latency and high latency

requester types
• Support for simultaneous use of a small, low latency cache, associated with the on-

die snoop filter, will come for free.

§ §

Figure 113. Profile D - Giant Cache Model

	Intel® Flex Bus and Intel Accelerator Link
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Audience
	1.2 Terminology / Acronyms
	1.3 Reference Documents
	1.4 Motivation and Overview
	1.4.1 Compute Express Link
	1.4.2 Flex Bus

	1.5 Flex Bus Link Features
	1.6 Flex Bus Layering Overview
	1.7 Document Scope

	2.0 Compute Express Link System Architecture
	2.1 Type 1 CXL Device
	2.2 Type 2 Device
	2.2.1 Bias Based Coherency Model
	2.2.1.1 Host Bias
	2.2.1.2 Device Bias
	2.2.1.3 Mode Management
	2.2.1.4 Software Assisted Bias Mode Management
	2.2.1.5 HW Autonomous Bias Mode Management

	2.3 Type 3

	3.0 Compute Express Link Transaction Layer
	3.1 CXL.io
	3.1.1 PCIe Root Complex Integrated Endpoint
	3.1.2 CXL Power Management VDM Format
	3.1.2.1 Credit and PM Initialization

	3.1.3 Optional PCIe Features Required for CXL
	3.1.4 Error Propagation
	3.1.5 Memory Type Indication on ATS
	3.1.6 Deferrable Writes

	3.2 CXL.cache
	3.2.1 Overview
	3.2.2 CXL.cache Channel Description
	3.2.2.1 Channel Ordering
	3.2.2.2 Channel Crediting

	3.2.3 CXL.cache Wire Description
	3.2.3.1 D2H Request
	3.2.3.2 D2H Response
	3.2.3.3 D2H Data
	3.2.3.4 H2D Request
	3.2.3.5 H2D Response
	3.2.3.6 H2D Data

	3.2.4 CXL.cache Transaction Description
	3.2.4.1 Device to Host Requests
	3.2.4.2 Device to Host Response
	3.2.4.3 Host to Device Requests
	3.2.4.4 Host to Device Response

	3.2.5 Cacheability Details and Request Restrictions
	3.2.5.1 GO-M Responses
	3.2.5.2 Device/Host Snoop-GO-Data Assumptions
	3.2.5.3 Device/Host Snoop/WritePull Assumptions
	3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts
	3.2.5.5 Multiple Snoops to the same address
	3.2.5.6 Multiple Reads to the same cache line
	3.2.5.7 Multiple Evicts to the same cache line
	3.2.5.8 Multiple WriteRequests to the same cache line
	3.2.5.9 Normal Global Observation (GO)
	3.2.5.10 Relaxed Global Observation (FastGO)
	3.2.5.11 Evict to Device-Attached Memory
	3.2.5.12 Memory Type on CXL.cache
	3.2.5.13 General Assumptions

	3.3 CXL.mem
	3.3.1 Introduction
	3.3.2 M2S Request (Req)
	3.3.3 M2S Request with Data (RwD)
	3.3.4 S2M No Data Response (NDR)
	3.3.5 S2M Data Response (DRS)
	3.3.6 Forward Progress & Ordering Rules

	3.4 Transaction Flows to Device-Attached Memory
	3.4.1 Flows for Type 1 and Type 2 Devices
	3.4.1.1 Notes and Assumptions
	3.4.1.2 Requests from Host
	3.4.1.3 Requests from Device in Host & Device Bias

	3.5 Flows for Type 3 Devices

	4.0 Compute Express Link Link Layers
	4.1 CXL.io Link Layer
	4.2 CXL.mem and CXL.cache Common Link Layer
	4.2.1 Introduction
	4.2.2 High-Level CXL.cache/CXL.mem Flit Overview
	4.2.3 Slot Format Definition
	4.2.3.1 RSVD Fields
	4.2.3.2 H2D & M2S Formats
	4.2.3.3 D2H & S2M Formats

	4.2.4 Link Layer Registers
	4.2.5 Flit Packing Rules
	4.2.6 Link Layer Control Flit
	4.2.7 Link Layer Initialization
	4.2.8 CXL.cache/CXL.mem Link Layer Retry
	4.2.8.1 LLR Variables
	4.2.8.2 ACK Forcing
	4.2.8.3 LLR Control Flits
	4.2.8.4 RETRY Framing Sequences
	4.2.8.5 LLR State Machines
	4.2.8.6 Interaction with Physical Layer Reset or Reinitialization
	4.2.8.7 CXL.cache/CXL.mem Flit CRC

	4.2.9 CXL.cache-Side Poison and Viral
	4.2.9.1 Viral

	5.0 Compute Express Link ARB/MUX
	5.1 Virtual LSM States
	5.1.1 Rules for Virtual LSM State Transitions Across Link
	5.1.1.1 General Rules
	5.1.1.2 State Request ALMP
	5.1.1.3 State Status ALMP

	5.2 ARB/MUX Link Management Packets
	5.2.1 ARB/MUX Bypass Feature

	5.3 Arbitration and Data Multiplexing/Demultiplexing

	6.0 Flex Bus Physical Layer
	6.1 Overview
	6.2 Flex Bus.CXL Framing and Packet Layout
	6.2.1 Ordered Set Blocks and Data Blocks
	6.2.2 Protocol ID[15:0]
	6.2.3 x16 Packet Layout
	6.2.4 x8 Packet Layout
	6.2.5 x4 Packet Layout
	6.2.6 x2 Packet Layout
	6.2.7 x1 Packet Layout
	6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary
	6.2.9 Framing Errors

