CXAL

Compute
E <press
Link

Revision: 1.1

LEGAL NOTICE FOR THIS PUBLICLY-AVAILABLE SPECIFICATION FROM COMPUTE EXPRESS LINK CONSORTIUM, INC.

© 2019-2020 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.

This CXL Specification Revision 1.1 (this “CXL Specification” or this “document”) is owned by and is proprietary to Compute Express Link
Consortium, Inc., a Delaware nonprofit corporation (sometimes referred to as “CXL” or the “CXL Consortium” or the “Company”) and/or its
successors and assigns.

E TO USERS WHO ARE MEMBERS OF THE CXL CONSORTIUM:

you are a Member of the CXL Consortium (sometimes referred to as a “CXL _Member™), and even if you have received this publicly-available version
this CXL Specification after agreeing to CXL Consortium’s Evaluation Copy Agreement (a copy of which is available
ps://www.computeexpresslink.org/download-the-specification, each such CXL Member must also be in compliance with all of the following CXL
ium documents, policies and/or procedures (collectively, the “CXL Governing Documents”) in order for such CXL Member’s use and/or
implementation of this CXL Specification to receive and enjoy all of the rights, benefits, privileges and protections of CXL Consortium membership: (i)
onsortium’s Intellectual Property Policy; (ii) CXL Consortium’s Bylaws; (iii) any and all other CXL Consortium policies and procedures; and (iv)
Member’s Participation Agreement.

ICE TO NON-MEMBERS OF THE CXL CONSORTIUM:

If youlare not a CXL Member and have received this publicly-available version of this CXL Specification, your use of this document is subject to your
compliance with, and is limited by, all of the terms and conditions of the CXL Consortium’s Evaluation Copy Agreement (a copy of which is available at
-//www.computeexpresslink.org/download-the-specification).

In addition to the restrictions set forth in the CXL Consortium’s Evaluation Copy Agreement, any references or citations to this document must
ledge the Compute Express Link Consortium, Inc.’s sole and exclusive copyright ownership of this CXL Specification. The proper copyright
on or reference is as follows: “© 2019-2020 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.” When making
ny such citation or reference to this document you are not permitted to revise, alter, modify, make any derivatives of, or otherwise amend the referenced
of this document in any way without the prior express written permission of the Compute Express Link Consortium, Inc.

Exceptifor the limited rights explicitly given to a non-CXL Member pursuant to the explicit provisions of the CXL Consortium’s Evaluation Copy
Agreement which governs the publicly-available version of this CXL Specification, nothing contained in this CXL Specification shall be deemed as
graating (either expressly or impliedly) to any party that is not a CXL Member: (ii) any kind of license to implement or use this CXL Specification or any
portion or content described or contained therein, or any kind of license in or to any other intellectual property owned or controlled by the CXL
INEERSEF:ium, including without limitation any trademarks of the CXL Consortium.; or (ii) any benefits and/or rights as a CXL Member under any CXL
Governing Documents.

LEGAL DISCLAIMERS FOR ALL PARTIES:

OCUMENT AND ALL SPECIFICATIONS AND/OR OTHER CONTENT PROVIDED HEREIN IS PROVIDED ON AN “AS IS” BASIS. TO
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, COMPUTE EXPRESS LINK CONSORTIUM, INC. (ALONG WITH THE
TRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER

E SS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
HANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NON-INFRINGEMENT.

In the\@vent this CXL Specification makes any references (including without limitation any incorporation by reference) to another standard’s setting

organjzation’s or any other party’s (“Third Party”) content or work, including without limitation any specifications or standards of any such Third Party
d Party Specification”), you are hereby notified that your use or implementation of any Third Party Specification: (i) is not governed by any of

the CXl. Governing Documents; (ii) may require your use of a Third Party’s patents, copyrights or other intellectual property rights, which in turn may

requir@lyou to independently obtain a license or other consent from that Third Party in order to have full rights to implement or use that Third Party

ification; and/or (iii) may be governed by the intellectual property policy or other policies or procedures of the Third Party which owns the Third

Party Specification. Any trademarks or service marks of any Third Party which may be referenced in this CXL Specification is owned by the respective
iof such marks.

CE TO ALL PARTIES REGARDING THE PCI-SIG UNIQUE VALUE PROVIDED IN THIS CXL SPECIFICATION:

TICE TO USERS: THE UNIQUE VALUE THAT IS PROVIDED IN THIS CXL SPECIFICATION IS FOR USE IN VENDOR DEFINED
M GE FIELDS, DESIGNATED VENDOR SPECIFIC EXTENDED CAPABILITIES, AND ALTERNATE PROTOCOL NEGOTIATION ONLY
MAY NOT BE USED IN ANY OTHER MANNER, AND A USER OF THE UNIQUE VALUE MAY NOT USE THE UNIQUE VALUE IN A
MANNER THAT (A) ALTERS, MODIFIES, HARMS OR DAMAGES THE TECHNICAL FUNCTIONING, SAFETY OR SECURITY OF THE PCI-
G EGOSYSTEM OR ANY PORTION THEREOF, OR (B) COULD OR WOULD REASONABLY BE DETERMINED TO ALTER, MODIFY,
RM OR DAMAGE THE TECHNICAL FUNCTIONING, SAFETY OR SECURITY OF THE PCI-SIG ECOSYSTEM OR ANY PORTION
OF (FOR PURPOSES OF THIS NOTICE, “PCI-SIG ECOSYSTEM” MEANS THE PCI-SIG SPECIFICATIONS, MEMBERS OF PCI-SIG
HEIR ASSOCIATED PRODUCTS AND SERVICES THAT INCORPORATE ALL OR A PORTION OF A PCI-SIG SPECIFICATION AND
EXTENDS TO THOSE PRODUCTS AND SERVICES INTERFACING WITH PCI-SIG MEMBER PRODUCTS AND SERVICES).

C6124.0003 BN/FCURCI 39895222v1

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

EVALUATION COPY

Contents

Contents
1.0 Introduction 14
1.1 Audience 14
1.2 Terminology / Acronyms 14
1.3 Reference Documents 15
1.4 Motivation and Overview 15
1.4.1 Compute Express Link 15
1.4.2 Flex Bus 16
1.5 Flex Bus Link Features 18
1.6 Flex Bus Layering Overview 19
1.7 Document Scope 21
2.0 Compute Express Link System Architecture 23
2.1 Type 1 CXL Device 23
2.2 Type 2 Device 24
2.21 Bias Based Coherency Model 25
2.2.1.1 Host Bias 25
2.2.1.2 Device Bias 26
2.2.1.3 Mode Management 26
2214 Software Assisted Bias Mode Management 27
2.2.1.5 HW Autonomous Bias Mode Management 27
2.3 Type 3 28
3.0 Compute Express Link Transaction Layer 29
3.1 CXL.io 29
3.1.1 PCle Root Complex Integrated Endpoint 30
3.1.2 CXL Power Management VDM Format 31
3.1.2.1 Credit and PM Initialization 33
3.1.3 Optional PCle Features Required for CXL 35
3.1.4 Error Propagation 35
3.1.5 Memory Type Indication on ATS 35
3.1.6 Deferrable Writes 36
3.2 CXL.cache 36
3.2.1 Overview 36
3.2.2 CXL.cache Channel Description 37
3.2.2.1 Channel Ordering 37
3.2.2.2 Channel Crediting 38
3.23 CXL.cache Wire Description 38
3.2.3.1 D2H Request 39
3.2.3.2 D2H Response 39
3.233 D2H Data 40
3.234 H2D Request 40
3.235 H2D Response 41
3.2.3.6 H2D Data 41
3.24 CXL.cache Transaction Description 42
3.2.4.1 Device to Host Requests 42
3.24.2 Device to Host Response 53
3.243 Host to Device Requests 54
3.244 Host to Device Response 56
3.2.5 Cacheability Details and Request Restrictions 57
3.2.5.1 GO-M Responses 57
3.25.2 Device/Host Snoop-GO-Data Assumptions 57
3.253 Device/Host Snoop/WritePull Assumptions 58
3.254 Snoop Responses and Data Transfer on CXL.cache Evicts 58
Compute Express Link Specification
June 2019 3

Revision 1.1

Contents

3.3.1
3.3.2
3.33
3.34
3.35
3.3.6

3.4.1

»
(=]

421
422
4.2.3

42.4
425
4.2.6
4.2.7
428

4.2.9

5.1.1

EVALUATION COPY

5.2.1

June 2019
Revision 1.1

3.3 CXL.mem
Introduction
M2S Request (Req)
M2S Request with Data (RwD)
S2M No Data Response (NDR)
S2M Data Response (DRS)
Forward Progress & Ordering Rules
3.4 Transaction Flows to Device-Attached Memory
Flows for Type 1 and Type 2 Devices

3.2.55
3.2.5.6
3.25.7
3.2.5.8
3.2.59
3.2.5.10
3.2.5.11
3.2.5.12
3.2.5.13

Multiple Snoops to the same address

Multiple Reads to the same cache line

Multiple Evicts to the same cache line

Multiple WriteRequests to the same cache line
Normal Global Observation (GO)

Relaxed Global Observation (FastGO)

Evict to Device-Attached Memory

Memory Type on CXL.cache
General Assumptions

3.4.1.1
3.4.1.2
3.41.3

3.5 Flows for Type 3 Devices

Compute Express Link Link Layers
41 CXL.io Link Layer
4.2 CXL.mem and CXL.cache Common Link Layer
Introduction
High-Level CXL.cache/CXL.mem Flit Overview
Slot Format Definition

4.2.3.1
4.2.3.2
4.2.3.3

Link Layer Registers
Flit Packing Rules
Link Layer Control Flit
Link Layer Initialization
CXL.cache/CXL.mem Link Layer Retry

4.2.8.1
4.2.8.2
4.2.8.3
4284
4.2.8.5
4.2.8.6
4.2.8.7

CXL.cache-Side Poison and Viral

4.2.9.1

5.0 Compute Express Link ARB/MUX
5.1 Virtual LSM States
Rules for Virtual LSM State Transitions Across Link

5.1.1.1
5.1.1.2
5113
51.1.4
5.1.1.5
5.1.1.6

5.2 ARB/MUX Link Management Packets
ARB/MUX Bypass Feature

Notes and Assumptions

Requests from Host

Requests from Device in Host & Device Bias

RSVD Fields

H2D & M2S Formats

D2H & S2M Formats

LLR Variables

ACK Forcing

LLR Control Flits

RETRY Framing Sequences

LLR State Machines

Interaction with Physical Layer Reset or Reinitialization

CXL.cache/CXL.mem Flit CRC

Viral

General Rules

Entry to Active Exchange Protocol

Status Synchronization Protocol

State Request ALMP
State Status ALMP

Unexpected ALMPs

100
100
102
105
106
106
108
109
110
110
114
115
116
116

117
118
120
120
120
121
121
123
126
126
127

Compute Express Link Specification

p

EVALUATION COPY

Contents

5.3

o
(=}

6.1
6.2

6.3

6.4
6.5
6.6
6.7

N
(<]

7.1

7.2

7.3

®
o

8.1

8.2
8.3
8.4
8.5
8.6
8.7

June 2019

Revision 1.1

Flex Bus Physical Layer

Control and Status Registers...

Reset, Initialization, Configuration and Manageability

Arbitration and Data Multiplexing/Demultiplexing

Overview

Flex Bus.CXL Framing and Packet Layout

6.2.1 Ordered Set Blocks and Data Blocks

6.2.2 Protocol ID[15:0]
6.2.3 x16 Packet Layout

6.2.4 x8 Packet Layout

6.2.5 x4 Packet Layout

6.2.6 x2 Packet Layout

6.2.7 x1 Packet Layout
6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary

6.2.9 Framing Errors

Link Training
6.3.1 PCle vs Flex Bus.CXL mode selection

6.3.1.1 Hardware Autonomous Mode Negotiation

6.3.1.2 Flex Bus.CXL Negotiation with Maximum Supported Link
Speed of 8GT/s or 16GT/s

6.3.1.3 Link Width Degradation and Speed Downgrade

Recovery.ldle and Config.Idle Transitions to LO
L1 Abort Scenario

Exit from Recovery

Retimers and Low Latency Mode

6.7.1 Control SKP Ordered Set Frequency and L1/Recovery Entry

Configuration Space Registers
7.1.1 PCl Express Designated Vendor-Specific Extended
Capability (DVSEC) for CXL Device

7.1.1.1 DVSEC Flex Bus Capability (Offset 0Ah)

7.1.1.2 DVSEC Flex Bus Control (Offset OCh)

7.1.1.3 DVSEC Flex Bus Status (Offset OEh)........

7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)
7.1.15 DVSEC Flex Bus Status2 (Offset 12h)

7.1.1.6 DVSEC Flex Bus Lock (Offset 14h)

7.1.1.7 DVSEC Flex Bus Range registers

Memory Mapped Registers
7.2.1 Upstream and Downstream Port Registers

7.2.1.1 CXL Downstream Port RCRB

7.2.1.2 CXL Upstream Port RCRB

7.21.3 Upstream and Downstream Flex Bus Port DVSEC

7.2.2 CXL Upstream and Downstream Port Subsystem Component Registers

7.2.2.1 CXL.cache and CXL.mem Registers

7.2.2.2 CXL ARB/MUX Registers

CXL RCRB Base Register

Compute Express Link Boot and Reset Overview

8.1.1 General

8.1.2 Comparing CXL and PCle behavior

Compute Express Link Device Boot Flow

Compute Express Link Device Warm Reset Entry Flow
Compute Express Link Device Cold Reset Entry Flow

Compute Express Link Device Sleep State Entry Flow

Function Level Reset (FLR)
Hotplug

128

129
129
130
130
131
132
133
136
136
136
136
137
138
138
139

142
143
143
143
143
143
144

145
145

145
147
147
148
148
148
148
148
150
152
152
154
156
158
158
166
167

168
168
168
168
169
169
170
171
172
172

Compute Express Link Specification

5

EVALUATION COPY

Contents

8.8 Software Enumeration 173
8.8.1 Software Model 173

8.8.2 PCle Software View of the Hierarchy 173

8.8.2.1 BIOS View 174

8.8.2.2 OS View 174

8.83 BIOS Enumeration Flow 174

8.8.4 Software View of CXL.cache 176

8.9 Accelerators with Multiple Flex Bus Links 177
8.9.1 Single CPU Topology 177

8.9.2 Multiple CPU Topology 178

8.10 Software View of HDM 179
8.10.1 Accelerator HMAT Fragment Table Format 180

8.11 Manageability Model for CXL Devices Matches PCle 180
9.0 Power Management 181
9.1 Statement of Requirements 181
9.2 Policy based Runtime Control - Idle Power - Protocol Flow 181
9.2.1 General 181

9.2.2 Package-Level Idle (C-state) Entry and Exit Coordination 181

9.2.3 PkgC Entry flows 183

9.24 PkgC Exit Flows 184

9.3 Compute Express Link Physical Layer Power Management States 185
9.4 Compute Express Link Power Management 186
9.4.1 Compute Express Link PM Entry Phase 1 186

9.4.2 Compute Express Link PM Entry Phase 2 186

9.4.3 Compute Express Link PM Entry Phase 3 188

9.4.4 Compute Express Link Exit from ASPM L1 190

9.5 CXL.io Link Power Management 190
9.5.1 CXL.io ASPM Phase L1 Entry 190

9.5.2 CXL.io ASPM Phase 2 Entry 191

953 CXL.io ASPM Phase 3 Entry 191

9.6 CXL.cache + CXL.mem Link Power Management 192
10.0 Security 193
11.0 Reliability, Availability and Serviceability 194
11.1 Supported RAS Features 194
11.2 CXL Error Handling 194
11.2.1 Protocol and Link Layer Error Reporting 195
11.2.1.1 CXL Downstream Port (DP) Detected Errors 195

11.2.2 CXL Device Error Handling 196
11.2.2.1 CXL.mem and CXL.cache Errors 196

11.2.2.2 CXL Device Error Handling Flows 197

11.3 CXL Link Down Handling 198
11.4 CXL Viral Handling 198
11.5 CXL Error Injection 199
12.0 Platform Architecture 200
12.1 Flex Bus connector definition 200
12.1.1 Connector Type 200

12.1.2 Pin Count 200

12.2 Topologies 202
12.3 Protocol Detection 202
12.4 AIC Form Factor 202
12.5 AIC Power Envelope 202
12.6 Flexbus Slot Auxiliary Power 202
Compute Express Link Specification

June 2019 6

Revision 1.1

EVALUATION COPY

Contents

13.0 Performance Considerations...

14.0 CXL Compliance Testing
14.1 Applicable Devices Under Test (DUTSs)
14.2 Starting Configuration/Topology (Common for All Tests)
14.3 CXL.cache and CXL.io Application Layer/Transaction Layer Testing

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6

14.4 ARB/MUX

14.4.1
14.4.2
14.4.3
14.4.4
14.4.5
14.4.6
14.4.7
14.4.8
14.4.9

14.5 Physical Layer

14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.5.9
14.5.10
14.5.11
14.5.12
14.5.13
14.5.14
14.5.15

14.6 Configuration Register Tests

14.6.1
14.6.2
14.6.3
14.6.4
14.6.5

14.7 Memory Device Tests

14.7.1
14.7.2

June 2019
Revision 1.1

General Testing Overview
Algorithms

Algorithm 1a: Multiple Write Streaming

Algorithm 1b: Multiple Write Streaming with Bogus Writes
Algorithm 2: Producer Consumer Test

Test Descriptions.
14.3.6.1 Application Layer/Transaction Layer Tests

Reset to Active Transition

ARB/MUX Multiplexing (Requires Protocol Analyzer)

Active to L1.x Transition (If Applicable)..

L1.x State Resolution (If Applicable)

Active to L2 Transition

L1 to Active Transition (If Applicable)
Reset Entry

Entry into LO Synchronization (Requires Protocol Analyzer)

ARB/MUX Tests Requiring Injection Capabilities

14.49.1 ARB/MUX Bypass (Requires Protocol Analyzer)

14.49.2 Repeated ALMP Request

14.49.3 PM State Request Rejection (Requires Protocol Analyzer)
14.4.9.4 Unexpected Status ALMP

14.49.5 ALMP Error

14.49.6 Recovery Re-entry

Protocol ID Checks (Requires Protocol Analyzer)

NULL Flit (Requires Protocol Analyzer)..
EDS Token (Requires Protocol Analyzer).....

Correctable Framing Error......

Uncorrectable Framing Error

Unexpected Protocol ID

Sync Header Bypass (Requires Protocol Analyzer) (If Applicable)
Link Speed Advertisement (Requires Protocol Analyzer)

Idle Transition to LO (Requires Protocol Analyzer)

Drift Buffer (If Applicable)

SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If Applicable)
SKP OS Exiting the Data Stream (Requires Protocol Analyzer) (If Applicable)

Link Speed Degradation - CXL Mode

Link Speed Degradation Below 8GT/s

Tests Requiring Injection Capabilities
14.5.15.1 TLP Ends On Flit Boundary (Requires Protocol Analyzer)

14.5.15.2 Failed CXL Mode Link Up

Device Presence.

Flex Bus Device DVSEC Capability Header ..
DVSEC Capability Structure

DVSEC Control Structure........

DVSEC Control Lock

Flex Bus Range 1

Flex Bus Range 2

203

204
204
204
205
205
205
205
206
207
208
208
210
210
211
211
212
212
213
213
213
214
214
214
214
215
215
216
216
216
216
217
217
218
218
219
219
219
220
220
220
221
221
221
221
222
222
222
222
223
224
224
225
225
226

Compute Express Link Specification

7

Contents

14.8 Memory Mapped Registers 227

14.8.1 RCRB MEMBARO location 227

14.9 Reset and Initialization Tests 227

14.9.1 Warm Reset Test 227

14.9.2 Cold Reset Test 227

14.9.3 Sleep State Test 228

14.9.4 Function Level Reset Test 228

14.9.5 Flex Bus Range Setup Time 229

14.9.6 FLR Memory 229

14.10 Reliability, Availability, and Serviceability 230

14.10.1 RAS Configuration 232

14.10.1.1 AER Support 232

14.10.1.2 CXL.io Poison Injection from Device to Host 232

14.10.1.3 CXL.cache Poison Injection 233

1 ’ 14.10.1.4 CXL.cache CRC Injection (Protocol Analyzer Required) 235

14.10.1.5 CXL.mem Poison Injection 236

14.10.1.6 CXL.mem CRC Injection (Protocol Analyzer Required) 236

14.10.1.7 Flow Control Injection 237

14.10.1.8 Unexpected Completion Injection 238

14.10.1.9 Completion Timeout 238

14.11 Device Capability and Test Configuration Control 239

14.11.1 CXL Device Test Capability Advertisement 239

14.11.2 Device Capabilities to Support the Test Algorithms 241

14.11.3 Debug Capabilities in Device 244

O 14.11.3.1 Error Logging 244

14.11.3.2 Event Monitors 245

A Taxonomy 247

[A1 Accelerator Usage Taxonomy 247

A2 Bias Model Flow Example — From CPU 248

A3 CPU Support for Bias Modes 249

A3.1 Remote Snoop Filter 249

14.11.4 Directory in Accelerator Attached Memory 249

< A4 Giant Cache Model... 249
Figures

1 Conceptual Diagram of Accelerator Attached to Processor via CXL 16

2 CPU Flex Bus Port Example 17

3 Flex Bus Usage Model Examples 18

4 Remote Far Memory Usage Model Example 18

5 Conceptual Diagram of Flex Bus Layering 20

6 CXL Device Types 23

7 Type 1 - Device with Cache 24

8 Type 2 Device - Device with Memory 24

9 Type 2 Device - Host Bias 26

10 Type 2 Device - Device Bias 26

11 Type 3 - Memory Expander 28

12 Flex Bus Layers -- CXL.io Transaction Layer Highlighted 30

13 CXL Power Management Messages Packet Format 31

14 Power Management Credits and Initialization 34

15 ATS 64-bit Request with CXL Indication 35

16 ATS Translation Completion Data Entry with CXL indication 36

17 CXL.cache Channels 37

18 CXL.CACNE REAA BENAVION ... cuuieueeesreseerseeseerssessseessseesssesssessssesssessssssssessssesssessssesssassssessssssssessssesasessssssssessssssssessssesssassssesssesssseess 43

19 CXL.cache ReadO Behavior 44

June 2019
Revision 1.1

Compute Express Link Specification
8

EVALUATION COPY

Contents

20 CXL.cache Device to Host Write Behavior 45
21 CXL.cache Wrinv Transaction 46
22 WOWrInv/F with FastGO/ExtCmp 47
23 CXL.cache ReadO-Write Semantics 48
24 CXL.cache Snoop Behavior 55
25 Legend 68
26 Example Cacheable Read from Host 68
27 Example Read for Ownership from Host 69
28 Example Non Cacheable Read from Host 70
29 Example Ownership Request from Host - No Data Required 70
30 EXAMPLE FLUSH FrOM HOST ..ot seeees s esees s sse s s e ss e s s s s s s s nnn 71
31 Example Weakly Ordered Write from Host 71
32 Example Strongly Ordered Write from Host with Invalid Host Caches 72
33 Example Strongly Ordered Write from Host with Valid Caches 72
34 Example Device Read to Device-Attached Memory 73
35 Example Device Write to Device-Attached Memory in Host Bias 74
36 Example Device Write to Device-Attached Memory 75
37 Example Host to Device Bias Flip 76
38 Read from Host 77
39 Write from Host 77
40 Flex Bus Layers -- CXL.io Link Layer Highlighted 79
41 Flex Bus Layers -- CXL.cache + CXL.mem Link Layer Highlighted 81
42 CXL.cache/.mem Protocol Flit Overview 82
43 CXL.cache/.mem All Data Flit Overview 82
44 Example of a Protocol Flit from device to Host 83
45 HO-H2D Req + H2D Resp 87
46 H1 - H2D Data Header + H2D Resp + H2D Resp 88
47 H2-H2D Req + H2D Data Header 88
48 H3 -4 H2D Data Header 89
A9 HA - M2S RWD HEAUENemeeeeeeteermeessssssseessesssessssessseessssssssessses s s s s s s s s n s 89
50 H5-M2SReq 90
51 GO-H2D/M2S Data 90
52 GO - M2S Byte Enable 91
53 G1-4H2DResp 91
54 G2 -H2D Req + H2D Data Header + H2D Resp 92
55 G3 -4 H2D Data Header + H2D Resp 92
56 G4 -M2S Req + H2D Data Header 93
57 G5 -M2S RwD Header + H2D Resp 93
58 HO-D2H Data Header + 2 D2H Resp + S2M NDR 94
59 H1-D2H Req + D2H Data Header 94
60 H2 -4 D2H Data Header + D2H Resp 95
61 H3-S2M DRS Header + S2M NDR 95
62 H4-2S2MNDR 96
63 H5-2S2MDRS 96
64 GO-D2H Data 97
65 GO -D2H/S2M Byte Enable 97
66 G1-D2HReq+ 2 D2H Resp 98
67 G2 -D2H Req + D2H Data Header + D2H Resp 98
68 G3 -4 D2H Data Header 99
69 G4 -S2M DRS Header + 2 S2M NDR 99
70 G5-3S2MNDR 100
71 G6-3S2MDRS 100
72 LLCRD Flit Format (Only Slot 0 is Valid. Others are Reserved) 104
73 Retry Flit Format (Only Slot O is Valid. Others are Reserved) 104
74 Init Flit Format (Only Slot O is Valid. Others are Reserved) 105
Compute Express Link Specification

June 2019 9

Revision 1.1

EVALUATION COPY

Contents

75 Retry Buffer and Related Pointers. 109
76 CXL.cache/mem Replay Diagram 114
77 CRC Data Mask for 527 bit Flit 116
78 Flex Bus Layers -- CXL ARB/MUX Highlighted 117
79 Entry to Active Protocol Exchange 121
80 Status Synchronization 121
81 CXL Entry to Active Flow 122
82 CXL Entry to PM State 123
83 CXL Recovery Exit Flow 124
84 CXL Exit from PM State 125
85 CXL Recovery Error Flow 126
86 ARB/MUX Link Management Packet Format 127
87 Flex Bus Layers -- Physical Layer Highlighted 129
88 Flex Bus x16 Packet Layout 132
89 Flex Bus x16 Protocol Interleaving Example 133
90 Flex Bus x8 Packet Layout 134
91 Flex Bus x8 Protocol Interleaving Example 135
92 Flex Bus x4 Packet Layout 136
93 CXL.io TLP Ending on Flit Boundary Example 137
94 Flex Bus Mode Negotiation During Link Training (Sample Flow) 142
95 PCle DVSEC for Flex Bus Device 146
96 CXL Memory Mapped Register Regions 152
97 CXL Downstream Port RCRB 153
98 CXL Upstream Port RCRB 155
99 PCle DVSEC for Flex Bus Port 156
100 CXL Device Warm Reset Entry Flow 170
101 CXL Device Cold Reset Entry Flow 171
102 CXL Device Sleep State Entry Flow 172
103 PCle Software View 173
104 One CPU Connected to One Accelerator Via Two Flex Bus Links 177
105 Two CPUs Connected to One Accelerator Via Two Flex Bus Links....... 178
106 PkgC Entry Flows 183
107 PkgC Exit Flows - Triggered by device access to system memory 184
108 PkgC Exit Flows - Execution Required by Processor 185
109 CXL Link PM Phase 1 186
110 CXL Link PM Phase 2 187
111 CXL PM Phase 3 189
112 Electrical Idle... 189
113 ASPM L1 Entry Phase 1 191
114 CXL Error Handling 195
115 Standard x16 PCle Connector Pin List - For Reference Purpose Only 201
116 Example Test Topology 204
117 Representation of False Sharing Between Cores (on Host) and CXL Devices 205
118 Flow Chart of Algorithm 1a 206
119 Flow Chart of Algorithm 1b 207
120 Execute Phase for Algorithm 2 208
121 PCle DVSEC for Test Capability: 239
122 Profile D - Giant Cache Model 250
Tables

1 Terminology / Acronyms 14
2 REFErENCE DOCUMENTES ...ouveeerceseesseeeseeseerssessseesssessssess s s s ss s8R R RS RS eEERR e 15
3 CXL Power Management Messages -- Data Payload Fields Definitions 32
4 Optional PCle Features Required For CXL 35
Compute Express Link Specification

June 2019 10

Revision 1.1

EVALUATION COPY

Contents

5 CXL.cache Channel Crediting 38
6 CXL.cache - D2H REQUEST FIELAS ...t iseeseesses et sssesssessssssessss st ssasssssssees 39
7 Non Temporal Encodings 39
8 (CXL.cache - D2H Response Fields 39
9 CXL.cache - D2H Data Header Fields....... 40
10 CXL.cache — H2D Request Fields 40
11 CXL.cache - H2D Response Fields 41
12 RSP_PRE Encodings 41
13 Cache State Encoding for H2D Response 41
14 CXL.cache - H2D Data Header Fields....... 41
15 CXL.cache. - Device to Host Requests 48
16 D2H Request (targeting non-device-attached memory) supported H2D Responses 52
17 D2H Request (Targeting Device-attached Memory) Supported Responses 52
18 D2H Response Encodings....... 53
19 CXL.cache — Mapping of Host to Device Requests & Responses 55
20 H2D Response Opcode Encodings 56
21 M2S Request Fields 61
22 M2S Req Memory Opcodes ... 62
23 Meta Data Field Definition 62
24 MetaO-State Value Definition 63
25 Snoop Type Definition 63
26 M2S Req Usage...... 63
27 M2S RwD Fields 64
28 M2S RwD Memory Opcodes 65
29 M2S RwD Usage 65
30 S2M NDR Fields 65
31 S2M NDR Opcodes 66
32 S2MDRS Fields 66
33 S2M DRS Opcodes 67
34 CXL.cache/CXL.mem Flit Header Definition 83
35 Flit Type Encoding 84
36 Legal values of Sz & BE Fields 84
37 (CXL.cache/CXL.mem Credit Return Encodings 85
38 Slot FOrmMat Field ENCOQING ... ereeeereeeeseseessensssssesseessessssssssssssssessssssesssessssssesssessssssssssssssessssssssassssesssesssessssssssanes 85
39 H2D/M2S Slot Formats 86
40 D2H/S2M Slot Formats 86
41 CXL.cache/CXL.mem Link Layer Control Types 102
42 CXL.cache/CXL.mem Link Layer Control Details 102
43 Control Flits and Their Effect on Sender and Receiver States 110
44 Local Retry State Transitions 112
45 Remote Retry State Transition 114
46 Virtual LSM States Maintained Per Link Layer Interface 118
47 ARB/MUX Multiple Virtual LSM Resolution Table 119
48 ARB/MUX State Transition Table 119
49 ALMP Byte 2 and Byte 3 Encoding 127
50 Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode 130
51 Flex Bus.CXL Protocol IDs....... 131
52 Protocol ID Framing Errors 138
53 Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation 139
54 Additional Information on Symbols 8-9 of Modifed TS1/TS2 Ordered Set 140
55 Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets 140
56 Rules of Enable Low Latency Mode Features 144
57 Register Attributes 145
58 PCl Express DVSEC Register Settings for Flex Bus Device 146
59 CXL Memory Mapped Registers Regions 151
Compute Express Link Specification

June 2019 11

Revision 1.1

EVALUATION COPY

Contents

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

June 2019
Revision 1

CXL Downstream Port Supported PCle Capabilities and Extended Capabilities
CXL Upstream Port Supported PCle Capabilities and Extended Capabilities

PCI Express DVSEC Header Registers Settings for Flex Bus Port
CXL Subsystem Component Register Ranges in MEMBARO

CXL.cache and CXL.mem Architectural Registers

Event Sequencing for Reset and Sx Flows

Interaction Between CPU Cache Flush Instructions and CXL.cache

Memory Decode rules in presence of one CPU/two Flex Bus links
Memory Decode rules in presence of two CPU/two Flex Bus links

Runtime-Control - CXL Versus PCle Control Methodologies

CXL RAS Features

Device Specific Error Reporting and Nomenclature Guidelines

Register 1: CXL.cache/CXL.mem LinkLayerErrorinjection
Register 2: CXL.io LinkLayer Error injection

Register 3: Flex Bus LogPHY Error injections

DVSEC Registers
DVSEC CXL Test Lock (offset 0Ah)

DVSEC CXL Test Capability1 (offset OCh)

Device CXL Test Capability2 (Offset 10h)

DVSEC CXL Test Configuration Base Low (Offset 14h)

DVSEC CXL Test Configuration Base High (Offset 18h)
Register 1: StartAddress1 (Offset 00h)

Register 2: WriteBackAddress1 (Offset 08h)

Register 3: Increment (Offset 10h)

Register 4: Pattern (Offset 18h)

Register 5: ByteMask (Offset 20h)
Register 6: PatternConfiguration (Offset 28h)

Register 7: AlgorithmConfiguration (Offset 30h)

Register 8: DeviceErrorinjection (Offset 38h)

Register 9: ErrorLog1 (Offset 40h)

Register 10: ErrorLog?2 (Offset 48h)
Register 11: ErrorLog3 (Offset 50h)

Register 12: EventCtrl (Offset 60h)

Register 13: EventCount (Offset 68h)
Accelerator Usage Taxonomy

153
156
156
158
158
169
176
178
179
181
194
196
230
232
232
239
240
240
241
241
241
241
241
242
242
242
242
243
244
244
245
245
245
246
247

Compute Express Link Specification

A

12

EVALUATION COPY

Revision History

Revision History

Revision

Description

Date

1.0

Initial release.

March, 2019

1.1

Added Reserved and ALMP terminology definition to Terminology/Acronyms table and
also alphabetized the entries. Completed update to CXL terminology (mostly figures);
removed disclaimer re: old terminology. General typo fixes. Added missing figure
caption in Transaction Layer chapter. Modified description of Deferrable Writes in
Section 3.1.6 to be less restrictive. Added clarification in Section 3.2.5.13 that ordering
between CXL.io traffic and CXL.cache traffic must be enforced by the device (e.g.,
between MSIs and D2H memory writes). Removed ExtCmp reference in ItoMWr &
MemWr. Flit organization clarification: updated Figure 41 and added example with
Figure 43. Fixed typo in Packing Rules MDH section with respect to H4. Clarified that
Advanced Error Reporting (AER) is required for CXL. Clarification on data interleave
rules for CXL.mem in Section 3.3.6. Updated Table 48, “ARB/MUX State Transition
Table” on page 119 to add missing transitions and to correct transition conditions.
Updated Section 5.1.1 to clarify rules for ALMP state change handshakes and to add
rule around unexpected ALMPs. Updated Section 5.2.1 to clarify that ALMPs must be
disabled when multiple protocols are not enabled. Updates to ARB/MUX flow diagrams.
Fixed typos in the Physical Layer interleave example figures (LCRC at the end of the
TLPs instead of IDLEs). Updated Table 52 to clarify protocol ID error detection and
handling. Added Section 6.6 to clarify behavior out of recovery. Increased the HDM size
granularity from 1MB to 256MB (defined in the Flex Bus Device DVSEC in Control and
Status Registers chapter). Updated Viral Status in the Flex Bus Device DVSEC to RWS
(from RW). Corrected the RCRB BAR definition so fields are RW instead of RWO.
Corrected typo in Flex Bus Port DVSEC size value. Added entry to Table 63 to clarify
that upper 7K of the 64K MEMBARQO region is reserved. Corrected Table 65 so the PME-
Turn_Off/Ack handshake is used consistently as a warning for both PCle and CXL
mode. Update Section 9.2.3 and Section 9.2.4 to remove references to EA and L2.
Updated Section 11.2.2 to clarify device handling of non-function errors. Added
additional latency recommendations to cover CXL.mem flows to Section 13.0; also
changed wording to clarify that the latency guidelines are recommendations and not
requirements. Added compliance test chapter.

June, 2019

June 2019
Revision 1.1

§§

Compute Express Link Specification

13

EVALUATION COPY

Introduction

1.0 Introduction

1.1 Audience

The information in this document is intended for anyone designing or architecting any
hardware or software associated with Compute Express Link (CXL) or Flex Bus.

1.2 Terminology /7 Acronyms

Please refer to the PCI Express Specification for additional terminology and acronym
definitions beyond those listed in Table 1.

Table 1. Terminology /7 Acronyms

Term / Acronym

Definition

Accelerator

Devices that may be used by software running on Host processors to offload or perform any type of
compute or 1/0 task. Examples of accelerators include programmable agents (such as GPU/GPCPU), fixed-
function agents, or reconfigurable agents such as FPGAs.

AIA Accelerator Interfacing Architecture

AlC Add In Card

ALMP ARB/MUX Link Management Packet
Compute Express Link, a low-latency, high-bandwidth discrete or on-package link that supports dynamic

CXL protocol muxing of coherency, memory access, and 10 protocols, thus enabling an accelerator to access
system memory as a caching agent and/or Host system memory.

CXL.io PCle-based non coherent 1/0 protocol with enhancements for accelerator support.

CXL.mem Memory access protocol that supports device-attached memory.

CXL.cache Agent coherency protocol that supports device caching of Host memory.

DCOH This is the ggent. on the device that is responsible for resolving coherency with respect to device caches
and managing Bias states

DP Downstream Port

Flex BUS t\i:kexible high-speed port that is statically configured to support either PCI Express or Compute Express

Flex Bus.CXL CXL protocol over a Flex Bus interconnect.

HBM High Bandwidth Memory

Home Agent

This is the agent on the Host that is responsible for resolving system wide coherency for a given address

Host-managed Device Memory. Device-attached memory mapped to system coherent address space and

HDM accessible to Host using standard write-back semantics. Memory located on a CXL device can either be
mapped as HDM or PDM.

MC Memory Controller

MCP Multi-chip Protocol, an on-package connection typically used between a CPU die and a companion die.

Smart 1/0 Enhanced 1/0 with additional protocol support.

PCle RCIEP PCle Root Complex Integrated Endpoint.

Compute Express Link Specification

June 2019 14

Revision 1.1

Introduction

Table 1. Terminology / Acronyms

Term / Acronym Definition

Private Device memory. Device-attached memory not mapped to system address space or directly
PDM accessible to Host as cacheable memory. Memory located on PCle devices is of this type. Memory located
on a CXL device can either be mapped as PDM or HDM.

RCEC Root Complex Event Collector, collects errors from PCle RCIEPs.

The contents, states, or information are not defined at this time. Reserved register
fields must be read only and must return O (all 0’s for multi-bit fields) when read. Reserved encodings
for register and packet fields must not be used. Any implementation dependent on a

Reserved
Reserved field value or encoding will result in an implementation that is not CXL-spec compliant.
The functionality of such an implementation cannot be guaranteed in this or any future
revision of this specification.
SVM Shared Virtual Memory
SF Snoop Filter
UP Upstream Port
VMM Virtual Machine Manager
1.3 Reference Documents
Table 2. Reference Documents
Document Chapter Reference Document No./Location
PCI Express Base Specification .
Revision 5.0 N/A www.pcisig.com

1.4 Motivation and Overview

1.4.1 Compute Express Link

CXL is a dynamic multi-protocol technology designed to support a vast spectrum of
accelerators. CXL provides a rich set of protocols that include 1/0 semantics similar to
PCle (i.e., CXL.i0o), caching protocol semantics (i.e., CXL.cache), and memory access
semantics (i.e., CXL.mem) over a discrete or on-package link. Depending on the
particular accelerator usage model, all of the protocols or only a subset of the protocols
may be enabled; however, CXL.io is always required for discovery and enumeration,
error reporting, and host physical address (HPA) lookup. A key benefit of CXL is that it
provides a low-latency, high-bandwidth path for an accelerator to access the system.
The figure below is a conceptual diagram showing a device attached to a Host
processor via CXL. Note that the CXL link is shown as a direct-attached CPU link and
cannot reside behind a PCle switch (although this does not preclude the concept of a
potential CXL switch in the future).

EVALUATION COPY

Compute Express Link Specification
June 2019 15
Revision 1.1

http://www.pcisig.com

EVALUATION COPY

Introduction

Figure 1. Conceptual Diagram of Accelerator Attached to Processor via CXL

Compute Express Link (CXL)

Host

A CXLio (PCle) Memory L
o
R;sgcit:;rjrr\;ccess \ CXL.cache CXL.mem v CXL.io
Configuration CXL.cache CXL.mem
(e Pt Coherent requests | Memory Flows
Interrupts
DMA Coherence/Cache Logic PCle Logic
ATS
y Error Signaling
Accelerator Logic
1A Core 1A Core 1/0 Device
Accelerator
Memory
Accelerator (Geticnal) Host
Processor
1.4.2 Flex Bus

A Flex Bus port allows designs to choose between providing native PCle protocol or CXL

over a high-bandwidth, off-package link; the selection happens during boot time via

auto negotiation and depends on the device that is plugged into the slot. Flex Bus uses
PCle electricals, making it compatible with PCle retimers, and adheres to standard PCle
form factors for an add-in card.

Figure 2 provides a high-level diagram of a Flex Bus port implementation, illustrating

both a slot implementation and a custom implementation where the device is soldered

down on the motherboard. The slot implementation can accommodate either a Flex

Bus.CXL card or a PCle card. One or two optional retimers can be inserted between the
CPU and the device to extend the distance. As illustrated in Figure 3, this flexible

innovation port can be used to attach coherent accelerators or smart 1/0 to a Host

processor.

June 2019
Revision 1.1

Compute Express Link Specification

16

EVALUATION COPY

Introduction

Figure 2.

June 2019
Revision 1.1

CPU Flex Bus Port Example

Flex Bus

Optiona
Retimer

Flex Bus x16 Connector/Slot

Ol

Custom

Accelerator

Flex Bus Motherboard down

Compute Express Link Specification

17

Introduction

Figure 3. Flex Bus Usage Model Examples
-1 - >
- CPU to CPU Coherent Link [
- -} -

5 - cPU -
O e CPU to CPU Coherent Link CPU . O
- > -

- - -
~g—p| FlexBus FlexBus FlexBus FlexBus &9

A
Y
S G
S| |s3 _ ~ % g
£ 5 o - Optional Optional g — p § ke t
g el Memory Memory o3 e
] & E]

Figure 4 illustrates how a Flex Bus.CXL port can be used as a memory expansion port.

Figure 4. Remote Far Memory Usage Model Example
<> <+
- CPU to CPU Coherent Link =
i gt <>
g [CPU bRl
[. CPU to CPU Coherent Link CcPu - O
-
S
Flex Bus Flex Bus FlexBus FlexBus FlexBus Flex Bus r4—»
A
Y
o 3 5l | o
= T ® Remote Far Memory @ =
= g g O t
o a g oy (i
E L og w8 £
v < P v

Flex Bus Link Features

=
o1

Flex Bus provides a point-to-point interconnect that can transmit native PCle protocol
or dynamic multi-protocol CXL to provide 1/0, coherency, and memory protocol over
PCle electricals. The primary link attributes include support of the following features:

= Native PCle mode, full feature support as defined in the PCle specification

e CXL mode, as defined in this specification

= Static configuration of PCle vs CXL protocol mode

* Signaling rate of 8 GT/s, 16 GT/s or 32 GT/s for CXL mode

= Link width support for x16, x8, x4, x2, and x1 (degraded mode) in CXL mode
e Bifurcation (aka Link Subdivision) support to x4 in CXL mode

EVALUATION COPY

Compute Express Link Specification
June 2019 18
Revision 1.1

EVALUATION COPY

Introduction

-
o

June 2019
Revision 1.1

Flex Bus Layering Overview

Flex Bus architecture is organized as multiple layers, as illustrated in Figure 5. The CXL
transaction (protocol) layer is subdivided into logic that handles CXL.io and logic that
handles CXL.mem and CXL.cache; the CXL link layer is subdivided in the same manner.
Note that the CXL.mem and CXL.cache logic are combined within the transaction layer
and within the link layer. The CXL link layer interfaces with the CXL ARB/MUX, which
interleaves the traffic from the two logic streams. Additionally, the PCle transaction and
data link layers are optionally implemented and, if implemented, are converged with
the CXL.io transaction and link layers, respectively. As a result of the link training
process, the transaction and link layers are configured to operate in either PCle mode
or CXL mode. While a host CPU would most likely implement both modes, an
accelerator AIC may choose to implement only the CXL mode. The logical sub-block of
the Flex Bus physical layer is a converged logical physical layer that can operate in
either PCle mode or CXL mode, depending on the results of alternate mode negotiation
during the link training process.

Compute Express Link Specification
19

EVALUATION COPY

Introduction

Figure 5.

June 2019
Revision 1.1

Conceptual Diagram of Flex Bus Layering

~
CXL Transaction Layer
7 ™
PCle/CXL.io Transaction Layer
R
PCle) Tra?:';l:ion CXL.cache + CXL.mem
Transaction Layer Transaction Layer
Layer enhancements
\ / J)
o S/
e)
CXL Link Layer
4 ™
PCle/CXL.io Link Layer
- CXLio Link
PCle Data Link Layer CXL.cache + CXL.mem Link Layer
Layer enhancements
N
N % J
A A
) J \
CXL ARB/MUX
A
\J
¢ ™y
Flex Bus Physical Layer
PCle/CXL Logical Sub-block
PCle Electrical Sub-block
RX TX
A g

Compute Express Link Specification

20

EVALUATION COPY

Introduction

1.7

June 2019
Revision 1.1

Document Scope

This document specifies the functional and operational details of the Flex Bus
interconnect and the CXL protocol. It describes the CXL usage model and defines how
the transaction, link, and physical layers operate. Reset, power management, and
initialization/configuration flows are described. Additionally, RAS behavior is described.
Please refer to the PCle specification for PCle protocol details.

The contents of this document are summarized in the following chapter highlights:

= Section 2.0, “Compute Express Link System Architecture” on page 23 — This
chapter describes different profiles of devices that might attach to a CPU root
complex over a CXL capable link. For each device profile, a description of the typical
workload and system resource usage is provided along with an explanation of
which CXL capabilities are relevant for that workload. Additionally, a Bias Based
coherency model is introduced which optimizes the performance for accesses to
device-attached memory depending on whether the memory is in host bias, during
which the memory is expected to be accessed mainly by the Host, or device bias,
during which the memory is expected to be accessed mainly by the device.