	6.3 Link Training
	6.3.1 PCIe vs Flex Bus.CXL mode selection
	6.3.1.1 Hardware Autonomous Mode Negotiation
	6.3.1.2 Flex Bus.CXL Negotiation with Maximum Supported Link Speed of 8GT/s or 16GT/s
	6.3.1.3 Link Width Degradation and Speed Downgrade

	6.4 Recovery.Idle and Config.Idle Transitions to L0
	6.5 L1 Abort Scenario
	6.6 Retimers and Low Latency Mode
	6.6.1 Control SKP Ordered Set Frequency and L1/Recovery Entry

	7.0 Control and Status Registers
	7.1 Configuration Space Registers
	7.1.1 PCI Express Designated Vendor-Specific Extended Capability (DVSEC) for CXL Device
	7.1.1.1 DVSEC Flex Bus Capability (Offset 0Ah)
	7.1.1.2 DVSEC Flex Bus Control (Offset 0Ch)
	7.1.1.3 DVSEC Flex Bus Status (Offset 0Eh)
	7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)
	7.1.1.5 DVSEC Flex Bus Status2 (Offset 12h)
	7.1.1.6 DVSEC Flex Bus Lock (Offset 14h)
	7.1.1.7 DVSEC Flex Bus Range registers

	7.2 Memory Mapped Registers
	7.2.1 Upstream and Downstream Port Registers
	7.2.1.1 CXL Downstream Port RCRB
	7.2.1.2 CXL Upstream Port RCRB
	7.2.1.3 Upstream and Downstream Flex Bus Port DVSEC

	7.2.2 CXL Upstream and Downstream Port Subsystem Component Registers
	7.2.2.1 CXL.cache and CXL.mem Registers
	7.2.2.2 CXL ARB/MUX Registers

	7.3 CXL RCRB Base Register

	8.0 Reset, Initialization, Configuration and Manageability
	8.1 Compute Express Link Boot and Reset Overview
	8.1.1 General
	8.1.2 Comparing CXL and PCIe behavior

	8.2 Compute Express Link Device Boot Flow
	8.3 Compute Express Link Device Warm Reset Entry Flow
	8.4 Compute Express Link Device Cold Reset Entry Flow
	8.5 Compute Express Link Device Sleep State Entry Flow
	8.6 Function Level Reset (FLR)
	8.7 Hotplug
	8.8 Software Enumeration
	8.8.1 Software Model
	8.8.2 PCIe software view of the hierarchy
	8.8.2.1 BIOS View
	8.8.2.2 OS View

	8.8.3 BIOS Enumeration Flow
	8.8.4 Software View of CXL.cache

	8.9 Accelerators with Multiple Flex Bus Links
	8.9.1 Single CPU Topology
	8.9.2 Multiple CPU Topology

	8.10 Software view of HDM
	8.10.1 Accelerator HMAT Fragment table format

	8.11 Manageability Model for CXL Devices Matches PCIe

	9.0 Power Management
	9.1 Statement of Requirements
	9.2 Policy based Runtime Control - Idle Power - Protocol Flow
	9.2.1 General
	9.2.2 Package-Level Idle (C-state) Entry and Exit Coordination
	9.2.3 PkgC Entry flows
	9.2.4 PkgC Exit Flows

	9.3 Compute Express Link Physical Layer Power Management States
	9.4 Compute Express Link Power Management
	9.4.1 Compute Express Link PM Entry Phase 1
	9.4.2 Compute Express Link PM Entry Phase 2
	9.4.3 Compute Express Link PM Entry Phase 3
	9.4.4 Compute Express Link Exit from ASPM L1

	9.5 CXL.io Link Power Management
	9.5.1 CXL.io ASPM Phase L1 Entry
	9.5.2 CXL.io ASPM Phase 2 Entry
	9.5.3 CXL.io ASPM Phase 3 Entry

	9.6 CXL.cache + CXL.mem Link Power Management

	10.0 Security
	11.0 Reliability, Availability and Serviceability
	11.1 Supported RAS Features
	11.2 CXL Error Handling
	11.2.1 Protocol and Link Layer Error Reporting
	11.2.1.1 CXL Downstream Port (DP) Detected Errors.

	11.2.2 CXL Device Error Handling
	11.2.2.1 CXL.mem and CXL.cache Errors
	11.2.2.2 CXL Device Error Handling Flows

	11.3 CXL Link Down Handling
	11.4 CXL Viral Handling
	11.5 CXL Error Injection

	12.0 Platform Architecture
	12.1 Flex Bus connector definition
	12.1.1 Connector type
	12.1.2 Pin count

	12.2 Topologies
	12.3 Protocol detection
	12.4 AIC form factor
	12.5 AIC Power Envelope
	12.6 Flexbus Slot Auxiliary Power

	13.0 Performance Considerations
	Appendix A Taxonomy
	A.1 Accelerator Usage Taxonomy
	A.2 Bias Model Flow Example – From CPU
	A.3 CPU Support for Bias Modes
	13.0.1 Directory in Accelerator Attached Memory

	A.4 Giant Cache Model