* Section 3.0, “Compute Express Link Transaction Layer” on page 29 — The
transaction layer chapter is divided into subsections that describe details for CXL.io,
CXL.cache, and CXL.mem. The CXL.io protocol is required for all implementations,
while the other two protocols are optional depending on expected device usage and
workload. The transaction layer specifies the transaction types, transaction layer
packet formatting, transaction ordering rules, and crediting. The CXL.io protocol is
based on the “Transaction Layer Specification” chapter of the PCle base
specification; any deltas from the PCle base specification are described in this
chapter. These deltas include PCle Vendor_Defined Messages for reset and power
management, modifications to the PCle ATS request and completion formats to
support accelerators, and Deferred Writes instruction definitions. For CXL.cache,
this chapter describes the channels in each direction (i.e., request, response, and
data), the transaction opcodes that flow through each channel, and the channel
crediting and ordering rules. The transaction fields associated with each channel
are also described. For CXL.mem, this chapter defines the message classes in each
direction, the fields associated with each message class, and the message class
ordering rules. Finally, this chapter provides flow diagrams that illustrate the
sequence of transactions involved in completing host-initiated and device-initiated
accesses to device-attached memory.

e Section 4.0, “Compute Express Link Link Layers” on page 78 — The link layer is
responsible for reliable transmission of the transaction layer packets across the Flex
Bus link. This chapter is divided into subsections that describe details for CXL.io
and for CXL.cache and CXL.mem. The CXL.io protocol is based on the “Data Link
Layer Specification” chapter of the PCle base specification; any deltas from the
PCle base specification are described in this chapter. For CXL.cache and CXL.mem,
the 528-bit flit layout is specified. The flit packing rules for selecting transactions
from internal queues to fill the three slots in the flit are described. Other features
described for CXL.cache and CXL.mem include the retry mechanism, link layer
control flits, CRC calculation, and viral and poison.

e Section 5.0, “Compute Express Link ARB/MUX” on page 117 — The ARB/MUX
arbitrates between requests from the CXL link layers and multiplexes the data to
forward to the physical layer. On the receive side, the ARB/MUX decodes the flit to
determine the target to forward transactions to the appropriate CXL link layer.
Additionally, the ARB/MUX maintains virtual link state machines for every link layer
it interfaces with, processing power state transition requests from the local link
layers and generating ARB/MUX link management packets to communicate with the
remote ARB/MUX.

e Section 6.0, “Flex Bus Physical Layer” on page 129 — The Flex Bus physical layer is
responsible for training the link to bring it to operational state for transmission of

Compute Express Link Specification
21

EVALUATION COPY

Introduction

PCle packets or CXL flits. During operational state, it prepares the data from the
CXL link layers or the PCle link layer for transmission across the Flex Bus link;
likewise, it converts data received from the link to the appropriate format to pass
on to the appropriate link layer. This chapter describes the deltas from the PCle
base specification to support the CXL mode of operation. The framing of the CXL
flits and the physical layer packet layout are described. The mode selection process
to decide between CXL mode or PCle mode, including hardware autonomous
negotiation and software controlled selection is also described. Finally, CXL low
latency modes are described.

e Section 7.0, “Control and Status Registers” on page 145 — This chapter provides
details of the Flex Bus and CXL control and status registers. It describes the various
address spaces in which the registers are located. In the memory space, this
chapter describes how the upstream and downstream port root complex register
block (RCRB) regions are organized and how the upstream and downstream port
MEMBARO regions are organized. It also differentiates between registers required
to be implemented in a Flex Bus Host versus the registers required to be
implemented in a CXL device.

= Section 8.0, “Reset, Initialization, Configuration and Manageability” on page 168 —
This chapter describes the flows for boot, warm reset entry, cold reset entry, and
sleep state entry; this includes the transactions sent across the link to initiate and
acknowledge entry as well as steps taken by a CXL device to prepare for entry into
each of these states. Additionally, this chapter describes the software enumeration
model and how the BIOS view of the hierarchy differs from the OS view due to the
fact that the CXL link is not exposed to the OS. This chapter discusses different
accelerator topologies, i.e., single CPU, multiple CPUs, and multiple nodes; for each
topology, software management of the multiple Flex Bus links involved is described.

* Section 9.0, “Power Management” on page 181 — This chapter provides details on
protocol specific link power management and physical layer power management. It
describes the overall power management flow in three phases: protocol specific PM
entry negotiation, PM entry negotiation for ARB/MUX interfaces (managed
independently per protocol), and PM entry process for the physical layer. The PM
entry process for CXL.cache and CXL.mem is slightly different than the process for
CXL.io; these processes are described in separate subsections in this chapter.

e Section 10.0, “Security” on page 193 — This chapter is a placeholder for non-
product specific security requirements; currently there are no such requirements.

* Section 11.0, “Reliability, Availability and Serviceability” on page 194 — This chapter
describes the RAS capabilities supported by a CXL host and a CXL device. It
describes how various types of errors are logged and signaled to the appropriate
hardware or software error handling agent. It describes the link down flow and the
viral handling expectation. Finally, it describes the error injection requirements.

e Section 12.0, “Platform Architecture” on page 200 — This chapter provides details
on the Flex Bus connector, platform topologies, AIC form factors, and AIC power
envelope. It also discusses an out-of-band protocol detection mechanism.

* Section 13.0, “Performance Considerations” on page 203 — This chapter describes
hardware and software considerations for optimizing performance across the Flex
Bus link in CXL mode.

e Section 14.0, “CXL Compliance Testing” on page 204 — This chapter describes
methodologies for ensuring that a device is compliant with the CXL specification.

8§ 8

Compute Express Link Specification
June 2019 22
Revision 1.1

EVALUATION COPY

Compute Express Link System Architecture

N
o

Compute Express Link System Architecture

This section describes the performance advantages and key features of CXL. CXL is a
high performance 1/0 bus architecture used to interconnect peripheral devices that can
be either traditional non-coherent 10 devices or accelerators with additional
capabilities. The types of devices that can attach and the overall system architecture is

described in the figure below.

Figure 6. CXL Device Types

Host
Memory

MC Root Complex

Home Coh
Agent Bridge

I 1oMMU
CXL.cEcha CKPD

| CXL Device w/o Memory ‘

Coh Cache DTLB

Type 1 CXL Device

Host
Memory

!

MC Root Complex

Home Coh

Agent Bridge
CXL Device w/ Memory
Optional

Mc Coh Cache DTLE

I

Device
Memory

I 1oMMU
CXL}ZL?\E CX]ID

Type 2 CXL Device

Host
Memory

MC

Home
Agent

CXL}WEH’\

MC

!

Device
Memory

Root Complex

I IoMMU

CXL Memory Expander

Type 3 CXL Device

Before we dive into the details of each type of CXL device, here’s a foreword about

where CXL is not applicable.

Traditional non-coherent 10 devices rely primarily on standard Producer-Consumer
ordering models and execute against Host-attached memory. For such devices, there’s
little interaction with the Host except for work submission and signaling on work
completion boundaries. Such accelerators also tend to work on data streams or large
contiguous data objects. These devices typically do not need the advanced capabilities
provided by CXL and traditional PCle is sufficient as an accelerator attach medium. The
following sections describe various profiles of CXL devices.

N
[EEY

Type 1 CXL Device

Type 1 CXL devices have special needs for which having a fully coherent cache in the
device becomes valuable. For such devices, standard Producer-Consumer ordering
models do not work very well. One example of a device with a special need is to
perform complex atomics that are not part of the standard suite of atomic operations

present on PCle.

Basic cache coherency allows an accelerator to implement any ordering model it
chooses and allows it to implement an unlimited number of atomic operations. These
tend to require only small amounts of cache which can easily be tracked by standard

June 2019
Revision 1.1

Compute Express Link Specification

23

EVALUATION COPY

Compute Express Link System Architecture

processor snoop filter mechanisms. The size of cache that can be supported for such
devices depends on the host’s snoop filtering capacity. CXL supports such devices using
its optional CXL.cache link over which an accelerator can use CXL.cache protocol for

cache coherency transactions.

Figure 7. Type 1 - Device with Cache

CXL Device

Host
Coherency

Small Cache -
(Few MBs)

Private device-attached
memory (Optional)

——CX——

Bridge

Host-attached Memory

N
N

Type 2 Device

Type 2 devices are ones which have memory, for example DDR, High Bandwidth
Memory (HBM) etc, attached to the device. These devices execute against memory but
their performance comes from having massive bandwidth between the accelerator and
device-attached memory. The key goal for CXL is to provide a means for the Host to
push operands into device-attached memory and for the Host to pull results out of
device-attached memory such that it doesn’t add software and hardware cost that
offsets the benefit of the accelerator. This spec refers to coherent system address
mapped device-attached memory as Host-managed Device Memory (HDM).

There is an important distinction between HDM and traditional 10/PCle Private Device
Memory (PDM). An example of such a device is a GPGPU with attached GDDR. Such
devices have treated device-attached memory as Private. This means that the memory
is not accessible to the Host and is not coherent with the rest of the system. It is
managed entirely by the device HW and driver and is used primarily as intermediate
storage for the device with large datasets. The obvious disadvantage to a model such
as this is that it involves large amounts of copies back and forth from the Host memory
to device-attached memory as operands are brought in and results are written back.
Please note that CXL does not preclude devices with PDM.

Figure 8. Type 2 Device - Device with Memory

CXL Device
Small Cache -

Host
Coherency

Few MBs

Host Managed Device
Memory

—CX|——

Home Agent

Bridge

Host-attached Memory

June 2019
Revision 1.1

Compute Express Link Specification
24

EVALUATION COPY

Compute Express Link System Architecture

2.2.1

2.2.1.1

June 2019

Revision 1.1

At a high level, there are two models of operation that are envisaged for HDM. These
are described below.

Bias Based Coherency Model

The Bias Based coherency model defines two states of bias for device-attached memory
- Host Bias and Device Bias. When the device-attached memory is in Host Bias state, it
appears to the device just as regular Host-attached memory does. That is, if the device
needs to access it, it needs to send a request to the Host which will resolve coherency
for the requested line. On the other hand, when the device-attached memory is in
Device Bias state, the device is guaranteed that the Host does not have the line cached.
As such, the device can access it without sending any transaction (request, snoops etc)
to the Host whatsoever. It is important to note that the Host itself sees a uniform view
of device-attached memory regardless of the bias state. In both modes, coherency is
preserved for device-attached memory.

The key benefits of Bias Based coherency model are:

« Helps maintain coherency for device-attached memory which is mapped to system
coherent address space.

« Helps the device access its local attached memory at high BW without incurring
significant coherency overheads (e.g., snoops to the Host).

= Helps the Host access device-attached memory in a coherent, uniform manner, just
as it would for Host-attached memory.

To maintain Bias modes, a Type 2 CXL Device will:

< Implement the Bias Table which tracks Bias on a page granularity (e.g., 1b per 4KB
page) which can be cached in the device using a Bias Cache.

= Build support for Bias transitions using a Transition Agent (TA). This essentially
looks like a DMA engine for “cleaning up” pages, which essentially means to flush
the host’s caches for lines belonging to that page.

= Build support for basic load and store access to accelerator local memory for the
benefit of the Host.

The bias modes are described in detail below.

Host Bias

The Host Bias mode typically refers to the part of the cycle when the operands are
being written to memory by the Host during work submission or when results are being
read out from the memory after work completion. During Host Bias mode, coherency
flows allows for high throughput access from the Host to device-attached memory (as
shown by the blue arrows in Figure 9) whereas device access to device-attached
memory is not optimal since they need to go through the host (as shown in green
arrows in Figure 9).

Compute Express Link Specification
25

Compute Express Link System Architecture

>_ Figure 9.
al
o,
O 2.2.1.2
Z
O .
= -
<
)
_
< 2213
=
LL

Revision 1.1

Type 2 Device - Host Bias

Host
Coherency
Bridge

Home Agent

Host Managed Device Host-attached Memory
Memory

Device Bias

The Device Bias mode is used when the device is executing the work, between work
submission and completion, and in this mode, the device needs high BW and low
latency access to device-attached memory.

In this mode, device can access device-attached memory without consulting the Host’s
coherency engines (as shown in red arrows in Figure 10). The Host can still access
device-attached memory but may be forced to give up ownership by the accelerator (as
shown in green arrows in Figure 10). This results in the device seeing ideal latency &
BW from device-attached memory, whereas the Host sees compromised performance.

Type 2 Device - Device Bias

Host
Bias Flip Coherency
Bridge

Home Agent

Host Managed Device Host-attached Memory
Memory

Mode Management

There are two envisioned Bias Mode Management schemes — Software Assisted and HW
Autonomous. CXL supports both modes. Examples of Bias Flows are present in
Appendix A.

While two modes are described below, it is worth noting that strictly speaking, devices
do not need to implement any bias. In this case, all of device-attached memory
degenerates to Host Bias. This means that all accesses to device-attached memory
must be routed through the Host. An accelerator is free to choose a custom mix of SW
assisted and HW autonomous bias management scheme. The Host implementation is
agnostic to any of the above choices.

Compute Express Link Specification
26

EVALUATION COPY

Compute Express Link System Architecture

2.2.1.4

2.2.1.5

June 2019

Revision 1.1

Software Assisted Bias Mode Management

With Software Assistance, we rely on SW to know for a given page, which state of the
work execution flow it resides in. This is useful for accelerators with phased
computation with regular access patterns. Based on this, SW can best optimize the
coherency performance on a page granularity by choosing Host or Device Bias modes
appropriately.

Here are some characteristics of Software Assisted Bias Mode Management:

- Software Assistance can be used to have data ready at an accelerator before
computation.

- If data is not moved to accelerator memory in advance, it is generally moved on
demand based on some attempted reference to the data by the accelerator.

« In an “on demand” data fetch scenario, the accelerator must be able to find work to
execute, for which data is already properly placed, or it must stall.

= Every cycle that an accelerator is stalled eats into its ability to add value over
software running on a core.

- Large, complex, programmable accelerators, like GPUs are often able to find work
to execute and hide data fetch latencies.

« Simple accelerators typically cannot hide data fetch latencies.

Efficient software assisted data/coherency management is critical to the
aforementioned class of simple accelerators.

HW Autonomous Bias Mode Management

Software assisted coherency/data management is ideal for simple accelerators, but of
lesser value to complex, programmable accelerators. At the same time, the complex
problems frequently mapped to complex, programmable accelerators like GPUs present
an enormously complex problem to programmers if software assisted coherency/data
movement is a requirement. This is especially true for problems that split computation
between Host and accelerator or problems with pointer based, tree based or sparse
data sets.

With HW Autonomous Bias Mode Management, we do not rely on SW to appropriately
manage page level coherency bias. Rather, it is the HW which makes predictions on the
bias mode based on the requester for a given page and adapts accordingly. Key
benefits for this model are:

= Provide the same page granular coherency bias capability as in the software
assisted model.

= Eliminate the need for SW to identify and schedule page bias transitions prior to
offload execution.

* Provide hardware support for dynamic bias transition during offload execution.

= Hardware support for this model can be a simple extension to the software assisted
model.

= Link flows and Host support is unaffected.

« Impact limited primarily to actions taken at the accelerator when a Host touches a
Device Biased page and vice-versa.

« Note that even though this is an ostensible hardware driven solution, hardware
need not perform all transitions autonomously — though it may do so if desired.

It is sufficient if hardware provide hints (e.g., “transition page X to bias Y now”), but
leaves the actual transition operations under software control.

Compute Express Link Specification
27

EVALUATION COPY

Compute Express Link System Architecture

2.3

Figure 11.

June 2019
Revision 1.1

Type 3
A CXL Type 3 device is fundamentally different from other device Types in the sense

that unlike other device types, it is not an active compute engine. Instead, a Type 3
device is primarily a memory expander for the Host as shown in the figure below.

Type 3 - Memory Expander

Host

Home Agent

Host Managed Device Host-attached Memory
Memory

Since this is not an accelerator, the device does not make any requests over CXL.cache.

The device operates primarily over CXL.mem to service requests sent from the Host.
The CXL.io link is used device discovery, enumeration, error reporting and
management. The CXL architecture is independent of memory technology and allows
for a range of memory organization possibilities depending on support implemented i
the Host.

88

n

Compute Express Link Specification

28

EVALUATION COPY

Compute Express Link Transaction Layer

w
o

Compute Express Link Transaction Layer

w
[

June 2019
Revision 1.1

CXL.io

CXL.io provides a non-coherent load/store interface for 1/0 devices. Figure 12 shows
where the CXL.io transaction layer exists in the Flex Bus layered hierarchy. Transaction
types, transaction packet formatting, credit-based flow control, virtual channel
management, and transaction ordering rules follow the PCle definition; please refer to
the “Transaction Layer Specification” chapter of the PCl Express Base Specification for
details. This chapter highlights notable PCle operational modes or features that are
used for CXL.io.

Compute Express Link Specification
29

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 12.

3.1.1

June 2019
Revision 1.1

Flex Bus Layers -- CXL.io Transaction Layer Highlighted

~
CXL Transaction Layer
(" ™
PCle/CXL.io Transaction Layer
by
PCle . Tra?:';l;on CXL.cache + CXL.mem
Transaction Layer Transaction Layer
Layer enhancements
\s / J
A vy
e)
CXL Link Layer
N\
PCle /CXL.io Link Layer
'Y
. CXLio Link
R Layer CXL.cache + CXL.mem Link Layer
Layer enhancements
\
p. J J
A A
A | A
CXL ARB/MUX
A
\J
- N
Flex Bus Physical Layer
PCle/CXL Logical Sub-block
PCle Electrical Sub-block
RX TX
A vy

PCle Root Complex Integrated Endpoint

a CXL.io endpoint is exposed to software as a PCle RCIiEP. Please refer to the PCle 5.0

Base Specification for more details.

Compute Express Link Specification

30

EVALUATION COPY

Compute Express Link Transaction Layer

3.1.2

Figure 13.

June 2019
Revision 1.1

CXL Power Management VDM Format

The CXL power management messages are sent as PCle Vendor Defined TypeO

messages with a 4DW data payload. These include the PMREQ, PMRESP, and PMGO
messages. Figure 13 provides the format for the CXL PM VDM messages. The following
are the characteristics of these messages:

Fmt and Type fields are set to indicate message with data and routing of “Local-

Terminate at Receiver”

Message Code is set to Vendor Defined Type O

Vendor ID field is set to 8086h. (Note that this may change to include the CXL
assigned vendor ID.)

Byte 15 of the message header contains the VDM Code and is set to the value of

“CXL PM Message.” (68h)

The 4DW Data Payload contains the CXL PM Logical Opcode (e.g., PMREQ, PMRESP,
etc) and any other information related to the CXL PM message. Details of fields
within the Data Payload are described in Table 3.

CXL Power Management Messages Packet Format

PCle
VDM
Type 0
Header

4DW of
Data
Payload

+0 +1 +2 +3
706[5]4[3]2(1]0]7]6]5/4[3]21]ol76[5/4|3(2|1[0l7[6|5|4[3]2[1]0
are Type T |7 g TITIE] p | AT Length
[N 10100 9 81, H{D|P 00 0000000100
Message Code - Vendor
Requester ID T
Fauester * Defined Type 0
Vendor ID = 8086h
Reserved
Note: This may change to the PCI SIG assigned Vendor 1D for CXL.
VDM Code - CXLPM
Reserved Messare = &gh
_ essage =
>
PM Logical Opcode R PM Agent ID Parameter[7:0] Parameter[15:0]
Payload[7:0] Payload[15:0] Payload[23:0] Payload[31:24]
Payload[39:32] Payload[47:40] Payload[55:48] Payload[63:56]
Payload([71:64] Payload[79:72] Payload[87:80] Payload[95:88]
o

Compute Express Link Specification

31

EVALUATION COPY

Compute Express Link Transaction Layer

Table 3.

June 2019
Revision 1.1

CXL Power Management Messages -- Data Payload Fields Definitions

Field

Description

Notes

PM Logical Opcode[7:0]

Power Management Command:

00h - AGENT_INFO

02h - RESETPREP

04h - PMREQ (PMRESP and PMGO)
FEh - CREDIT_RTN

PM Agent ID[6:0]

Sender’s ID:
1111111 - CXL device (Default)

A device does not
consume this value
when it receives a
message from the
Host.

Host will send PM
Agent ID for the CXL
Device to use in the
CREDIT_RTN msg.

Parameter[15:0]

CREDIT_RTN:
Reserved

AGENT_INFO:

0 - REQUEST (set) /RESPONSE_N (cleared)
[7:1] - INDEX

All others reserved

PMREQ:

0 - REQUEST (set) /RESPONSE_N (cleared)
1-EA

2-GO

All others reserved

RESETPREP:

0 - REQUEST (set) /RESPONSE_N (cleared)
All others reserved

Compute Express Link Specification

32

EVALUATION COPY

Compute Express Link Transaction Layer

Table 3.

3.1.2.1

June 2019
Revision 1.1

CXL Power Management Messages -- Data Payload Fields Definitions

Field

Description

Notes

Payload[95:0]

CREDIT_RTN:

7:0 NUM_CREDITS

14:8 TARGET_AGENT_ID
All others reserved

AGENT_INFO:

if Param.Index == 0,
7:0 - REVISION_ID
all others reserved
else

all reserved

RESETPREP:

7:0 - ResetType

0x01 => host space transition from SO to S1;
0x03 => host space transition from SO to S3;
0x04 == host space transition from SO to S4;
0x05 == host space transition from SO to S5;

0x10 => Host space Warm reset (host space partition
reset without power down);

0x11 => Cold reset for host space (host space
partition reset with powerdown);

0x21 => D3cold for Host space

15:8 - PrepType

0x00 => General Prep

0x01 == Early Prep;

0x02 => Reset Entry Start (first checkpoint for CXL

device blocks during a Reset event/power state
transition);

0x03 == Link Turnoff (typically the last checkpoint
during a Reset event/power state transition);

17:16 - Phase

0x00 => Phase 0
0x01 => Phase 1
0x02 == Phase 2
0x03 => Phase 3

All others reserved
PMREQ:

31:0 - PCle LTR format
All others reserved

CXL Agent must treat

the
TARGET_AGENT_ID

field as Reserved when

returning credits to
Host.

Only Index O is defined

for AGENT_INFO, all

other Index values are

reserved.

Credit and PM Initialization

Figure 14 illustrates the use of PM2IP.CREDIT_RTN and PM2IP.AGENT_INFO messages
to initialize Power Management messaging protocol intended to facilitate
communication between the Host Power Management Unit and the CXL Device.

Compute Express Link Specification

33

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 14. Power Management Credits and Initialization

Host PMU CXL Device

/, TX.Credit=0 TX.Credit=0
/ _\PMZIP.CREDIT;RTN(Target‘Agem D
/ Num_Cregits= XL PM_AGENT D=
Credit Initialization ¢ Device Agent_ID
A TX Credit=1

Credvtsﬂy\'———d
o\ CREDIT_RTN(Num_
| g———1P2PM

TX.Credit=2

/'/’ TXCredit=1 " AGENT-JNFO(Rqundex,
// ' Revision D) —
B /
/
/ /
g Rsp,Index,
/ lP2PM,AGENT_lNF(l)é) p _—{———‘ .
//’ ‘_.7-—-—- Revision_ \ TX.Credit=0
PM Initialization \"\ ~—\L___ \
\ B \
\ PM2P CREDIT Rp— |
\
\'\ ,/ TXCredit=1
\
i p2PM CREDiLRTN“——‘—_—_
\\ PR

TX Credit=2

The CXL device must be able to receive and process CREDIT_RTN messages without
dependency on any other PM2IP messages. Also, CREDIT_RTN messages do not use a
credit. The CREDIT_RTN messages are used to exchange and initialize the TX credits on
each side, so that flow control can be managed appropriately. The credits being sent
from either side represent the number of messages that side can receive from the
other. CREDIT_RTN message is also used by the Host to assign a PM_AGENT_ID to the
CXL Device. CXL Device must wait for the CREDIT_RTN message from the Host before
initiating any IP2PM messages to the host.

A CXL device must support at least one credit - where a credit implies having sufficient
buffering to sink a PM2IP message with 128 bits of payload.

After credit initialization, the CXL device must wait for an AGENT_INFO message from
the Host. This message contains the Revision ID of the PM protocol of the Host. CXL
Device must send its Revision ID to the Host in response to the AGENT_INFO Req from
the host. Expectation is that the host and CXL device Revision IDs match - when there
is a mismatch, Host PMU may implement a compatibility mode to work with CXL
devices with older Revision ID. Alternatively, Host PMU may log the mismatch and
report an error, if it does not know how to reliably function with a CXL device with a
mis-matched Revision ID.

There is an expectation from the CXL device that it restores credits to the Host as soon
as a message is received. Host PMU can have multiple messages in flight, if it was
provided with multiple credits. Releasing credits in a timely manner will provide better
performance for latency sensitive flows. Under no circumstances should the CXL device
hold back a credit for longer than 10us.

The following list summarizes the rules that must be followed by a CXL Device.

Compute Express Link Specification
June 2019 34
Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

= CXL Device must wait to receive PM2IP.CREDIT_RTN message before initiating any
IP2PM messages

e CXL Device must use the PM_AGENT_ID that it receives in the first PM2IP message
received from the Host Punit (Master)

e CXL Device must implement enough resources to sink and process any
CREDIT_RTN messages without dependency on any other PM2IP or IP2PM
messages or other message classes

e CXL Device must implement at least one credit to sink a PM2IP message

= CXL Device must return any credits to the Host Punit as soon as possible. Under no
circumstances should the CXL device withhold a credit for longer than 10us

3.1.3 Optional PCle Features Required for CXL
Table 4 lists optional features per the PCle Specification that are required to enabled
CXL.
Table 4. Optional PCle Features Required For CXL
Optional PCle Feature Notes
Data Poisoning by transmitter
ATS Only required if .cache is present (e.g. only for Type 1 & Type 2 devices
but not for Type 3 devices)
ngi/t‘il%rg)al VCs and TCs beyond VCO, optional VC1 for QoS
Advanced Error Reporting (AER)
3.1.4 Error Propagation
CXL.cache and CXL.mem errors detected by the device are propagated to the CPU over
the CXL.io traffic stream. These errors are logged as correctable and uncorrectable
internal errors in the PCle AER registers.
3.1.5 Memory Type Indication on ATS
Requests to certain memory regions can only be issued on CXL.io and not on
CXL.cache. It is up to the Host to decide what these memory regions are. For example,
on x86 systems, the Host may choose to restrict access to Uncacheable (UC) type
memory over CXL.io only. The Host indicates such regions by means of an indication on
ATS completion to the device.
ATS requests sourced from a CXL device must set the “Source-CXL" bit.
Figure 15. ATS 64-bit Request with CXL Indication
ATS +0 +1 +2 +3
Request [7 [6[5[af3f2lafol7]e6]s]a]3] 2a]o]7]se][s]als]2aafof7]6]s]afa]2la]0
Fmt Type ATT ATTR AT
Byte O 001 00000 T9 TC T8 0 R | R |TD | EP RR 01 00_00xx_xxx0
Byte 4 Requester ID Tag Las;:li)]\-f\]{ BE 1St1[i\ﬁBE
Byte 8 Untranslated Address [63:32]
Byte 12 Untranslated Address [31:12] Reserved E)r(cL R | NW
Compute Express Link Specification
June 2019 35

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 16.

64-bit: DWORD3, Byte 3, Bit 3; 32-bit: DWORD2, Byte 3, Bit 3Note: This bit is
Reserved in the ATS request as defined by the PCle spec.

ATS translation completion from the Host will carry the indication that requests to a
given page can only be issued on CXL.io using the following bit, “Issue-on-CXL.i0”, in
the Translation Completion Data Entry:

ATS Translation Completion Data Entry with CXL indication

ATS Cpl

+0 +1 +2 +3

Data Entry| 7 | 6 |

s[als]2]afol7z]s]slala] 2 1ol 7 6]s[als]a]a]ol7l6]s]a]s]2]1]0

Byte O

Translated Address[63:32]

Byte 4

Glo
b.

Exe
al

Priv

Translated Address[31:12] ‘ S ‘ N |C:)L| Reserved | u ‘W| R

3.1.6

W
N

3.2.1

June 2019
Revision 1.1

DWORD1, Byte 2, Bit 1

Note: This bit is Reserved in the ATS completion as defined by the PCle spec.

Deferrable Writes

Deferrable Writes enable scalable work submission to a CXL device by multiple software
entities without explicit locks or software synchronization. Deferrable Writes are
downstream non-posted memory writes. The completion for a Deferrable Write allows
the device to indicate whether the command was successfully accepted or if it needs to
be deferred.

On CXL.io, a Deferrable Write is sent as a NPMemWr32/64 transaction which has the
following encodings (please note that the encoding for NPMemWr32 is deprecated in
PCle):

Fmt[2:0] - 010b/011b
Type[4:0] - 11011b

Since Deferrable Write is non-posted, the device is expected to send a Cpl response.
The Completion Status field in the Cpl (with a Byte Count of ‘4) indicates whether work
was successfully accepted or not. Successful work submission is accompanied by a
“Successful Completion” Completion Status. Unsuccessful work submission is
accompanied by a “Memory Request Retry Status” Completion Status. The encoding for
these are:

Successful Completion (SC) - 000b

Memory Request Retry Status (MRS) - 010b

CXL.cache

Overview

The CXL.cache protocol defines the interactions between the device and Host as a
number of requests that each have at least one associated response message and
sometimes a data transfer. The interface consists of three channels in each direction:
Request, Response, and Data. The channels are named for their direction, D2H for
Device to Host and H2D for Host to Device, and the transactions they carry, Request,
Response, and Data.

Compute Express Link Specification
36

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 17.

3.2.2

3.2.2.1

June 2019
Revision 1.1

D2H Request carries new requests from the Device to the Host. The requests typically
target memory. Each request will receive zero, one or two responses and at most one
64-byte cacheline of data. The channel may be back pressured without issue. D2H
Response carries all responses from the Device to the Host. Device responses to snoops
indicate the state the line was left in the device caches, and may indicate that data is
being returned to the Host to the provided data buffer. D2H responses need to be
guaranteed to make progress or deadlocks may occur. They may still be blocked
temporarily for link-layer credits, but should not require any other transaction to
complete to free the credits. D2H Data carries all data and byte-enables from the
Device to the Host. The data transfers can result either from implicit or explicit write-
backs. In all cases a full 64-byte cacheline of data will be transferred. D2H Data
transfers must make progress or deadlocks may occur. They may be blocked temporarily
for(ljink-layer credits, but must not require any other transaction to complete to free the
credits.

H2D Request carries request from the Host to the Device. These are snoops to maintain
coherency. Data may be returned for snoops. The request carries the location of the
data buffer to which any return data should be written. H2D Requests may be back
pressured for lack of device resources, however the resources must free up without
needing D2H Requests to make progress. H2D Response carries ordering messages and
pulls for write data. Each response carries the request identifier from the original device
request to indicate where the response should be routed. For write data pull responses,
the message carries the location where the data should be written. H2D Responses can
only be blocked temporarily for link-layer credits. H2D Data delivers the data for device
read requests. In all cases a full 64-byte cacheline of data will be transferred. H2D Data
transfers can only be blocked temporarily for link-layer credits.

The CXL.cache interface has 3 main channels in each direction between the device and
the Host. The three main channels are Request, Response, and Data as shown in the
figure below. The independent channels allow different kinds of messages to use
dedicated wires and achieve both decoupling and a higher effective throughput per
wire.

CXL.cache Channels

A A A
D2H D2H D2H H2D H2D H2D
Req Resp Data Req Resp Data

CXL.cache Channel Description

Channel Ordering

In general, all of the CXL.cache channels must work independently of each other to
ensure that forward progress is maintained. For example, since requests from the
device to the Host to a given address X will be blocked by the Host before it collects all
snoop responses for this address X, linking the channels would lead to deadlock.

However, there is a specific instance where ordering between channels must be
maintained for the sake of correctness. The Host needs to wait until Global Ordering
(GO) messages, sent on H2D Response, are observed by the device before sending

Compute Express Link Specification
37

Compute Express Link Transaction Layer

subsequent snoops for the same address. To limit the amount of buffering needed to
track GO messages, the Host assumes that GO messages that have been sent over
CXL.cache in a given cycle cannot be passed by snoops sent in a later cycle.

For transactions that have multiple concurrent messages within a single channel (e.g.,
FastGO and ExtCmp), the device/Host should assume that they can come in any order.
For transactions that have disjoint messages on a single channel (e.g., WritePull and GO
for Wrinv) the device/Host must ensure they cross CXL.cache in order.

3.2.2.2 Channel Crediting

To maintain the modularity of the interface no assumptions can be made on the ability
to send a message on a channel since at least link-layer credits may not be available at
all times. Therefore, each channel must use a credit for sending any message and
collect credit returns from the receiver. During operation, the receiver returns a credit
whenever it has processed the message (i.e., freed up a buffer). It is not required that
all credits are accounted for on either side, it is sufficient that credit counter saturates
when full. If no credits are available, the sender must wait for the receiver to return
one. The table below describes which channels must drain to maintain forward progress
and which can be blocked indefinitely.

Table 5. CXL.cache Channel Crediting
Forward
Channel Progress Blocking condition Description
Condition
. . Needs Host buffer, could be held by
D2H Request Credited to Host Indefinite earlier requests
D2H Response Pre-allocated Link-layer only, must make progress. Headed to specified Host buffer

Temporary back pressure is allowed.

Link-layer only, must make progress.

D2H Data Pre-allocated) Headed to specified Host buffer

Temporary back pressure is allowed.
May be temporarily back pressured due

H2D Request Credited to device Must mak_e progress. Temporary back to lack of availability of D2H Response or

pressure is allowed. D2H Data credits
_ Link-layer only, must make progress. . .

H2D Response Pre-allocated Temporary back pressure is allowed. Headed to specified device buffer

H2D Data Pre-allocated Link-layer only, must mak_e progress. Headed to specified device buffer
Temporary back pressure is allowed.

3.2.3 CXL.cache Wire Description

The definition of each of the fields for each CXL.cache Channel is below.

EVALUATION COPY

Compute Express Link Specification
June 2019 38
Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.3.1 D2H Request
Table 6. CXL.cache - D2H Request Fields
D2H Request WwWidth Description
Valid 1 The request is valid.
Opcode 5 The opcode specifies the operation of the request. Details in Table 15
Address [51:6] 46 Carries the physical address of coherent requests.
Command Queue ID: The CQId field contains the ID of the tracker entry
that is associated with the request. When the response and data is
returned for this request, the CQId is sent in the response or data
message indicating to the device which tracker entry originated this
cQIb 12 request.
Implementation Note: CQID usage depends on the round-trip transaction
latency and desired BW. To saturate link BW for a x16 link @32GT/s, 11
bits of CQID should be sufficient.
NT 1 For cacheable reads the NonTemporal field is used as a hint to indicate to
the Host how it should be cached. Details in Table 7
RSVD 14
Total 79
Table 7. Non Temporal Encodings
NonTemporal Definition
1b0 Default behavior. This is Host implementation specific.
1bl Requested line should be moved to Least Recently Used (LRU) position
3.2.3.2 D2H Response
Table 8. CXL.cache - D2H Response Fields
D2H Response WwWidth Description
Valid 1 The response is valid
Opcode 5 The opcode specifies the what kind of response is being signaled. Details in
Table 18
UQID 12 Unique Queue ID: This is a reflection of the UQID sent with the H2D
Request and indicates which Host entry is the target of the response
RSVD 2
Total 20
Compute Express Link Specification
June 2019 39

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.3.3

Table 9.

3.2.3.3.1

3.2.3.4

Table 10.

June 2019
Revision 1.1

D2H Data

CXL.cache - D2H

Data Header Fields

D2H Data Header WwWidth Description
Valid 1 The Valid signal indicates that this is a valid data message.
Unique Queue ID: This is a reflection of the UQID sent with the H2D
uQID 12 Response and indicates which Host entry is the target of the data
transfer.
In case of a 32B transfer on CXL.cache, this indicates what 32 byte
Chunkvalid 1 chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.
The Bogus field indicates that the data associated with this evict
message was returned to a snoop after the D2H request was sent
Bogus 1 from the device but before a WritePull was received for the evict.
This data is no longer the most current, so it should be dropped by
the Host.
Poison 1 The Poison field is an indication that this data chunk is corrupted and
should not be used by the Host.
RSVD 1
Total 17
Byte Enable

Although Byte Enable is technically part of the data header, it is not sent on the flit

along with the rest of the data header fields. Instead, it is sent only if the value is not

all 1's, as a data chunk as described in Section 4.2.2. The Byte Enable field is 64 bits

wide and indicates which of the bytes are valid for the contained data.

H2D Request

CXL.cache — H2D Request Fields

H2D Request Wwidth Description
Valid 1 The Valid signal indicates that this is a valid request.
Opcode 3 The Opcode field indicates the kind of H2D request. Details in Table 19
Address [51:6] 46 The Address field indicates which cache line the request targets.
UQID 12 Unigue Queue ID: This indicates which Host entry is the source of the
request
RSVD 2
Total 64

Compute Express Link Specification

40

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.3.5 H2D Response

Table 11. CXL.cache - H2D Response Fields

H2D Response width Description

Valid 1 The Valid field indicates that this is a valid response to the device.

Opcode 4 The Opcode field indicates the type of the response being sent. Details
in Table 20
The response Opcode determines how the RspData field is interpreted

RspData 12 as shown in Table 20. Thus, depending on Opcode, it can either contain
the UQID or the MESI information in bits [3:0] as shown in Table 13.

RSP PRE > RSP_PRE carries performance monitoring information for requests that

= do not receive data. Details in Table 12

coID 12 Command Queue ID: This is a reflection of the CQID sent with the D2H
Request and indicates which device entry is the target of the response.

RSVD 1

Total 32

Table 12. RSP_PRE Encodings

RSP_PRE[1:0] Response
00 Host Cache Miss to Local CPU socket
memory
01 Host Cache Hit
10 Host Cache Miss to Remote CPU socket
memory
11 Reserved

Table 13. Cache State Encoding for H2D Response

Cache State Encoding
Invalid (1) 4’b0011
Shared (S) 4’b0001
Exclusive (E) 4’b0010
Modified (M) 4’p0110
Error (Err) 4’b0100

3.2.3.6 H2D Data

Table 14. CXL.cache - H2D Data Header Fields (Sheet 1 of 2)

H2D Data Header WwWidth Description

Valid 1 The Valid field indicates that this is a valid data to the device.
Command Queue ID: This is a reflection of the CQID sent with the

CQID 12 D2H Request and indicates which device entry is the target of the
data transfer.
In case of a 32B transfer on CXL.cache, this indicates what 32 byte

ChunkValid 1 chunk of the cacheline is represented by this transfer. If not set, it
indicates the lower 32B and if set, it indicates the upper 32B. This
field is ignored for a 64B transfer.

June 2019
Revision 1.1

Compute Express Link Specification

41

EVALUATION COPY

Compute Express Link Transaction Layer

Table 14.

3.2.4

3.2.4.1

3.24.1.1

3.2.4.1.2

June 2019
Revision 1.1

CXL.cache - H2D Data Header Fields (Sheet 2 of 2)

H2D Data Header width Description

The Poison field indicates to the device that this data is corrupted and

Poison 1 as such should not be used.

The GO-ERR field indicates to the agent that this data is the result of

GO-Err 1 an error condition and should not be cached or provided as response
to snoops.

RSVD 8

Total 24

CXL.cache Transaction Description

Device to Host Requests

Device to Host (D2H) CXL.cache Request Semantics

For device to Host requests there are four different semantics: CXL.cache Read,
CXL.cache Read0O, CXL.cache Read0O/Write, and CXL.cache Write. All device to Host
CXL.cache transactions fall into the one of these four semantics, though the allowable
responses and restrictions for each request type within a given semantic are different.

CXL.cache Read

CXL.cache Reads must have a D2H request credit and send a request message on the
D2H CXL.cache request channel. CXL.cache Read requests require zero or one
response (GO) message and data messages totaling a single 64 byte cache line of data.
Both the response, if present, and data messages are directed at the device tracker
entry provided in the initial D2H request packet’s CQid field. The device entry must
remain active until all the messages from the Host have been received. To ensure
forward progress the device must have a reserved data buffer to be able to accept all
64 bytes of data immediately after the request is sent. However, the device may
temporarily be unable to accept data from the Host due to prior data returns not
draining. Once both the response message and the data messages have been received
from the Host, the transaction can be considered complete and the entry de-allocated
from the device.

The figure below shows the elements required to complete a CXL.cache Read. Note that
the response (GO) message can be received before, after, or between the data
messages.

Compute Express Link Specification
42

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 18.

CXL.cache Read Behavior

Device

D2H

Message

Read Request

\D

=

H2D Res

o

w2D pat

/H
T

2D Datad

Requeﬁ Channg,
e

ponse Chanﬂe\

a Channé

channe!

\/
/ Data Message (32 B)

Host

\»

H2D
Response (GO}
Message — Not present for
RdCurr

o

H2D
Data Message (32 B)

H2D

3.2.4.1.3 CXL.cache ReadO

CXL.cache Read0 must have a D2H request credit and send a message on the D2H
CXL.cache request channel. CXL.cache ReadO requests receive a response message but
no data messages. The response message is directed at the device entry indicated in
the initial D2H request message’s CQIld value. Once the GO message is received for
these requests, they can be considered complete and the entry de-allocated from the
device. A data message must not be sent by the Host for these transactions. Most
special cycles (e.g., CLFlush) and other miscellaneous requests fall into this category.

Details in Table 15.

The following figure shows the elements required to complete a CXL.cache ReadO

transaction.

June 2019
Revision 1.1

Compute Express Link Specification
43

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 19.

3.2.4.1.4

June 2019
Revision 1.1

CXL.cache ReadO Behavior

Device Host
D2H
Read0 Request .
Message T— b
2H
€que,
*t Chanpe,
/,/
e— .
D
L H2D
¥ Response (GO}
o Message
nannel
b Resgons‘e C
—

CXL.cache Write

CXL.cache Write must have a D2H request credit before sending a request message on
the D2H CXL.cache request channel. Once the Host has received the request message,
it is required to send either two separate or one merged GO-1 and WritePull message.
The GO message must never arrive at the device before the WritePull but it can arrive
at the same time in the combined message. If the transaction requires posted
semantics then a combined GO-1/WritePull message can be used. If the transaction
requires non-posted semantics, then WritePull will be issued first followed by the GO-I
when the non-posted write is globally observed.

Upon receiving the GO-1 message, the device will consider the store done from a
memory ordering and cache coherency perspective, giving up snoop ownership of the
cache line (if the CXL.cache message is an Evict).

The WritePull message triggers the device to send data messages to the Host totaling
exactly 64 bytes of data, though any number of byte enables can be set.

A CXL.cache write transaction is considered complete by the device once the device has
received the GO-I message, and has sent the required data messages. At this point the
entry can be de-allocated from the device.

The Host considers a write to be done once it has received all 64 bytes of data, and has
sent the GO-I response message. All device writes and Evicts fall into the CXL.cache
Write semantic.

See Section Multiple Evicts to the same cache line for more information on restrictions
around multiple active write transactions.

Compute Express Link Specification
44

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 20 shows the elements required to complete a CXL.cache Write transaction (that
matches posted behavior). The WritePull (or the combined GO_WritePull) message
triggers the data messages. There are restrictions on Snoops and WritePulls. See
Section Device/Host Snoop/WritePull Assumptions for more details.

Figure 21 shows a case where the WritePull is a separate message from the GO (for
example: strongly ordered uncacheable write).

Figure 22 shows the Host FastGO plus ExtCmp responses for weakly ordered write

req uests.
Figure 20. CXL.cache Device to Host Write Behavior
Device Host
D2H
Write Request
Message \
D2y
Reque“ Chanp, '
e \
H2D
GO+Write Pull
‘/ combined Message
hanhe
/Hzg Response ©
D2H
Data Message
\DZH |
bl Chaﬂnel\
D2H
Data Message \
D2y
Pata Tanne!\
DONE
Compute Express Link Specification
June 2019 45

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 21.

June 2019
Revision 1.1

CXL.cache Wrinv Transaction

Device Host
D2H
Write Request
Message \D
ZH Re,
Ques;
t Channe,\
H2D
/ Write Pull Message
pannel
/\-\20 response U
D2H
Data Message
\DzH D,
al;
a3 Chanhef

\

D2H 02H pay,
Data Message

4420 Respons®

o

Cha”nel

Channe!

-

H2D Go Message

Compute Express Link Specification
46

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 22.

3.2.4.1.5

June 2019
Revision 1.1

WOWrlInv/F with FastGO/ExtCmp

Device Host

D2H

Write Request
Message \
D,

H2D
combined FastGO and Write Pull

/ Message
e

D2H
Data Message

\D
D2H
Data Message \
D2

2H
Dara Cha"‘lne/

H
Dagy Chan”e,

\

Cﬂannel/ H2D

2D Respons® ExtCmp Message

o

CXL.cache ReadO-Write Semantics

CXL.cache ReadO-Write requests must have a D2H request credit before sending a
request message on the D2H CXL.cache request channel. Once the Host has received
the request message, it is required to send one merged GO-I and WritePull message.

The WritePull message triggers the device to send the data messages to the Host,
which together transfer exactly 64 bytes of data though any number of byte enables
can be set.

A CXL.cache ReadO-write transaction is considered complete by the device once the
device has received the GO-lI message, and has sent the all required data messages. At
this point the entry can be de-allocated from the device.

The Host considers a readO-write to be done once it has received all 64 bytes of data,
and has sent the GO-I response message. ItoMWr falls into the ReadO-Write category.

Compute Express Link Specification
47

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 23.

June 2019
Revision 1.1

CXL.cache ReadO-Write Semantics

Device

Read0-Write Request

D2H

Message

\D
\D

\D

2H

112D Response

2H D3 ta

2/—,‘ Dafa

R.
queg; Charm
e

channel

Channe’

Cha”ne!

Host

I\;

H2D
Rsp GO-I/WritePull Message

—

DONE

Table 15 summarizes all the opcodes available from Device to Host.

Table 15.

CXL.cache. — Device to Host Requests (Sheet 1 of 2)

CXL.cache Opcode Semantic Opcode
RdCurr Read 00001
RdOwn Read 00010
RdShared Read 00011
RdAny Read 00100
RdOwnNoData ReadO 00101
ItoMWr ReadO-Write 00110
MemWr ReadO-Write 00111
CLFlush Read0 01000
CleanEvict Write 01001

Compute Express Link Specification

48

Compute Express Link Transaction Layer

>_
al
O
Z 52417
O
I_ 52418
<
D 52419
—J
< .
=
LL

Revision 1.1

Table 15. CXL.cache. — Device to Host Requests (Sheet 2 of 2)

CXL.cache Opcode Semantic Opcode
DirtyEvict Write 01010
CleanEvictNoData Write 01011
WOWrInv Write 01100
WOWTrInvF Write 01101
Wrlnv Write 01110
CacheFlushed ReadO 10000

RdCurr

These are full cache-line read requests from the device for lines to get the most current
data, but not change the existing state in any cache, including in the Host. The Host
does not need to track the cache-line in the device that issued the RdCurr. RdCurr gets
a data but no GO. The device receives the line in the Invalid state which means it gets
one use of the line and cannot cache it.

RdOwn

These are full cache-line reads requests from the device for lines to be cached in any
writeable state. Typically RAOwn request receives the line in Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdAOwn request may receive the line in Invalid (GO-I) or Error
(GO-Err) state. Both will return synthesized data of allls. The device is responsible for
handling the error appropriately.

RdShared

These are full cache-line read requests from the device for lines to cached in Shared
state. Typically, RdShared request receives the line in Shared (GO-S) state.

Under error conditions, a RdShared request may receive the line in Invalid (GO-I) or
Error (GO-Err) state. Both will return synthesized data of allls. The device is
responsible for handling the error appropriately.

RAANy

These are full cache-line read requests from the device for lines to cached in any state.
Typically, RdAny request receives the line in Shared (GO-S), Exclusive (GO-E) or
Modified (GO-M) state. Lines in Modified state must not be dropped, and have to be
written back to the Host.

Under error conditions, a RdAny request may receive the line in Invalid (GO-1) or Error

(GO-Err) state. Both will return synthesized data of allls. The device is responsible for
handling the error appropriately.

RdOwnNoData

These are requests to get exclusive ownership of the cache-line address indicated in
the address field. The typical response is Exclusive (GO-E).

Under error conditions, a RdOwnNoData request may receive the line in Error (GO-Err)
state. The device is responsible for handling the error appropriately.

Compute Express Link Specification
49

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.4.1.11

3.2.4.1.12

3.2.4.1.13

3.2.4.1.14

3.2.4.1.15

June 2019
Revision 1.1

ItoMWr

This command requests exclusive ownership of the cache-line address indicated in the
address field and atomically writes the cache-line back to the Host. The device
guarantees the entire line will be modified, so no data needs to be transferred to the
device. The typical response is GO-I1-WritePull, which is sent once the request is
granted ownership. The device must not retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate.

MemWr

The command behaves like the ItoMWr in that it atomically requests ownership of a
cache-line and then writes a full cache-line back to the fabric. However, it differs from
ItoMWr in where the data is written. Only if the command hits in a cache will the data
be written there, on a miss the data will be written to directly to memory. The typical
response is GO-I1-WritePull once the request is granted ownership. The device must not
retain a copy of the line.

If an error occurs, then GO-Err-WritePull is sent instead. The device sends the data to
the Host, which drops it. The device is responsible for handling the error as
appropriate.

CIFlush

This is a request to the Host to invalidate the cache-line specified in the address field.
The typical response is GO-I that will be sent from the Host upon completion in
memory.

Under error conditions, a CIFlush request may receive the line in the Error (GO-Err)
state. The device is responsible for handling the error appropriately.

CleanEvict

This is a request to the Host to evict a full 64 byte Exclusive cache line from the device.
Typically, CleanEvict receives GO-WritePull or GO-WritePullDrop. Receiving any means
the device must relinquish snoop ownership of the line. For GO-WritePull the device will
send the data as normal. For GO-WritePullDrop the device simply drops the data.

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull or GO-WritePullDrop, the device
must set the Bogus field in all D2H Data messages to indicate the data is now stale.

CleanEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one CleanEvict from the device may be pending on
CXL.cache for any given cache-line address.

CleanEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

DirtyEvict
This is a request to the Host to evict a full 64 byte Modified cache line from the device.

Typically, DirtyEvict receives GO-WritePull from the Host at which point the device must
relinquish snoop ownership of the line and send the data as normal.

Compute Express Link Specification
50

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.4.1.16

3.2.4.1.17

3.2.4.1.18

3.2.4.1.19

3.2.4.1.20

June 2019
Revision 1.1

Once the device has issued this command and the address is subsequently snooped,
but before the device has received the GO-WritePull, the device must set the Bogus
field in all D2H Data messages to indicate the data is now stale.

DirtyEvict requests also guarantee to the Host that the device no longer contains any
cached copies of this line. Only one DirtyEvict from the device may be pending on
CXL.cache for any given cache-line address.

In error conditions, a GO-Err-WritePull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate.

DirtyEvict is only expected for host-attached memory range of addresses. For device-
attached memory range, the equivalent operation can be completed internally within
the device without sending a transaction to the Host.

CleanEvictNoData

This is a request for the device to update the Host that a clean line is dropped in the
device. The sole purpose of this request is to update any snoop filters in the Host and
no data will be exchanged.

CleanEvictNoData is only expected for host-attached memory range of addresses. For
device-attached memory range, the equivalent operation can be completed internally
within the device without sending a transaction to the Host.

WOWTrlnv

This is a weakly ordered write invalidate line request of 0-63 bytes for write combining
type stores. Any combination of byte enables may be set.

Typically, WOWTrInv receives a FastGO-WritePull followed by an ExtCmp. Upon receiving
the FastGO-WritePull the device sends the data to the Host. For host-attached memory,
the Host sends the ExtCmp once the write is complete in memory.

In error conditions, a GO-Err-Writepull will be received. The device will send the data as
normal, and the Host will drop it. The device is responsible for handling the error as
appropriate. An ExtCmp will still be sent by the Host after the GO-Err in all cases.

WOWTrInvF

Same as WOWrlInv (rules and flows), except it is a write of 64 bytes.

Wrlinv

This is a write invalidate line request of 0-64 bytes. Typically Wrinv receives a WritePull
followed by a GO. Upon getting the WritePull the device sends the data to the Host. The
Host sends GO once the write complete in memory (both, host-attached or device-
attached).

In error conditions, a GO-Err is received. The device is responsible for handling the
error as appropriate.

CacheFlushed

This is an indication sent by the device to inform the Host that its caches are flushed
and it no longer contains any cache-lines in the Shared, Exclusive or Modified state.
The Host can use this information to clear its snoop filters and block snoops to the
device and return a GO. Once the device receives the GO, it is guaranteed to not
receive any snoops from the Host until the device sends the next cacheable D2H
Request.

Compute Express Link Specification
51

EVALUATION COPY

Compute Express Link Transaction Layer

Table 16.

Table 17.

June 2019
Revision 1.1

D2H Request (targeting non-device-attached memory) supported H2D

Responses

o —
D2H Request RERE
E Q& T
= & 1|8 &
EIRIEEIEIE|Elz|e|w]=
gIEleEZ 2218182
S |Ti|d |E|Q e |O ©
; o ; O |w
o 1| @ I
o2 |8
G (G}
CLFlush X | X
RdShared X| X | X
RdAny X | X[X|[X] X
ItoMWr X X
MemWr X X
CacheFlushed X
RdCurr
RdOwn X | X X | X
RdOwnNoData X X
CleanEvict X X
DirtyEvict X X
CleanEvictNoData X
WOWTrinv X X | X
WOWTrInvF X X | X
Wrinv X X | X

For requests targeting device-attached memory, if the region is in Device Bias, no
transaction is expected on CXL.cache since the Device can complete those requests
internally. If the region is in Host Bias, the table below shows how the device should

expect the response

D2H Request (Targeting Device-attached Memory) Supported Responses

(Sheet 1 of 2)

D2H Request

Response on CXL.mem

Response on CXL.cache

RdCurr MemRdFwd None
RdOwn MemRdFwd None
RdShared MemRdFwd None
RdAny MemRdFwd None
RdOwnNoData MemRdFwd None
ItoMWr None Same as host-attached memory
MemWr None Same as host-attached memory
CLFlush MemRdFwd None

Compute Express Link Specification
52

Compute Express Link Transaction Layer

3.2.4.2

3.2.4.2.1

3.2.4.2.2

3.2.4.2.3

EVALUATION COPY

June 2019
Revision 1.1

Table 17.

D2H Request (Targeting Device-attached Memory) Supported Responses
(Sheet 2 of 2)

D2H Request Response on CXL.mem Response on CXL.cache

CleanEvict NA NA

DirtyEvict NA NA

CleanEvictNoData NA NA

WOWrlInv MemWrFwd None

WOWrInvF MemWrFwd None

Wrinv None Same as host-attached memory
CacheFlushed None Same as host-attached memory

Table 18.

CleanEvict, DirtyEvict and CleanEvictNoData targeting device-attached memory should
always be completed internally by the device, regardless of bias state. For D2H
Requests that receive a response on CXL.mem, the CQID associated with the
CXL.cache request is reflected in the Tag of the CXL.mem MemRdFwd or MemWrFwd
command. For MemRdFwd, the caching state of the line is reflected in the MetaValue
field as described in Table 24.

Device to Host Response

Responses are directed at the Host entry indicated in the UQId field in the original H2D
request message.

D2H Response Encodings

Device CXL.cache Rsp Opcode
RsplHit] 00100
RspVHitV 00110
RspIHitSE 00101
RspSHitSE 0ooco1
RspSFwdM 00111
RspIFwdM 01111
RspVFwdV 10110

RsplIHitl

In general, this is the response that a device provides to a snoop when the line was not
found in any caches. If the device returns RsplHitl for a snoop, the Host can assume
the line has been cleared from that device.

RspVHitV

In general, this is the response that a device provides to a snoop when the line was hit
in the cache and no state change occurred. If the device returns an RspVHitV for a
snoop, the Host can assume a copy of the line is present in one or more places in that
device.

RsplIHIitSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now invalid. If the device returns an
RsplHitSE for a snoop, the Host can assume the line has been cleared from that device.

Compute Express Link Specification
53

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.4.2.4

3.2.4.25

3.2.4.2.6

3.2.4.2.7

3.2.4.3

June 2019
Revision 1.1

RspSHItSE

In general, this is the response that a device provides to a snoop when the line was hit
in a clean state in at least one cache and is now downgraded to shared state. If the
device returns an RspSHitSE for a snoop, the Host should assume the line is still in the
device.

RspSFwdM

This response indicates to the Host that the line being snooped is now in S state in the
device, after having hit the line in Modified state. The device may choose to downgrade
the line to Invalid. This response also indicates to the Host snoop tracking logic that 64
bytes of data will be transferred on the D2H CXL.cache Data Channel to the Host data
buffer indicated in the original snoop’s destination (UQid).

RsplFwdM

(aka HITM) This response indicates to the Host that the line being snooped is now in |
state in the device, after having hit the line in Modified state. The Host may now
assume the device contains no more cached copies of this line. This response also
indicates to the Host snoop tracking logic that 64 bytes of data will be transferred on
the D2H CXL.cache Data Channel to the Host data buffer indicated in the original
snoop’s destination (UQid).

RspVFwdV

This response indicates that the device is returning the current data to the Host and
leaving the state unchanged. The Host must only forward the data to the requestor
since there is no state information.

Host to Device Requests

Snoops from the Host need not gain any credits besides local H2D request credits. The
device will always send a Snoop Response message on the D2H CXL.cache Response
channel. If the response is of the Rsp*Fwd* format, then the device must respond with
64 bytes of data via the D2H Data channel, directed at the UQid from the original snoop
request message. If the response is not Rsp*Fwd*, the Host can consider the request
complete upon receiving all of the snoop response messages. The device can stop
tracking the snoop once the response has been sent for non-data forwarding cases, or
after both the last chunk of data has been sent and the response has been sent.

The figure below shows the elements required to complete a CXL.cache snoop. Note
that the response message can be received by the Host with any relative order with the
data messages. The byte enable field is always all 1s for Snoop data transfers.

Compute Express Link Specification
54

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 24. CXL.cache Snoop Behavior
Device Host
- H2D
Snoop Request Message
/HZD ReGUeSt Chanﬂe‘
D2H
Response (Rsp-X) Message \
if RsplFwdM \ DONE (if NOT Rsp*Fwd*)
D2H
Data Message
D2H
Data Message \
DONE (if RsplFwdM)
Table 19. CXL.cache — Mapping of Host to Device Requests & Responses
L
[} el 2] LLJnJ 123 % %
S|zl |5z |3 |23
o] = I T L I
o > L
= I I I - I -
e} & & 7 7] %) 7] 7]
@ 14 nd o ©
SnpData ‘001 X X X X
Snplnv ‘010 X X X
SnpCurr ‘011 X X X X X X
3.2.4.3.1 SnpData
These are snoop requests from the Host for lines that are intended to be cached in
either Shared or Exclusive state at the requester (the Exclusive state can be cached at
the requester only if all devices respond with Rspl). This type of snoop is typically
Compute Express Link Specification
June 2019

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.4.3.2

3.2.4.3.3

3.2.4.4

Table 20.

3.2.4.4.1

3.2.4.4.2

June 2019
Revision 1.1

triggered by data read requests. A device that receives this snoop must either
invalidate or downgrade all cache lines to Shared state. If the device holds dirty data it
must return it to the Host.

Snplnv

These are snoop requests from the Host for lines that are intended to be granted
ownership and Exclusive state at the requester. This type of snoop is typically triggered
by write requests. A device that receives this snoop must invalidate all cache lines. If
the device holds dirty data it must return it to the Host.

SnpCur
This snoop gets the current version of the line, but doesn’t require change of any cache
state in the hierarchy. It is only sent on behalf of the RdCurr request. If the device

holds data in Modified state it must return it to the Host. The cache state can remain
unchanged in both the device and Host, and the Host should not update its caches.

Host to Device Response

H2D Response Opcode Encodings

H2D Response Class Encoding RspData
WritePull 0001 uQID
GO 0100 MESI
GO_ WritePull 0101 uQID
ExtCmp 0110 Don’t Care
GO_WritePull_Drop 1000 uQID
Fast_GO 1100 Don’t Care
Fast_GO_WritePull 1101 uQID
GO_ERR_WritePull 1111 uQID
WritePull

This response tells the device to send the write data to the Host, but not to change the
state of the line. This is used for Wrinv where the data is needed before the GO-I can
be sent. This is because GO-I is the notification that the write was completed by 1/0.

GO

The Global Observation (GO) message conveys that read requests are coherent and
that write requests are coherent and consistent. It is an indication that the transaction
has been observed by the system device and the MESI state that is encoded in the
RspType field indicates what state the data associated with the transaction should be
put in for the requester’s caches. Details in Table 11.

If the Host returns Modified state to the device, then the device is responsible for the
dirty data and cannot drop the line without writing it back to the Host.

If the Host returns Invalid or Error state to the device, then the device must use the
data at most once and not cache the data. Error responses to reads and cacheable
write requests (for example, RdOwn or ItoMWr) will always be the result of an abort
condition, so modified data can be safely dropped in the device.

Compute Express Link Specification
56

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.4.4.3

3.2.4.4.4

3.2.4.4.5

3.2.4.4.6

3.2.4.47

3.2.4.4.8

3.2.5

3.2.5.1

3.2.5.2

June 2019
Revision 1.1

GO_WritePull

This is a combined GO + WritePull message. No cache state is transferred to the device.
The GO+WritePull message is used for posted write types.

ExtCmp

This response indicates that the data that was previously locally ordered (FastGO) has
been observed throughout the system. Most importantly, accesses to memory will
return the most up to date data.

GO_WritePull_Drop

This message has the same semantics as Go_WritePull, except that the device should
not send data to the Host. This response can be sent in place of GO_WritePull when the
Host determines that the data is not required. This response will never be sent for
partial writes since the byte enables will always need to be transferred.

Fast_GO

Similar to GO, but only indicates that the request is locally observed. There will be a
later ExtCmp message when the transaction is fully observable in memory. Devices that
do not implement the Fast_GO feature may ignore this message and wait for the
ExtCMP.

Fast _GO_WritePull

Similar to GO_WritePull, but only indicates that the request is locally observed. There
will be a later ExtCmp message when the transaction is fully observable in memory.
Devices that do not implement the Fast_GO feature may ignore the GO message and
wait for the ExtCMP. Data must always be sent for the WritePull though. No cache state
is transferred to the device.

GO_ERR_WritePull

Similar to GO_WritePull, but indicates that there was an error with the transaction that
should be handled properly in the device. Data must be sent to the Host for the
WritePull, and the Host will drop the data. No cache state is transferred to the device
(assumed Error). An ExtCmp is still sent if it is expected by the originating request.

Cacheability Details and Request Restrictions

These details and restrictions apply to all devices.

GO-M Responses

GO-M responses from the Host indicate that the device is being granted the sole copy
of modified data. The device must cache this data and write it back when it is done.

Device/Host Snoop-GO-Data Assumptions

When the Host returns a GO response to a device, the expectation is that a snoop
arriving to the same address of the request receiving the GO would see the results of
that GO. For example, if the Host sends GO-E for an RdOwn request followed by a
snoop to the same address immediately afterwards, then one would expect the device
to transition the line to M state and reply with an RsplFwdM response back to the Host.
In order to implement this principle, CXL.cache link layer ensures that the device will
receive the two messages in separate slots to make the order completely
unambiguous.

Compute Express Link Specification
57

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.5.3

3.2.5.4

3.2.5.5

3.2.5.6

3.2.5.7

June 2019
Revision 1.1

When the Host is sending a snoop to the device, the requirement is that no GO
response will be sent to any requests with that address in the device until after the
Host has received a response for the snoop and all implicit writeback (IWB) data (dirty
data forwarded in response to a snoop) has been received.

When the Host returns data to the device for a read type request, and GO for that
request has not yet been sent to the device, the Host may not send a snoop to that
address until after the GO message has been sent. Since the new cache state is
encoded in the response message for reads, sending a snoop to an address without
having received GO, but after having received data, is ambiguous to the device as to
what the snoop response should be in that situation.

Fundamentally, the GO that is associated with a read request also applies to the data
returned with that request. Sending data for a read request implies that that data is
valid, meaning the device can consume it even if the GO has not yet arrived. The GO
will arrive later and inform the device what state to cache the line in (if at all) and
whether or not the data was the result of an error condition (such as hitting an address
region the device was not allowed to access).

Device/Host Snoop/WritePull Assumptions

The device requires that the Host cannot have both a WritePull and H2D Snoop active
on CXL.cache to a given 64 byte address. The Host may not launch a snoop to a 64
byte address until all WritePull data from that address has been received by the Host.
Conversely, the Host may not launch a WritePull for a write until the Host has received
the snoop response (including data in case of Rsp*Fwd*) for any snoops to the pending
writes address. Any violation of these requirements will mean that the Bogus field on
the D2H Data channel will be unreliable.

Snoop Responses and Data Transfer on CXL.cache Evicts

In order to snoop cache evictions (for example, DirtyEvict) and maintain an orderly
transfer of snoop ownership from the device to the Host, cache evictions on CXL.cache
must adhere to the following protocol.

If a device Evict transaction has been issued on the CXL.cache D2H request channel,
but has not yet processed its WritePull from the Host, and a snoop hits the WB, the
device must track this snoop hit. When the device begins to process the WritePull, the
device must set the Bogus field in all of the D2H data messages sent to the Host. The
intent is to communicate to the Host that the request data was already sent as IWB
data, so the data from the Evict is potentially stale.

Multiple Snoops to the same address
The Host is only allowed to have one snoop outstanding to a given cache line address to

a given device at one time. The Host must wait until it has received both the snoop
response and all IWB data (if any) before dispatching the next snoop to that address.

Multiple Reads to the same cache line
Multiple read requests (cacheable or uncacheable) to the same cache line are allowed.

The Host can freely reorder requests, so the device is responsible for ordering requests
when required.

Multiple Evicts to the same cache line

Multiple Evicts to the same cache line are not allowed. The second Evict may only be
issued after the first receives both the CXL.cache GO-I response and the WritePull.

Compute Express Link Specification
58

EVALUATION COPY

Compute Express Link Transaction Layer

3.2.5.8

3.2.5.9

3.2.5.10

3.2.5.11

3.2.5.12

3.2.5.13

June 2019
Revision 1.1

Since Evict guarantees that the evicted cache line is otherwise in the initiating device, it
is impossible to send another Evict without an intervening cacheable Read/ReadO
request to that address.

Multiple WriteRequests to the same cache line

Multiple Wrinv/WOWTrlInv/ItoMWr/MemWTr to the same cache line are allowed to be
outstanding on CXL.cache. The Host can freely reorder requests, so the device is
responsible for ordering requests when required.

Normal Global Observation (GO)

Normal Global Observation (GO) responses are sent only after the Host has guaranteed
that request will have next ownership of the requested cache line. GO messages for
requests carry the cache line state permitted through the MESI state or indicate that
the data should only be used once and whether or not an error occurred.

Relaxed Global Observation (FastGO)

FastGO is only allowed for requests that do not require strict ordering. The Host may
return the FastGO once the request is guaranteed next ownership of the requested
cache-line within the socket, but not necessarily in the system. Requests that receive a
FastGO response and require completion messages are usually of the write combining
memory type and the ordering requirement is that there will be a final completion
(ExtCmp) message indicating that the request is at the stage where it is fully observed
throughout the system.

Evict to Device-Attached Memory

Device Evicts to device-attached memory are not allowed on CXL.cache. The device is
only allowed to issue Wrlnv, WOWrInv* to device-attached memory.

Memory Type on CXL.cache

To source requests on CXL.cache, devices need to get the Host Physical Address (HPA)
from the Host by means of an ATS request on CXL.io. Due to memory type restrictions,
on the ATS completion, the Host indicates to the device if a HPA can only be issued on
CXL.io as described in Section 3.1.5. The device is not allowed to issue requests to such
HPAs on CXL.cache.

General Assumptions

1. The Host will NOT preserve ordering of the CXL.cache requests as delivered by the
device. The device must maintain the ordering of requests for the case(s) where
ordering matters. For example, if D2H memory writes need to be ordered with
respect to a MSI (on CXL.i0), it is up to the device to implement the ordering. This
is made possible by the non-posted nature of all requests on CXL.cache.

2. The order chosen by the Host will be conveyed differently for reads and writes. For
reads, a Global Observation (GO) message conveys next ownership of the
addressed cache line; the data message conveys ordering with respect to other
transactions. For writes, the GO message conveys both next ownership of the line
and ordering with respect to other transactions.

3. The device may cache ownership and internally order writes to an address if a prior
read to that address received either GO-E or GO-M.

4. For reads from the device, the Host transfers ownership of the cache line with the
GO message, even if the data response has not yet been received by the device.
The device must respond to a snoop to a cache line which has received GO, but if

Compute Express Link Specification
59

EVALUATION COPY

Compute Express Link Transaction Layer

0
W

3.3.1

June 2019
Revision 1.1

data from the current transaction is required (e.g., a RdOwn to write the line) the
data portion of the snoop is delayed until the data response is received.

5. The Host must not send a snoop for an address where the device has received a
data response for a previous read transaction but has not yet received the GO.
Refer to Section 3.2.5.2

6. Write requests (other than Evicts) such as Wrinv, WOWrlInv*, ItoMWr and MemWr
will never respond to WritePulls with data marked as Bogus.

7. The Host must not send two cache-line data responses to the same device request.
The device may assume one-time use ownership (based on the request) and begin
processing for any part of a cache line received by the device before the GO
message. Final state information will arrive with the GO message, at which time the
device can either cache the line or drop it depending on the response.

8. For a given transaction, H2D Data transfers may be done in any order, and may be
interleaved with data transfers for other transactions.

9. D2H Data transfer of a cache line must come in consecutive packets with no
interleaved transfers from other lines. The data must come in natural chunk order,
that is, 64B transfers must complete the lower 32B half first, since snoops are
always cache line aligned.

10. Device snoop responses in D2H Response must not be dependent on any other
channel or on any other requests in the device besides the availability of credits in
the D2H Response channel. The Host must guarantee that the responses will
eventually be serviced and return credits to the device.

11. The Host must not send a second snoop request to an address until all responses,
plus data if required, for the prior snoop are collected.

12.H2D Response and H2D Data messages to the device must drain without the need
for any other transaction to make progress.

13. The Host must not return GO-M for data that is not actually modified with respect
to memory.

14.The Host must not write unmodified data back to memory.
15. Except for WOWrInv and WOWrInF, all other writes are strongly ordered

CXL.mem

Introduction

The CXL Memory Protocol is called CXL.mem, and it is a transactional interface between
the CPU and Memory. It uses the phy and link layer of Compute Express Link (CXL)
when communicating across dies. The protocol can be used for multiple different
Memory attach options including when the Memory Controller is located in the Host
CPU, when the Memory Controller is within an Accelerator device, or when the Memory
Controller is moved to a memory buffer chip. It applies to different Memory types
(volatile, persistent etc) and configurations (flat, hierarchical etc) as well.

The coherency engine in the CPU interfaces with the Memory (Mem) using CXL.mem
requests and responses. In this configuration, the CPU coherency engine is regarded as
the CXL.mem Master and the Mem device is regarded as the CXL.mem Subordinate.
The CXL.mem Master is the agent which is responsible for sourcing CXL.mem requests
(reads, writes etc) and a CXL.mem Subordinate is the agent which is responsible for
responding to CXL.mem requests (data, completions etc).

When the Subordinate is an Accelerator, CXL.mem protocol assumes the presence of a
device coherency engine (DCOH). This agent is assumed to be responsible for
implementing coherency related functions such as snooping of device caches based on
CXL.mem commands and update of Meta Data fields. Support for memory with Meta

Compute Express Link Specification
60

EVALUATION COPY

Compute Express Link Transaction Layer

3.3.2

Table 21.

June 2019
Revision 1.1

Data is optional but this needs to be negotiated with the Host in advance. The
negotiation mechanisms is outside the scope of this specification. If Meta Data is not
supported by device-attached memory, the DCOH will still need to use the Host
supplied Meta Data updates to interpret the commands. If Meta Data is supported by
device-attached memory, it can be used by Host to implement a coarse snoop filter for
CPU sockets.

CXL.mem transactions from Master to Subordinate are called "M2S" and transactions
from Subordinate to Master are called “S2M”.

Within M2S transactions, there are two message classes:
= Request without data - generically called Requests (Req)
* Request with Data - (RwD)

Similarly, within S2M transactions, there are two message classes:
« Response without data - generically called No Data Response (NDR)

« Response with data - generically called Data Response (DRS)

The next sections describe the above message classes and opcodes in detail.

M2S Request (Req)

The Req message class generically contains reads, invalidates and signals going from
the Master to the Subordinate.

M2S Request Fields

Field Bits Description

Valid 1 The valid signal indicates that this is a valid request

Memory Operation — This specifies which, if any, operation needs to be

MemOpcode 4 performed on the data and associated information. Details in Table 22

Meta Data Field — Up to 3 Meta Data Fields can be addressed. This specifies
which, if any, Meta Data Field needs to be updated. Details of Meta Data
Field in Table 23. If the Subordinate does not support memory with Meta
Data, this field will still be used by the DCOH for interpreting Host
commands as described in Table 24

MetaField 2

Meta Data Value - When MetaField is not No-Op, this specifies the value the
field needs to be updated to. Details in Table 24. If the Subordinate does not
support memory with Meta Data, this field will still be used by the device

coherence engine for interpreting Host commands as described in Table 24

MetaValue 2

Snoop Type - This specifies what snoop type, if any, needs to be issued by
the DCOH and the minimum coherency state required by the Host. Details in
Table 25

SnpType 3

This field specifies the Host Physical Address associated with the
MemOpcode. Addr[5] is provisioned for future usages such as critical chunk
first.

Address[51:5] 47

The Tag field is used to specify the source entry in the Master which is pre-
allocated for the duration of the CXL.mem transaction. This value needs to

Tag 16 be reflected with the response from the Subordinate so the response can be
routed appropriately. The exceptions are the MemRdFwd and MemWrFwd
opcodes as described in Table 22

TC > Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.

RSVD 10 Reserved

Total 87

Compute Express Link Specification
61

EVALUATION COPY

Compute Express Link Transaction Layer

Table 22. M2S Req Memory Opcodes
Opcode Description Encoding
Invalidation request from the Master. Primarily for Meta Data updates. No data read or .
MemlInv . X " . . A 0000
write required. If SnpType field contains valid commands, perform required snoops.
MemRd Normal memory data read operation. If MetaField contains valid commands, perform 0001
Meta Data updates. If SnpType field contains valid commands, perform required snoops.
Normal Memory data read operation. MetaField & MetaValue to be ignored. Instead,
update MetaO-State as follows:
MemRdData If initial MetaO-State value = ‘I’, update MetaO-State value to ‘A’ ‘0010
Else, no update required
If SnpType field contains valid commands, perform required snoops.
This is an indication from the Host that data can be directly forwarded from device-
attached memory to the device without any completion to the Host. This is typically sent
MemRdFwd as a result of a CXL.cache D2H read request to device-attached memory. The Tag field ‘0011
contains the reflected CQID sent along with the D2H read request. The SnpType is always
NoOp for this Opcode. The caching state of the line is reflected in MetaO-State value.
This is an indication from the Host to the device that it owns the line and can update it
without any completion to the Host. This is typically sent as a result of a CXL.cache D2H
MemWrFwd write request to device-attached memory. The Tag field contains the reflected CQID sent | ‘0100
along with the D2H write request. The SnpType is always NoOp for this Opcode. The
caching state of the line is reflected in MetaO-State value.
This is similar to the MemInv command except that the NT is a hint that indicates the
MemInvNT invalidation is non-temporal and the writeback is expected soon. However, this is a hint ‘1001
and not a guarantee.
‘0110
Reserved Reserved ‘0111
‘Others
Table 23. Meta Data Field Definition
Meta Field Description Encoding
MetaO - State Update the Metadata bits with the value in the Meta Data Value field. Details 00
of MetaValue associated with MetaO-State in Table 24
o1
Reserved Reserved
10
No-Op No meta data operation. Ignore value in MetaValue field 11
Compute Express Link Specification
June 2019 62

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

Table 24. MetaO-State Value Definition
Encoding Description
Invalid (1) - Indicates the Host does not have a cacheable copy of the line. The DCOH can
2’600 use this information to grant exclusive ownership of the line to the device. When paired
with a MemOpcode = MemlInv and SnpType = Snplnv, this is used to communicate that
the device should flush this line from its caches, if cached, to device-attached memory.
Any (A) - Indicates the Host may have an shared, exclusive or modified copy of the line.
2b10 The DCOH can use this information to interpret that the Host likely wants to update the
line and the device should not be given a copy of the line without first sending a request
to the Host.
Shared (S) - Indicates the Host may have at most a shared copy of the line. The DCOH
can use this information to interpret that the Host does not have an exclusive or modified
2’bll copy of the line. If the device wants a shared or current copy of the line, the DCOH can
provide this without sending a request to the Host. If the device wants an exclusive copy
of the line, the DCOH will have to send a request to the Host first.
2’b01 Reserved
Table 25. Snoop Type Definition
SnpType Description Description Encoding
No-Op No snoop needs to be performed 000
Snoop may be required - the requester needs at least a Shared copy of the line.
SnpData h ; - h 001
Device may choose to give an exclusive copy of line as well.
Snoop may be required - the requester needs the current value of the line.
SnpCur Requester guarantees the line will not be cached. Device need not change the state | 010
of the line in its caches, if present.
Snplnv Snoop may be required - the requester needs an exclusive copy of the line. 011
Reserved Ixx
Valid M2S request semantics are described below.
Table 26. M2S Req Usage (Sheet 1 of 2)
. Meta A
M2S Req Meta Field value SnpType S2M NDR S2M DRS Description
MemRd MetaO-State A Snplinv Cmp-E MemData The HO.St wants an exclusive copy
of the line
_ Cmp-S or The Host wants a shared copy of
MemRd MetaO-State S SnpData Cmp-E MemData the line
The Host wants a non-cacheable
MemRd No-Op NA SnpCur Cmp MembData but current value of the line
The Host wants a non-cacheable
value of the line and the device
MemRd No-Op NA Snpinv Cmp MembData should invalidate the line from its
caches
MemInv MetaO-State | A Snplinv Cmp-E NA The Host wants ownership of the
line without data
Compute Express Link Specification
June 2019 63

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

Table 26. M2S Req Usage (Sheet 2 of 2)
. Meta A
M2S Req Meta Field value SnpType S2M NDR S2M DRS Description
The Host wants ownership of the
line without data. However, the
MemInvNT MetaO-State A Snpinv Cmp-E NA Host expects this to be non-
temporal and may do a writeback
soon.
The Host wants the device to
Meminv Meta0-State ! Snplnv Cmp NA invalidate the line from its caches
MemRdData NA NA SnpData Cmp-S or MemData The_Host wants a cacheable copy
Cmp-E in either exclusive or shared state
3.3.3 M2S Request with Data (RwD)
The Request with Data (RwD) message class generally contains writes from the Master
to the Subordinate.
Table 27. M2S RwD Fields
Field Bits Description
Valid 1 The valid signal indicates that this is a valid request
MemOncode 4 Memory Operation — This specifies which, if any, operation needs to be
P performed on the data and associated information. Details in Table 28
Meta Data Field — Up to 3 Meta Data Fields can be addressed. This
specifies which, if any, Meta Data Field needs to be updated. Details of
MetaField 2 Meta Data Field in Table 23. If the Subordinate does not support
memory with Meta Data, this field will still be used by the DCOH for
interpreting Host commands as described in Table 24
Meta Data Value - When MetaField is not No-Op, this specifies the value
the field needs to be updated to. Details in Table 24. If the Subordinate
MetaValue 2 does not support memory with Meta Data, this field will still be used by
the device coherence engine for interpreting Host commands as
described in Table 24
Snoop Type - This specifies what snoop type, if any, needs to be issued
SnpType 3 by the DCOH and the minimum coherency state required by the Host.
Details in Table 25
. This field specifies the Host Physical Address associated with the
Address[51:6] 46 MemOpcode.
The Tag field is used to specify the source entry in the Master which is
Ta 16 pre-allocated for the duration of the CXL.mem transaction. This value
9 needs to be reflected with the response from the Subordinate so the
response can be routed appropriately.
TC > Traffic Class - This can be used by the Master to specify the Quality of
Service associated with the request. This is reserved for future usage.
Poison 1 This indicates that the data contains an error. The handling of poisoned
data is device specific. Please refer to the Chapter 12 for more details.
RSVD 10
Total 87
Compute Express Link Specification
June 2019

Revision 1.1

64

EVALUATION COPY

Compute Express Link Transaction Layer

Table 28. M2S RwD Memory Opcodes
Opcode Description Encoding
Memory write command. Used for full line writes. If MetaField contains valid commands,
MemWr perform Meta Data updates. If SnpType field contains valid commands, perform required ‘0001
snoops. If the snoop hits a Modified cacheline in the device, the DCOH will invalidate the
cache and write the data from the Host to device-attached memory.
Memory Write Partial. Contains 64 byte enables, one for each byte
of data. If MetaField contains valid commands, perform Meta Data updates. If SnpType
MemWrPtl field contains valid commands, perform required snoops. If the snoop hits a Modified ‘0010
cacheline in the device, the DCOH will need to perform a merge, invalidate the cache and
write the contents back to device-attached memory.
Reserved Reserved Others
The definition of other fields are consistent with M2S Req (refer to M2S Request (Req)).
Valid M2S RwD semantics are described below.
Table 29. M2S RwD Usage
. Meta A
M2S Req Meta Field value SnpType S2M NDR Description
The Host wants to write the line back to memory
MemWr Meta0-State ! No-Op Cmp and does not retain a cacheable copy.
The Host wants to write the line back to memory
MemWr MetaO-State A No-Op Cmp and retains a cacheable copy in shared, exclusive
or modified state.
The Host wants to write the line back to memory
and does not retain a cacheable copy. In
- addition, the Host did not get ownership of the
Memwr Meta0-State ! Snpinv Cmp line before doing this write and needs the device
to snoop-invalidate its caches before doing the
write back to memory.
Same as the above row except the data being
MemWrPtl MetaO-State | Snpinv Cmp written is partial and the device needs to merge
the data if it finds a copy of the line in its caches.
3.3.4 S2M No Data Response (NDR)
The NDR message class contains completions and indications from the Subordinate to
the Master.
Table 30. S2M NDR Fields
Field Bits Description
Valid 1 The valid signal indicates that this is a valid request
Opcode 3 Memory Operation — This specifies which, if any, operation needs to be
P performed on the data and associated information. Details in Table 31
Meta Data Field — For devices that support memory with meta data, this
MetaField 2 is a reflection of the value sent in the associated M2S Req or M2S RwD.
For devices that do not, this field is a don’t care.
Compute Express Link Specification
June 2019 65

Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

Table 30. S2M NDR Fields
Field Bits Description
Meta Data Value — For M2S Req, for devices that support memory with
meta data, this is the initial value of the Meta Data Field as read from
MetaValue 2 memory for a M2S Req that does not return a S2M DRS. For M2S RwD
and for devices that do not support memory with meta data, this field is
a don’t care.
Ta 16 Tag - This is a reflection of the Tag field sent with the associated M2S
9 Req or M2S RwD.
RSVD 4
Total 28
Opcodes for the NDR message class are defined in the table below.
Table 31. S2M NDR Opcodes
Opcode Description Encoding
Cmp Completions for Writebacks, Reads and Invalidates ‘000
Cmp-S Indication from the DCOH to the Host for Shared state ‘001
Cmp-E Indication from the DCOH to the Host for Exclusive ownership ‘010
Definition of other fields are the same as for M2S message classes.
3.3.5 S2M Data Response (DRS)
The DRS message class contains memory read data from the Subordinate to the
Master.
The fields of the DRS message class are defined in the table below.
Table 32. S2M DRS Fields
Field Bits Description
Valid 1 The valid signal indicates that this is a valid request.
Memory Operation — This specifies which, if any, operation needs
Opcode 3 to be performed on the data and associated information. Details
in Table 33.
Meta Data Field — For devices that support memory with meta
MetaField 2 data, this is a reflection of the value sent in the associated M2S
Req or M2S RwD. For devices that do not, this field is a don’t care.
Meta Data Value — For M2S Req, for devices that support memory
MetaVvalue > with meta data, this is the initial value of the Meta Data Field as
read from memory. For M2S RwD and for devices that do not
support memory with meta data, this field is a don’t care.
Ta 16 Tag - This is a reflection of the Tag field sent with the associated
9 M2S Req or M2S RwD.
This indicates that the data contains an error. The handling of
Poison 1 poisoned data is Host specific. Please refer to the Chapter 12 for
more details.
RSVD 15
Total 40
Compute Express Link Specification
June 2019 66

Revision 1.1

Compute Express Link Transaction Layer

Table 33.

S2M DRS Opcodes

Opcode

Description Encoding

MemData

Memory read data. Sent in response to Reads. ‘000

3.3.6

3.4

3.4.1

3.4.1.1

EVALUATION COPY

June 2019
Revision 1.1

Forward Progress & Ordering Rules

» Reqg & RwD message classes, each, need to be credited independently between
each hop in a multi-hop fabric. Back pressure, due to lack of resources at the
destination, is allowed. However, these must eventually drain without dependency
on any other traffic type.

« No transaction should pass a MemRdFwd or a MemWrFwd, if the transaction and
MemRdFwd or MemWrFwd are to the same cacheline address.

Reason: As described in Table 22, MemRdFwd and MemWrFwd opcodes, sent on the
Req message class are, in fact, responses to CXL.cache D2H requests. The reason
the response for certain CXL.cache D2H requests are on CXL.mem Req channel is

to ensure subsequent requests from the Host to the same address remain ordered
behind it. This allows the host and device to avoid race conditions. An example of a
transaction flow is shown Figure 37.

- Apart from the above, there is no ordering requirement for the Req, RwD, NDR &
DRS message classes or for different addresses within the Req message class.

< NDR & DRS message classes, each, need to be pre-allocated at the source. This
guarantees that the responses can sink and ensures forward progress.

= On CXL.mem, a strongly ordered write request needs to be completed before
another transaction is issued to the same address.

= CXL.mem requests need to make forward progress at the device without any
dependency on any device initiated request. This includes any request from the
device on CXL.io or CXL.cache.

e M2S & S2M Data transfer of a cache line must occur with no interleaved transfers
from other lines. The data must come in natural chunk order, that is, 64B transfers
must complete the lower 32B half first.

Transaction Flows to Device-Attached Memory

Flows for Type 1 and Type 2 Devices

Notes and Assumptions

The transaction flow diagrams below are intended to be illustrative of the flows
between the Host and device for access to device-attached Memory using the Bias
Based Coherency mechanism described in Section 2.0. However, these flows are not
comprehensive of every Host and device interaction. The diagrams below make the
following assumptions:

= The device contains a coherency engine which is called DCOH in the diagrams
below.

e The DCOH contains a Snoop Filter which tracks any caches (called Dev cache)
implemented on the device. This is not strictly required and the device is free to
choose an implementation specific mechanism as long as the coherency rules are
obeyed.

« The DCOH contains a Bias Table lookup mechanism. The implementation of this is
device specific.

Compute Express Link Specification
67

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 25.

3.4.1.2

Figure 26.

June 2019
Revision 1.1

= The device specific aspects of the flow, illustrated using Red flow arrows, need not
conform exactly to the pictures below. These can be implemented in a device
specific manner.

Legend

———CXL.mem———

CXL.cache

—Dev Specific——p

Requests from Host

Please note that the flows shown in this section (Requests from Host) do not change on
the CXL interface regardless of the bias state of the target region. This effectively
means that the device needs to give the Host a consistent response, as expected by the
Host and shown below.

Example Cacheable Read from Host

Cacheable Read from Host

|

Host | DCOH Devs Dev Mem |

| |

: |

Mede'S”pDara._iH" :
Snpn,

I o atEI-—-______} a5 |

| - |

cmp-S’Tf |

e L

MEmDala |

| |

| |

| |

| |

| |

'L |

In the above example, the Host requested a cacheable non-exclusive copy of the line.
The non-exclusive aspect of the request is communicated using the “SnpData”
semantic. In this example, the request got a snoop filter hit in the DCOH, which caused
the device cache to be snooped. The device cache downgraded the state from Exclusive
to Shared and returned the Shared data copy to the Host. The Host is told of the state
of the line using the Cmp-S semantic.

Compute Express Link Specification
68

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 27.

June 2019
Revision 1.1

Example Read for Ownership from Host

Read for Ownership from Host

Host | DCOH Dev $
|
|
[Mempg §,, st
d F'Fnu-—._b
L_-__-_'sﬂpinu-____b
| ,_...--""r =1
| Dm,ﬁsﬂ*
£
Iy
«— P
1;=.r.em'\f|"*“ta
4
|
|
|
|
|
|
|
L -

In the above example, the Host requested a cacheable exclusive copy of the line. The
exclusive aspect of the request is communicated using the “Snplnv” semantic, which
asks the device to invalidate its caches. In this example, the request got a snoop filter
hit in the DCOH, which caused the device cache to be snooped. The device cache
downgraded the state from Exclusive to Invalid and returned the Exclusive data copy to
the Host. The Host is told of the state of the line using the Cmp-E semantic.

Compute Express Link Specification
69

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 28.

Figure 29.

June 2019
Revision 1.1

Example Non Cacheable Read from Host

Non Cacheable Read from Host

[~ Deviee |
Host ‘ DCOH Dev§ Dev Mem
\
\
Memd snpcy, 1
A r—]
[snpcur.
| I
| le— Rsp"-Dau/
Crd
— |
Memoﬂ/

In the above example, the Host requested a non-cacheable copy of the line. The non-
cacheable aspect of the request is communicated using the “SnpCurr” semantic. In this
example, the request got a snoop filter hit in the DCOH, which caused the device cache
to be snooped. The device cache did not need to change its caching state; however, it
gave the current snapshot of the data. The Host is told that it is not allowed to cache
the line using the Cmp semantic.

Example Ownership Request from Host - No Data Required

Ownership Request from Host —No Data Required

Host I DCOH Devs Dev Mem

xmemmv, Snginy, sefu
etaValye 1 10—

I /Rsp\’/
J—

cmp-E

In the above example, the Host requested exclusive access to a line without requiring

the device to send data. It communicates that to the device using an opcode of MemInv
with a MetaValue of ‘10 (Any), which is significant in this case. It also asks the device to
invalidate its caches with the Snplnv command. The device invalidates its caches and

gives exclusive ownership to the Host as communicated using the Cmp-E semantic.

Compute Express Link Specification
70

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 30.

Figure 31.

June 2019
Revision 1.1

Example Flush from Host

Flush from Host — No Data Required

Host | DCOH Devs Dev Mem

“—ﬁxem‘w Snbiny, srpie
el 00—y,
| I
|
| e
|
!
" 9‘["/‘

In the above example, the Host wants to flush a line from all caches, including the
device’s caches, to memory. To do so, it uses an opcode of MemInv with a MetaValue of
‘00 (Invalid) and a Snplnv. The device flushes its caches and returns a Cmp indication
to the Host.

Example Weakly Ordered Write from Host

Weakly Ordered Write from Host

Host I DCOH Dev $ Dev Mem

npln
T

\
\
\
\
\
\
\
manfpata \
\
\
\
\
\
\
\
\

In the above example, the Host issues a weakly ordered write (partial or full line). The
weakly ordered semantic is communicated by the embedded Snplnv. In this example,
the device had a copy of the line cached. This resulted in a merge within the device
before writing it back to memory and sending a Cmp indication to the Host.

Compute Express Link Specification
71

Compute Express Link Transaction Layer

Figure 32. Example Strongly Ordered Write from Host with Invalid Host Caches

Strongly Ordered Write from Host
with Invalid Caches

Host I DCOH Devs Dev Mem

In the above example, the Host performed a strongly ordered write while guaranteeing
to the device that it no longer has a valid cached copy of the line. The strong ordering
is demonstrated by the fact that the Host didn’t need to snoop the device’s caches
which means it previously acquired an exclusive copy of the line. The guarantee on no
valid cached copy is indicated by a MetaValue of ‘00 (Invalid).

Figure 33. Example Strongly Ordered Write from Host with Valid Caches

Strongly Ordered Write from Host
with valid Caches

The above example is the same as the previous one except that the Host chose to
retain a valid cacheable copy of the line after the write. This is communicated to the
device using a MetaValue of not ‘00 (Invalid).

EVALUATION COPY

Compute Express Link Specification
June 2019 72
Revision 1.1

EVALUATION COPY

Compute Express Link Transaction Layer

3.4.1.3

Figure 34.

June 2019
Revision 1.1

Requests from Device in Host & Device Bias

Example Device Read to Device-Attached Memory

Device Read to Device Memory

[Read—, |

| —0"

[
|
|
|
|
|
[
Dev Mem |
|
|
|
|
|
|
|
|

There are two flows shown above.

In the first one, a device read to device attached memory happened to find the line in
Host bias. Since it is in Host bias, the device needs to send the request to the Host to
resolve coherency. The Host, after resolving coherency, sends a MemRdFwd on
CXL.mem to complete the transaction, at which point the device can complete the read
internally.

In the second flow, the device read happened to find the line in Device Bias. Since it is
in Device Bias, the read can be completed entirely within the device itself and no
request needs to be sent to the Host.

Compute Express Link Specification
73

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 35.

June 2019
Revision 1.1

Example Device Write to Device-Attached Memory in Host Bias

Device Write to Device Memory

e i |
| Device I HDst
l |
| | WO Write e 2" |
| B
I g
I e T w
| e | e I
| .. I
| T . |
| : I
"
I "______..-C m ‘r-_______. I
I |
I |
| ™50 Write Rea_iij; Host |
|) :
|
I e —
I — I
AN P

| — I
| "“—-——Data_____—b I

Data |
| ey Mo i
I ei—]
| B
| Wiz |
| m I
I |

‘___j___*___

I Cmp |
| 13
| : I
I |
I |

There are two flows shown above, both with the line in Host Bias: a weakly ordered
write request and a strongly ordered write request.

In the case of the weakly ordered write request, the request is issued by the device to
the Host to resolve coherency. The Host resolves coherency and sends a CXL.mem
MemWrFwd opcode which carries the completion for the WOWrInv* command on
CXL.cache. The CQID associated with the CXL.cache WOWrInv* command is reflected
in the Tag of the CXL.mem MemWrFwd command. At this point, the device is allowed to
complete the write internally. After sending the MemWrFwd, since the Host no longer
fences against other accesses to the same line, this is considered a weakly ordered
write.

In the second flow, the write is strongly ordered. To preserve the strongly ordered
semantic, the Host fences against other accesses while this write completes. However,
as can be seen, this involves two transfers of the data across the link, which is not
efficient. Unless strongly ordered writes are absolutely required, better performance
can be achieved with weakly ordered writes.

Compute Express Link Specification
74

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 36.

June 2019
Revision 1.1

Example Device Write to Device-Attached Memory

Device Write to Device Memory

Host
Device

Dev Mem
\N\‘Puil-"""-
R Wi,
"

-_—_-_'Wmeﬂack ﬁ Host
Dev Mem
e |

——Dat.
a_———__’ '-"'-Wn-t

Again, two flows are shown above. In the first case, if a weakly or strongly ordered
write finds the line in Device Bias, the write can be completed entirely within the device
without having to send any indication to the Host.

The second flow shows a device writeback to device-attached memory. Please note that
if the device is doing a writeback to device-attached memory, regardless of bias state,
the request can be completed within the device without having to send a request to the
Host.

Compute Express Link Specification
75

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 37.

w
o1

June 2019
Revision 1.1

Example Host to Device Bias Flip

Host to Device Bias Flip

Agent

Bias = flost

Modifizd Line

" T
—— e
Bias { Device

Please note that the MemRdFwd will carry the CQID of the RdOwnNoData transaction in
the Tag. The reason for putting the RdOwnNoData completion (MemRdFwd) on
CXL.mem is to ensure that subsequent requests from the Host to the same address are
ordered behind the MemRdFwd. This allows the device to assume ownership of a line as
soon as it receives a MemRdFwd without having to monitor requests from the Host.

Flows for Type 3 Devices

Type 3 devices are memory expanders which neither cache host memory, nor require
active management of a device cache by the Host. Thus, Type 3 devices do not have a
DCOH agent. As such, the Host treats these devices as disaggregated memory
controllers. This allows the transaction flows to Type 3 devices to be simplified to just
two classes, reads and writes, as shown below. The legend shown in Figure 25 also
applies to the transaction flows shown below.

Compute Express Link Specification
76

EVALUATION COPY

Compute Express Link Transaction Layer

Figure 38.

Figure 39.

June 2019
Revision 1.1

Read from Host

Read from Host

Dev Mem
I Controller

|
S |
MR
+_*‘“-—Mem,u
| >

| ||
w02 T |
o

The key difference between reads to Type 1 and Type 2 devices versus Type 3 devices is
that there is no S2M NDR associated with it. Writes to Type 3 device always complete

with a S2M NDR Cmp message.

Write from Host

‘Write from Host

Dev Mem
I Controller

|
.
emwrw—t_»____Mede‘
| I
| /Da\a
s
je—

________31\\ S

Compute Express Link Specification
77

EVALUATION COPY

Compute Express Link Link Layers

4.0

Compute Express Link Link Layers

4.1

June 2019
Revision 1.1

CXL.io Link Layer

The CXL.io link layer acts as an intermediate stage between the CXL.io transaction
layer and the Flex Bus Physical layer. Its primary responsibility is to provide a reliable
mechanism for exchanging transaction layer packets (TLPs) between two components
on the link. The PCle Data Link Layer is utilized as the link layer for CXL.io Link layer.
Please refer to chapter titled “Data Link Layer Specification” in PCI Express Base
Specification for details.

Compute Express Link Specification
78

EVALUATION COPY

Compute Express Link Link Layers

Figure 40.

June 2019
Revision 1.1

Flex Bus Layers -- CXL.io Link Layer Highlighted

CXL Transaction Layer

~
PCle/CXL.io Transaction Layer

CE—

PCle CXLio
Transaction Transaction CXL.cache * CXL.mem
L Layer Transaction Layer
ayer

enhancements

1L

CXL Link Layer

e

PCle /CXL.io Link Layer
Y

CXLio Link
Layer CXL.cache + CXL.mem Link Layer

enhancements

PCle Data Link
Layer

A
- - j

CXL ARB/MUX

A
Y

Flex Bus Physical Layer

PCle/CXL Logical Sub-block

PCle Electrical Sub-block

h

In addition, the CXL.io link layer implements the framing/deframing of CXL.io packets.
CXL.io utilizes the Encoding for 8.0 GT/s and Higher data rates only, refer to section
entitled “Encoding for 8.0GT/s and Higher Data Rates” in the PCl Express Base
Specification for details.

This chapter highlights the notable framing and application of symbols to lanes that are
specific for CXL.io. Note that when viewed on the link, the framing symbol to lane
mapping will be shifted due to additional CXL framing (i.e., two bytes of Protocol ID and
two reserved bytes) and also due to interleaving with other CXL protocols.

Compute Express Link Specification
79

EVALUATION COPY

Compute Express Link Link Layers

B
N

4.2.1

June 2019
Revision 1.1

For CXL.io, only the x16 Link transmitter and receiver framing requirements described
in the PCI Express Base Specification apply irrespective of the negotiated link width.
The framing related rules for N = 1, 2, 4 and 8 do not apply. For downgraded Link
widths, where number of active lanes is less than x16, a single x16 data stream is
formed using x16 framing rules and transferred over x16/(degraded link width)
degraded link width streams.

CXL.io link layer forwards a framed 10 packet to the Flex Bus Physical layer. The Flex
Bus Physical layer framing rules are defined in Section 6.0.

CXL.mem and CXL.cache Common Link Layer

Introduction

The figure below shows where the CXL.cache and CXL.mem link layer exists in the Flex
Bus layered hierarchy.

Compute Express Link Specification
80

EVALUATION COPY

Compute Express Link Link Layers

Figure 41.

4.2.2

June 2019
Revision 1.1

Flex Bus Layers -- CXL.cache + CXL.mem Link Layer Highlighted

_\.\
CXL Transaction Layer
=
PCle/CXL.io Transaction Layer
0
PCIB_ Tra?;;’i:ion CXL.cache + CXL.mem
Transaction Layer Transaction Layer
Layer enhancements
\ J)
s N
CXL Link Layer
\
PCle/CXL.io Link Layer
=
; CXLio Link
PCle Data Link Layer CXL.cache + CXL.mem Link Layer
Layer enhancements
N
. S Y,
A A
Y A
CXL ARB/MUX
A
Y
B : N
ex Bus Physical Layer
PCle/CXL Logical Sub-block
PCle Electrical Sub-block
RX TX
S ey

As previously mentioned, CXL.cache & CXL.mem protocols use a common Link Layer.
This chapter defines the properties of this common Link Layer. Protocol information,
including definition of fields, opcodes, transaction flows etc can be found in Section 3.2
and Section 3.3.

High-Level CXL.cache/CXL.mem Flit Overview

The CXL.cache/mem flit size is a fixed 528b. There are 2B of CRC code and 4 slots of
16B each as shown below.

Compute Express Link Specification
81

EVALUATION COPY

Compute Express Link Link Layers

Figure 42.

Figure 43.

June 2019
Revision 1.1

CXL.cache/.mem Protocol Flit Overview

L
Cache
Mem

flt

FitByte#

01234567 890UDBUL

BUBBDANBUBLTBYHNIN

NPUERIRHUNLBUELY

48 4950 5152 53 54 55 % 57 58 59 60 61 62 63

£4 65

Slot Byte

Sotbyte#

Slot Byte #

Sloz Bye #

01234567 830UNBUS

012345678910 NNBUDL

012345678800 BUYS

0123455 7890UNBYS

Bit #

— on Ln o Lo R s o

Fii: Header Header Slot

Generic Slot

Generic Slot

Generic Slot

(RC

CXL.cache/.mem All Data Flit Overview

[0 (3
Cache
Mem
Fit

fitByted

01234567 890UNBUL

BTBBDNNBUBLEABYHININ

NBUERIRPUNLBUELY

4849 50 5152 53 54 55 % 57 58 59 60 61 62 63

£4 65

Slot Byte 1t

SotByted

Slot Byte

SlorBye

01234567 8851000BUY

0123456789101112B1I

012345678810 NNBKIY

01234567890UNBRIS

Bit #
— on otn = s oo s o

Data Chunk

Dara Chunk

Data Chunk

Data Chunk

CRC

An example of a Protocol Flit in the device to Host direction is shown below. For detailed
descriptions of slot formats please refer to Section 4.2.3

Compute Express Link Specification

82

Compute Express Link Link Layers

al
O
O
Z
O
—
>
—
<C
=
LL]

Revision 1.1

Example of a Protocol Flit from device to Host

Byt # B # Byte Byte#
01234567891011121314150 1 2 3 4 567 8 0101112131415 0 12 3 4 5 6 7 8 910711273141501 2 3 4 5 6 7 8 9101112131460 1
9 -|x 2
: 5(3 i
[0]< T 1 |g
ol e) E‘ 5
2| |6 5| El g | 2

q] gl g a
4 [alf S a S| e
— H o 8 g
5)| 2 & |0
: 3 33|, 2
= a as a1°|a
o G 2l e dl=| (o
(8 3 a % 515] |5
- _|oH -
2 E B g
ol 3 g § 8 1] |&
8|=|2|8 al (& [slg| |
o[gl |0 |
o -] 0] nE
o} > 3| |2|C
0 g > a(3
D2H Req + D2H Resp + D2H Req + D2H DH +
D2H Req + D2H DH q P d D2H/ S2M Data
D2H Resp D2H Resp

A “Header” Slot is defined as one that carries a “Header” of link-layer specific
information, including the definition of the protocol-level messages contained in the
rest of the header as well as in the other slots in the flit.

A “Generic Request/Response Slot” is defined as one that holds one or more small
CXL.cache messages.

A “Generic Data Slot” carries just 16B of data. A 64B Cache-line is transferred with 4
such generic data slots.

The flit can be composed of a Header Slot and 3 Generic Slots or possibly with only
Generic data Slots.

The flit header utilizes the same definition for both the Upstream as well as the
Downstream ports summarized in the table below.

CXL.cache/CXL.mem Flit Header Definition

Field Name Brief Description Size
Flit Type This field distinguishes between a Protocol or a Control Flit 1
Acknowledgment This is an acknowledgment of 8 successful flit transfers 1
BE Byte Enable 1
Sz Size 1
ReqCrd Request Credit Return 4
DataCrd Data Credit Return 4
RspCrd Response Credit Return 4
Slot 0 Slot 0 Format Type 3
Slot 1 Slot 1 Format Type 3
Slot 2 Slot 2 Format Type 3

Compute Express Link Specification
83

EVALUATION COPY

Compute Express Link Link Layers

Table 34.

Table 35.

Table 36.

June 2019
Revision 1.1

CXL.cache/CXL.mem Flit Header Definition

Field Name Brief Description Size
Slot 3 Slot 3 Format Type 3
RSVD Reserved 4
Total 32

In general, bits or encodings that are not defined will be marked “Reserved” or “RSVD”
in this specification. These bits should be set to O by the sender of the packet and the
receiver should ignore them. Please also note that certain fields with static 0/1 values
will be checked by the receiving Link Layer when decoding a packet. Checking of these
bits reduces the probability of silent error under conditions where the CRC check fails to
detect a long burst error. For example, LLCTRL (control flits) have several static bits
defined. A LLCTRL flit that passes the CRC check but fails the static bit check should be
treated as a fatal error. Logging and reporting of such errors is device specific.

The following describes how the flit header information is encoded.

Flit Type Encoding

Flit Type Description
This is a flit that carries CXL.cache or CXL.mem protocol related
0 Protocol B .
information
1 Control This is a flit inserted by the link layer purely for link layer specific

functionality. These flits are not exposed to the upper layers.

The Acknowledgment field is used as part of the link layer retry protocol to signal
CRC-passing receipt of flits from the remote transmitter. The transmitter sets the Ak bit
to acknowledge successful receipt of 8 flits; a clear Ak bit is ignored by the receiver.

The Byte Enable and Size fields have to do with the variable size of data messages. To
reach its efficiency targets, the CXL.cache/mem link layer assumes that generally all
bytes are enabled for most data, and that data is transmitted at the full cache line
granularity. When all bytes are enabled, the link layer does not transmit the byte
enable bits, but instead clears the Byte Enable field of the corresponding flit header.
When the receiver decodes that the Byte Enable field is clear, it must regenerate the
byte enable bits as all ones before passing the data message on to the transaction
layer. If the Byte Enable bit is set, the link layer Rx expects an additional data chunk
slot containing byte enable information. Note that this will always be the last slot of
data sent.

Similarly, the Size field reflects the fact that the CXL.cache protocol allows
transmission of data at the half cache line granularity. When the Size bit is set, the link
layer Rx expects four slots of data chunks, corresponding to a full cache line. When the
Size bit is clear, it expects only two slots of data chunks. In the latter case, each half
cache line transmission will be accompanied by its own data header. A critical
assumption of packing the Size and Byte Enable information in the flit header is that
the Tx flit packer may begin at most one data message per flit.

The following table describes legal values of Sz and BE for various data transfers.

Legal values of Sz & BE Fields

Type of Data Transfer 32B Transfer Possible? BE Possible?

CXL.cache H2D Data Yes No

Compute Express Link Specification
84

EVALUATION COPY

Compute Express Link Link Layers

Table 36. Legal values of Sz & BE Fields

Type of Data Transfer

32B Transfer Possible?

BE Possible?

CXL.mem M2S Data No Yes
CXL.cache D2H Data Yes Yes
CXL.mem S2M Data Yes No

The transmitter sets the Credit Return fields to indicate resources available in the co-
located receiver for use by the remote transmitter. Credits are given for transmission
per message class, which is why the flit header contains independent Request,

Response, and Data Credit Return fields. The granularity of credits is per transfer. For
data transfers, this means 1 credit allows for one data transfer, regardless of whether

the transfer is 64B, 32B or contains Byte Enables. These fields are encoded

exponentially, as delineated in the table below.

Table 37. CXL.cache/CXL.mem Credit Return Encodings

Credit Return Encoding[3] Protocol

0 CXL.cache

1 CXL.mem

Credit Return Encoding[2:0] Number of Credits

000 0

001 1

010 2

011 4

100 8

101 16

110 32

111 64

Finally, the Slot Format Type fields encode the Slot Format of both the header itself and
of the other generic slots in the flit (if the Flit Type bit specifies that the flit is a Protocol
Flit). The subsequent sections detail the protocol message contents of each slot format,

but the table below provides a quick reference for the Slot Format field encoding.

Table 38. Slot Format Field Encoding (Sheet 1 of 2)

S:Eorfc'lodrir:gat H2D/M2S D2H/S2M
Slot O Slots 1,2 and 3 Slot O Slots 1, 2 and 3
000 HO GO HO GO
001 H1 G1 H1 G1
010 H2 G2 H2 G2
011 H3 G3 H3 G3
100 H4 G4 H4 G4

June 2019
Revision 1.1

Compute Express Link Specification

85

Compute Express Link Link Layers

Table 38. Slot Format Field Encoding (Sheet 2 of 2)

S'EorchOoJiTgt H2D/M2S D2H/S2M
101 H5 G5 H5 G5

110 RSVD RSVD RSVD G6

111 RSVD RSVD RSVD RSVD

The following tables describe the actual slot format and the type of message contained
by each format for both directions.

Table 39. H2D/M2S Slot Formats

Format to Req Type Mapping H2D/M2S
Type Size
HO CXL.cache Req + CXL.cache Resp 96
H1 CXL.cache Data Header + 2 CXL.cache 88
Resp
CXL.cache Req + CXL.cache Data
2 H2 Header 88
H3 4 CXL.cache Data Header 96
H4 CXL.mem RwD Header 87
H5 CXL.mem Req Only 87
GO CXL.cache/ CXL.mem Data Chunk 128
] G1 4 CXL.cache Resp 128
CXL.cache Req + CXL.cache Data
G2 Header + CXL.cache Resp 120
c3 4 CXL.cache Data Header + CXL.cache 128
Resp
G4 CXL.mem Req + CXL.cache Data Header | 111
CXL.mem RwD Header + CXL.cache
G5 Resp 119
D Table 40. D2H/S2M Slot Formats (Sheet 1 of 2)
Format to Req Type Mapping D2H/S2M
Type Size
HO CXL.cache Data Header + 2 CXL.cache Resp + 85
CXL.mem NDR
H1 CXL.cache Req + CXL.cache Data Header 96
H2 4 CXL.cache Data Header + CXL.cache Resp 88
H3 CXL.mem DRS Header + CXL.mem NDR 68
H4 2 CXL.mem NDR 56
H5 2 CXL.mem DRS Header 80
GO CXL.cache/ CXL.mem Data Chunk 128
G1 CXL.cache Req + 2 CXL.cache Resp 119

Compute Express Link Specification
June 2019 86
Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

Table 40.

4.2.3

4.2.3.1

4.2.3.2

Figure 45.

June 2019
Revision 1.1

D2H/S2M Slot Formats (Sheet 2 of 2)

Format to Req Type Mapping D2H/S2M

G2 CXL.cache Req + CXL.cache Data Header + 116
CXL.cache Resp

G3 4 CXL.cache Data Header 68

G4 CXL.mem DRS Header + 2 CXL.mem NDR 96

G5 3 CXL.mem NDR 84

G6 3 CXL.mem DRS Header 120

Slot Format Definition

RSVD Fields

Flit, slot and message bits that are not defined will be marked “RSVD” in this

specification. RSVD bits should be set to 0 by the sender and the receiver should ignore

them.

H2D & M2S Formats

HO - H2D Req + H2D Resp

Bit#

Byte #
0123456728 9101112131415
[}

ol «© -
& |2 =
el]
1 B b=l
L4 L Y | &
ol|3 o
2Z| (3|
o ey
w o -
3@ s| |@
=
A5l 5| |3
o
: 2.
g
5 o|B o
(5] (&} fs]
oo 8|5 8]
6_0!‘.‘18
(G fah
@ -
71 |8 &

Compute Express Link Specification

87

Compute Express Link Link Layers

H1 - H2D Data Header + H2D Resp + H2D Resp

2 QASY
A [5:1aioo [ds
elun] asg | [o:Flaioo
o [e:olaion
=lea] spoodg | lozlaon
2 [5:1 Qoo | ds
I ET lo:rlamo

* oo [e:oKlaion

& ~[eEa] apoodg [lozlaion
© 3ud ds
w0 [2:11ao [4o [red 300
[iea | [o:9laioo
© pigbay pioEled
o gis | ansy pigdsy
- 0I5 zZiols [12l ewis
o [adiLjansy| v [38 | zs | oels

o - (o] [ap] -t w w ~
#1g

Figure 46.

AdOO NOILVN TVAL

H2 - H2D Req + H2D Data Header

Figure 47.

Byte #
23456 78 9101112131415

1

0

aAsy
EEE] ds
:1aio [4o [ea 300
[o:9laioo
pichey pioEIEQ
as | ansy pigdsy
nols ziols [[v2l sols
adf) [aasy| v [38 | zs | oels
o - o™ o -t uw w M~
#3g

Compute Express Link Specification

88

June 2019

Revision 1.1

Compute Express Link Link Layers

H3 - 4 H2D Data Header

Figure 48.

2 3yd ds 2 ansy
= TS [4o [red [3-00 = [cslsieds [ansy
@l ea | b:glamo @ [oa | o1 | lozleeds
o Jud ds o
= 21 aioo [wo [1od [3-00 =
2l en | [:elaioo =] [o:1skppyY
@ 3ud dg @
* o 21 1dio [uo [rod [3r09 e
&~ea] o:lama &~ [Z1ic1]Bel |
© 34d ds © G
@ [Z1daioo [uo [104 [3-09 w [peigeien | snepasi | [o:glfeL
= ea | D:9]aoo = e | dowspy [sdfidus
® piobey pigEleq ® piobay pIoEIEQ
ol g | ansy pigdsy ol as | aAsy piodsy
- 1ols zi0ls IEEER - nols zi0ls [L2l sas
o|addLfansyl wv | 33 | zs | oIS o [sdii|ansy| wv | 38 | zs | oels
o - ™ o« = w w I~ o — ™~ o = ['s] © M~
#38 #19
S
[}
T
@®©
o}
I
S
o
n
o\
=
I
<
I
o)
<
[}
1
>
2
L

AdOO NOILVNTVAL

Compute Express Link Specification

89

June 2019

Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

Figure 50.

Figure 51.

June 2019
Revision 1.1

H5 - M2S Req

Byte #
012 3 4567 8 9101112131415

0; @ o=

EREREE

=1 M e I e 1 O

1W1z13 =] [2] [&

e |?) fof |71 @

- &
2| = >§ N ?
= | s ¢
< 2% —=
o [

3 212|T o 2la
g ol g) olg|>
I ki g [T|o8

Clal | L |7 < L

S SE 15

o o - B A R 2
8| 3|T|¢[&| =] el
&, g g| |
@ 5 A=
7 o =
2 &2
GO - H2D/M2S Data
Byte #
01 2 3 456728 9101112131415

0

1

2

3
#®
o

Compute Express Link Specification

90

EVALUATION COPY

Compute Express Link Link Layers

Figure 52.

Figure 53.

June 2019

Revision 1.1

GO - M2S Byte Enable

g1

234567 8 9101112131415

Byte #

[a)
his >
i) v
o
G1 - 4 H2D Resp
Byte #
012346678 9101112131415
T T1=T T=T T=T =T T=T 1= T=
B 5 = Y 4
w L w w
i® o o o
(i o o o
[} i} Ly [}
g =3 L=iE| =3 L=
1 Gl I =1 Pl it N = s O =2 s £ B =
P =Y = = = =1 R =Y e =Y N
g s| 18| (2] 18] |g] (8] |z |8
] g))
el el el e
=, I, X, =,
= =] = =)
a al |=| |g| |=| |2
g o § ol 1] o] |5l |o
5] 8 =) =)
6] <] | |5 | & ||
= = = =)
& & & &

Compute Express Link Specification
91

EVALUATION COPY

Compute Express Link Link Layers

Figure 54.

Figure 55.

June 2019
Revision 1.1

G2 - H2D Req + H2D Data Header + H2D Resp

Byte #
0123 456789 11121314 15
—I =
0 g =
! L
[2
2 = o &
(&) —
gl |8] =
O |w o= =
3 n:Ob- o
#* . = [&]
= 2 = alz
¥ ©, o U@
4 o (e]
al |l LI°|=
O =
5 5 g
(v
mEEE
6 c| |g
5] ||
w 2
7 o|& &
i)
G3 - 4 H2D Data Header + H2D Resp
Byte #
012 3 456728 9101112131415
ol= © © = | |=
> > > > = |5
1 w
SLENELTE ¥
= = = = o
2 | o o =) I -
o 3 3 SlulBlal s
w w w Wwieles
3 4 x 4 z[Oo|Z] |5
— |tl=| 2= [x]=| | 2
- S =) =) = ey o
T (=) [S, o, 2 (e
(= o a o g
gl | =} (=3 =3 | =y
() s} &) s} =
4= = - = = —
B 5 (@]] (& g
o T O s e O O e IO O
8l |& g & gl |12
a -
o w I wl_ |2
Iolel&l o1&l |1e|&) [e|& &
o (6]) (4]

Compute Express Link Specification
92

Compute Express Link Link Layers

G4 - M2S Req + H2D Data Header

2 ansy
3 ansy
2 3yd ds
o [211)a100 [u [od [309
[Ea] [o:elaioo
2 [¢:6leredg lonsy
o [o1 [lozlkeds
*
2 -
m
@ [s:16hppy
w
=t
© [N |
o [r:L 1681
— [prigetow | eneaeian | lo:glBeL
ol ea _ dowsp _ adfjdug
o — o o = Te] (s} M~
#ig

Figure 56.

AdOO NOILVN TVAL

G5 - M2S RwD Header + H2D Resp

Figure 57.

Byte #
23 4567 8 9101112131415

1

0

ansy
[c:} aioD | ds
eI [o:vlaino
[e:0L]aion
len | spoodo | [mzaon
[c:glaredg lansu
[wa] oL [Ilozlemds
[9:1clippy
[zL51lBeL |
[pi)1]6eL
pleierei | anieasen | [o:gleel
N dpowapy | =df jdug
o - o™ [sp] = w [(=] ~
#18

Compute Express Link Specification

93

June 2019

Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

4.2.3.3

Figure 58.

Figure 59.

June 2019
Revision 1.1

D2H & S2M Formats

HO - D2H Data Header + 2 D2H Resp + S2M NDR

Byte #
0123456728 9101112131415
) - — o) 2l Le]
of |2 a > k=
=2 Bl 2 =l [BE] 2]
Sl] =] 1213 |-
zlE| | | [=|2 T
5) e B T - R
= E,gg = =1 [=
< (] § o,
1118 Zls| 1|2
W = =l =1
& |0 = o2 o5 =018
= — = |58 gl=z|5|z I
o w % o1 18l@la] 1P| |e|3| e
a2 o I =) S|
(e} [0
I SHe| HZ 1
zlz| |6 =Y
10|19 " 1o |z
2[Z1 &2 [S eI E o
=218l 18l | €] Bl | 3
() fsY @ 4
o
g éo §_ |2
» =1 = I 2
H1 - D2H Req + D2H Data Header
Byte #
012 3 4567 8 9101112131415
gl e
=] 2]
[=]
HE)
@ |® =]
o | o 5
2|=F g
@ =}
3LIJ
S il
@ o
4| N8B =
13 g
5 B I:?
13 L
2l=| 2 .
gla|T|x 5
[l b
3 |
7| |2 &

Compute Express Link Specification
94

Compute Express Link Link Layers

H2 - 4 D2H Data Header + D2H Resp

2 ansy
= lo'Laion | =swedg
2 |[gtlepoodo [o:slaion
[uo [63 [od [ds Jien | [ozlspoodo
= [r:L 1]aion
e[6 [roa [ds [iea | lo€laion
@ gL Llaion [y
¥ oliog [ds | e | [D:Flaion
&~ [aion [w [6a
©of dg | jea | lo:slaion
© 21 1aion [uo [Ba [1od
= [iea | [D:glaion
© piobey pioeteq
o gis | ansy p1pdsy
- 1ols zi0ls [[zl eso1s
ofadiifansyl wv [33 | =5 oIS
o - (o] [ap] -t uw w ~
#3d

Figure 60.

AdOO NOILVNTVAL

H3 - S2M DRS Header + S2M NDR

Figure 61.

Byte #
23458678 9101112131415

1

0

ansy
ansy
ansy
[0:¢laredg | ansy
lg51beL
[0:2)8e1
EA | dowapy IEEEEET BT
[2:¥1]eseds
od | [o:glasedg
[FETCEN
[o:/16eL
2N dowap plelgele | enieneiai
piobay pioElEQ
¢ls | ansy p1gdsy
110lS oIS | [:d ewis
adA) Joasy| wv | 38 | zs | oIS
(=] - o~ <™ =T w © ~
#1g

Compute Express Link Specification

95

June 2019

Revision 1.1

Compute Express Link Link Layers

H4 - 2 S2M NDR

Figure 62.

Byte #
23456178 9101112131415

1

0

aASY
ansy
ansy
aASY
QASY
[z1:G116e | [0:€leleds
[p:)1]6eL
plaidelR W | sneAelen lo:glfeL
[o:glereds 1eA _ dowsy
[g:g116eL
[0:/16eL
leA | dows REFCE BT
p1obay pigeleq
eis | QASY pigdsy
Jois zois | Lzl glois
adfi Jansy] swv [3 [zs] 0101S
o — o~ o A wn [{=] ~
#1g

HS - 2 S2M DRS

Figure 63.

Byte #
0123458678 9101112131415

aAsy

aAsy

[£¥1]21eds

od | [0:glasedg

Bi1Bel

[0:41PeL

EA | dowayy [eeigmon [enieasien

[£¥1]seds

od | [0:gla2eds

[CETEEN

[0/ J6eL

EA | dowapy pleifelzW | eneagrep

pigbay PIOE}EQ

¢ls | ansy p1pdsy

Loig oIS | e ewis

adf Jaasy] v | 38 | zs | 0KelS

(=] - o~ « <t wn o ~

#u4

AdOO NOILVN TVAL

Compute Express Link Specification

96

June 2019

Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

Figure 64.

Figure 65.

June 2019
Revision 1.1

GO - D2H Data

Bit #

1

Byte #

234567 8 910112131415

GO - D2H/S2M Byte Enable

Bit #

0

1

Byte #

2345678 0101112131415

RSVD

Compute Express Link Specification
97

EVALUATION COPY

Compute Express Link Link Layers

Figure 66.

Figure 67.

June 2019
Revision 1.1

G1 - D2H Req + 2 D2H Resp

Byte #
01234567 8 9101112131415
o=
slo
21 I=
. =
HEGRE
<1]
(s} — =}
alg| [
* 27 ls |5
@ o o %]
gl |al |®
2l |g|—
SD
fatd
ARERE
gl 1gl o
o g
gl |°] L
=] [=]
B
G2 - D2H Req + D2H Data Header + D2H Resp
Byte #
01234567 8 9101112131415
=l |2
> =
M
= =)
- (s}
= =)
5 =l
sl 8
[}
&
E: —1°ler2
5| [S
o
@ a
2
K
—2
e

Compute Express Link Specification
98

Compute Express Link Link Layers

G3 - 4 D2H Data Header

Figure 68.

Byte#
23 45678 910112131415

1

0

ansy
ansy
ansy
ansy
ansy
ansy
ansy
yp | Bg | 1od | ds | ansy
[7:L1aion
6g [1od | ds [iea | [o:elaon
Is:11]aon | uo
od [ds [ien] [o:vlaion
[o:11]aon | uo | b8
ds Jrea] To:slalon
[2:11]aon [uo] Ba [tod
ien | [o:9laion
o -~ o~ o© < wn w ~
#1g

G4 - S2M DRS Header + 2 S2M NDR

Figure 69.

Byte #
23 4567 8 9101112131415

1

0

dAsd

ansy

dASH

dAsd

[e1:g16eL [lo:gJeledg

[:1 1 BelL

pieifele | eniepeiom [

[0:claieds reA | dowep

[g:g11PeL

[CFAEN

ea | dowew | preigeien [eneperep

[£F1]2iedg

od | [0:gleseds

[Big116eL

[0:2peL

eA | dowap [eeigeen [enieasien

=] - o~ ™ R] © ~

#44

AdOO NOILVN TVAL

Compute Express Link Specification

929

June 2019

Revision 1.1

Compute Express Link Link Layers

Figure 70. G5 -3 S2M NDR

4.2.4 Link Layer Registers

Architectural registers associated with CXL.cache and CXL.mem have been defined in
Section 7.2.2.1.15

4.2.5 Flit Packing Rules

The packing rules are defined below. Here, for the purpose of bidding, it is assumed
that a given queue has credits towards the RX and any protocol dependencies (SNP-GO
ordering, for example) have already been considered:

< Rollover is defined as any time a data transfer needs more than one flit. Note that a
data chunk which contains 128b (format GO), can only be scheduled in Slots 1, 2
and 3 of a protocol flit since Slot O has only 96b available, as 32b are taken up by
the flit header. The following rules apply to Rollover data chunks.

Byte #
012345678 9101112131415
ozl || 3l | B
- [-
-—-m — —
1 g|g| (& &
8l | I3 1218l | |5
ol o =]
25| | 13| B3] | |5
= > =
= 12| =
3 o|® it o|®
S I 1 1] clef |g]e(gfele
& olzl— = o5 Dlo|b|o]|n
4%££g © %Sﬁ e | |e]|e
& |~ | &
3 =5
5 |= g (2]=
— &l2 e =
6 |3 [T [2]3 =
© a (2] I
= = =
7 |@ 5]
= =
Figure 71. G6 - 3 S2M DRS
Byte #
01234567 8 9101112131415
ol2| | (2] 12 | l2] (3]] |e
]] 1 [1]
1
o o o
o o o
2 |E E £
D (1] @
= = =
I I =y o e = o O e B = = B e P
¥ S o et S o O S e e B
@ 5ol 2 Sle| 2 || 2
s [3]121%|8l3|=[2|5 | 2[3|<| ¥ &2
s | (& (8| | 15|15 | |8
5 (2 2 2
6 |3 Ei Ei
o o o
> = > >
T []
7 |2 [5] 7]
= = =

Compute Express Link Specification
June 2019 100
Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

June 2019
Revision 1.1

— If there's a rollover of more than 3 16B data chunks, the next flit must
necessarily be an all data flit.

— If there’s a rollover of 3 16B data chunks, Slots 1, Slots 2 and Slots 3 must
necessarily contain the 3 rollover data chunks. Slot O will be packed
independently (it is allowed for Slot O to have the Data Header for the next
data transfer).

— If there’s a rollover of 2 16B data chunks, Slots 1 and Slots 2 must necessarily
contain the 2 rollover data chunks. Slot 0 and Slot 3 will be packed
independently.

— If there’s a rollover of 1 16B data chunk, Slot 1 must necessarily contain the
rollover data chunk. Slot 0, Slot 2 and Slot 3 will be packed independently.

— If there’s no rollover, each of the 4 slots will be packed independently.

Care must be taken to ensure fairness between packing of CXL.mem & CXL.cache
transactions. Similarly, care must be taken to ensure fairness between channels
within a given protocol. The exact mechanism to ensure fairness is implementation
specific.

Valid messages within a given slot need to be tightly packed. Which means, if a slot
contains multiple possible locations for a given message, the Tx must pack the
message in the first available location before advancing to the next available
location.

Valid messages within a given flit need to be tightly packed. Which means, if a flit
contains multiple possible slots for a given message, the Tx must pack the message
in the first available slot before advancing to the next available slot.

If a valid Data Header is packed in a given slot, the next available “data-slots” (Slot
1, Slot 2, Slot 3 or an all-data flit) will be guaranteed to have data associated with
the header. The Rx will use this property to maintain a shadow copy of the Tx
Rollover counts. This enables the Rx to expect all-data flits where a flit header is
not present.

For data transfers, the Tx must send 16B data chunks in cacheline order. That is,
chunk order 01 for 32B transfers and chunk order 0123 for 64B transfers.

A slot with more than one data header (e.g. H5 in the S2M direction, or G3 in the
H2D direction) is called a multi-data header slot or a MDH slot. MDH slots can only
be sent for full cache line transfers when both 32B chunks are available to pack
immediately. That is, BE = 0, Sz = 1. A MDH slot can only be used if both end
points support MDH (defeature defined in Section 7.2.2.1.22)

A MDH slot format must be chosen by the Tx only if there is more than 1 valid Data
Header to pack in that slot.

Control flits cannot be interleaved with all data flits. This also implies that when an
all-data flit is expected following a protocol flit (due to Rollover), the Tx cannot
send a Control flit before the all data flit.

For non-MDH containing flits, there can be at most 1 valid Data Header in that flit.
Also, a MDH containing flit cannot be packed with another valid Data Header in the
same flit.

The maximum number of messages that can be sent in a given flit (sum, across all
slots) is:

D2H Request --> 4

D2H Response --> 2

D2H Data Header --> 4

D2H Data --> 4*16B

S2M NDR --=> 2

S2M DRS Header --> 3

S2M DRS Data --> 4*16B

Compute Express Link Specification
101

Compute Express Link Link Layers

H2D Request --=> 2

H2D Response --> 4

H2D Data Header --> 4
H2D Data --> 4*16B

M2S Req --> 2

M2S DRS Header --> 1
M2D DRS Data --> 4*16B

4.2.6 Link Layer Control Flit

Link Layer Control flits do not follow flow control rules applicable to protocol flits. That
is, they can be sent from an entity without any credits. These flits must be processed

and consumed by the receiver within the period to transmit a flit on the channel since
there are no storage or flow control mechanisms for these flits. The following table lists
all the Controls Flits supported by the CXL.cache/CXL.mem link layer.

Table 41. CXL.cache/CXL.mem Link Layer Control Types

Retriable?
LLECJCF(\’)Iai'I;]ype LLCLF;;‘;ype Description (Enters the
9 LLRB)
0b0001 RETRY Link layer retry flit No
0b0000 LLCRD Flit containing only I|_nk layer credit return and/or Ack information, but Yes
no protocol information.
0b1100 INIT Link layer initialization flit Yes
A detailed description of the control flits is present below.
Table 42. CXL.cache/CXL.mem Link Layer Control Details (Sheet 1 of 2)
Flit Type LLCTRL SubType SubType Payload Payload Description
Description
LLCRD 0000 0000 NA NA NA
0001 Acknowledge 2:0 Acknowledge[2:0]
3 RSVD
7:4 Acknowledge[7:4]
63:8 RSVD
Others RSVD NA NA
Retry 0001 0000 RETRY.Idle 63:0 RSVD
0001 RETRY.Req 7:0 Requester’s Retry Sequence Number
(Eseq)
15:8 RSVD

20:16 Contains NUM_RETRY

Contains NUM_PHY_REINIT (for

25:21 debug)

63:26 RSVD

Empty: The Empty indicates that the
LLR contains no valid data and

EVALUATION COPY

0010 RETRY.Ack 0 therefore the NUM_RETRY value
should be reset
1 Viral: The Viral bit indicates that the

transmitting agent is in a Viral state

Compute Express Link Specification
June 2019 102
Revision 1.1

EVALUATION COPY

Compute Express Link Link Layers

Table 42.

June 2019
Revision 1.1

CXL.cache/CXL.mem Link Layer Control Details (Sheet 2 of 2)

2 RSVD
7:3 Contain an echo of the NUM_RETRY
) value from the LLR.Req
; Contains the WrPtr value of the retry
15:8
queue for debug purposes
23:16 Contains an echo of the Eseq from
) the LLR.Req
31:24 Contains the NumFreeBuf value of
. the retry queue for debug purposes
63:32 RSVD
Flit required to be sent before a
0011 RETRY.Frame NA RETRY.Req or RETRY.Ack flit to allow
said flit to be decoded without risk of
aliasing.
Others RSVD NA NA
Interconnect Version: Version of AL
. . the port is compliant with.
Init 1100 1000 INIT.Param 3:0 CXL 1.0 = '0001
Others Reserved
7:4 RSVD
12:8 RSVD
23:13 RSVD
LLR Wrap Value: Value after which
LLR sequence counter should wrap to
31-24 zero.

) The default value of this field is 9,
until an error-free INIT.Param flit is
received.

Others RSVD NA NA

In the LLCRD flit, the total number of flit acknowledgments being returned is

determined by creating the Full_Ack return value, where

Full_Ack = {Acknowledgment[7:4],Ak,Acknowledgment[2:0]}, where the Ak bit is

from the flit header.

Compute Express Link Specification
103

EVALUATION COPY

Compute Express Link Link Layers

Figure 72.

Figure 73.

June 2019
Revision 1.1

The flit formats for the control flit are illustrated below.

LLCRD Flit Format (Only Slot O is Valid. Others are Reserved)

Bit#

Byte #
012 345678 9101112131415
(]
o
=
=
H
7} 2(F
= 15[3(5
N L4E
B S|Z|2 88278
o SZIR5|8]|5|8|8
= wo | 2El=l==l=l=]
o C|@W| | ®@| @D
14 =2l2lelelelele
o|T| 7| 7| 7| & F| &
o ajo|jajo|a o
3| |=|=|g
2| (8|32
=2
ol =1
x|d|a

Retry Flit Format (Only Slot O is

Valid. Others are Reserved)

Bit#

Byte #
012 3 456 7 8 9101112131415
[
[=3
=
L=l
-
z
Q
-
—1
S|Z| 288278
HiS R
of Rsvo — o0 (&[Flelelelelels
: SlE S 2SR
o
= Slo(fla|e|a|a o
g
=
=
Nel
3
@

Compute Express Link Specification

104

EVALUATION COPY

Compute Express Link Link Layers

Figure 74.

Note:

4.2.7

June 2019
Revision 1.1

Init Flit Format (Only Slot O is Valid. Others are Reserved)

Byte #

01234567 8 9101112131415

o

0] &

=

H

1§ &l

B 9

2 |

5 I b B e A b
n el FIo|®5|8|5|8|8
= = - oxo |&|Z[T|TT|IT|IT|T
o $ o|lf|c|la|e|a|lc]|a

4 =2lelL]2lelele

) HREBRERR

g ojojoajo oo

5 g

=
=
6 I
7

The RETRY.Req and RETRY.Ack flits belong to the type of flit that receiving devices must
respond to even in the shadow of a previous CRC error. In addition to checking the CRC
of a RETRY flit, the receiving device should also check as many defined bits (those
listed as having hardcoded 1/0 values) as possible in order to increase confidence in
qualifying an incoming flit as a RETRY message.

Link Layer Initialization

Link Layer Initialization is expected to be started after any physical layer reset is
complete and the link has trained successfully to LO. After reset, the Cache/Mem Link
Layer can only send LLCTRL-Retry flits until Link Initialization is complete. The following
describes how the link layer is initialized and credits are exchanged.

The Tx portion of the Link Layer must wait until the Rx portion of the Link Layer has
received at least one valid flit that is CRC clean before sending the LLCTRL-
INIT.Param flit. Before this condition is met, the Link Layer must transmit only
LLCTRL-Retry flits.

— If for any reason the Rx portion of the Link Layer is not ready to begin
processing flits beyond LLCTRL-INIT and LLCTRL-Retry, the Tx will stall
transmission of LLCTR-INIT.Param flit

The LLCTRL-INIT.Param flit must be the first non-LLCTRL-Retry flit transmitted by
the Link Layer

The Rx portion of the Link Layer must be able to receive an LLCTRL-INIT.Param flit
immediately upon completion of Physical Layer initialization because the very first
valid flit may be a LLCTRL-INIT.Param

Received LLCTRL-INIT.Param values (i.e., LLR Wrap Value) must be made “active”,
that is, applied to their respective hardware states within 8 flit clocks of error-free
reception of LLCTRL-INIT.Param flit.

Any non-Retry flits received before LLCTRL-INIT.Param flit will trigger an
Uncorrectable Error.

Only a single LLCTRL-INIT.Param flit should be created by the Tx portion of the Link
Layer after reset. Any CRC error conditions with an LLCTRL-INIT.Param flit will be
dealt with by the Retry state machine and replaced from the Link Layer Retry
Buffer.

Compute Express Link Specification
105

EVALUATION COPY

Compute Express Link Link Layers

4.2.8

4.2.8.1

June 2019
Revision 1.1

* Receipt of an LLCTRL-INIT.Param flit after an LLCTRL-INIT.Param flit has already
been received should be considered an Uncorrectable Error.

= It is the responsibility of the Rx to transmit credits to the sender using standard
credit return mechanisms after link initialization. Each entity should know how
many buffers it has and set its credit return counters to these values. Then, during
normal operation, the standard credit return logic will return these credits to the
sender.

« Immediately after link initialization, the credit exchange mechanism will use the
LLCRD flit format.

= It is possible that the receiver will make available more credits than the sender can
track for a given message class. For correct operation, it is therefore required that
the credit counters at the sender be saturating.

e Credits should be sized to achieve desired levels of bandwidth considering round-
trip time of credit return latency. This is implementation and usage dependent.

CXL.cache/CXL.mem Link Layer Retry

The link layer provides recovery from transmission errors using retransmission, or Link
Layer Retry (LLR). The sender buffers every flit sent in a local link layer retry buffer
(LLRB). To uniquely identify flits in this buffer, the retry scheme relies on sequence
numbers which are maintained within each device. Unlike in PCle, CXL.cache/.mem
sequence numbers are not communicated between devices with each flit to optimize
link efficiency. The exchange of sequence numbers occurs only through link layer
control (LLCTRL) flits during a LLR sequence. The sequence numbers are set to a
predetermined value (zero) during reset and they are implemented using a wrap-
around counter. The counter wraps back to zero after reaching the depth of the retry
buffer. This scheme makes the following assumptions:

* The round-trip delay between devices is more than the maximum of the link layer
clock or flit period.

« All protocol flits are stored in the retry buffer. See Section 4.2.8.5.1 for further
details on the handling of non-retryable control flits.
Note that for efficient operation, the size of the retry buffer must be more than the
round-trip delay. This includes:
« Time to send a flit from the sender
= Flight time of the flit from sender to receiver
= Processing time at the receiver to detect an error in the flit

e Time to accumulate and, if needed, force Ack return and send embedded Ack
return back to the sender

= Flight time of the Ack return from the receiver to the sender
= Processing time of Ack return at the original sender

Otherwise, the LLR scheme will introduce latency, as the transmitter will have to wait
for the receiver to confirm correct receipt of a previous flit before the transmitter can
free space in its LLRB and send a new flit. Note that the error case is not significant
because transmission of new flits is effectively stalled until successful retransmission of
the erroneous flit anyway.

LLR Variables

The retry scheme maintains two state machines and several state variables. Although

the following text describes them in terms of one transmitter and one receiver, both the
transmitter and receiver side of the retry state machines and the corresponding state

variables are present at each device because of the bidirectional nature of the link.

Compute Express Link Specification
106

EVALUATION COPY

Compute Express Link Link Layers

June 2019
Revision 1.1

Since both sides of the link implement both transmitter and receiver state machines,
for clarity this discussion will use the term “local” to refer to the entity that detects a
CRC error, and “remote” to refer to the entity that sent the flit that was received
erroneously.

The receiving device uses the following state variables to keep track of the sequence
number of the next flit to arrive.

e ESeq: This indicates the expected sequence number of the next valid flit at the
receiving link layer entity. ESeq is incremented by one (modulo the size of the
LLRB) on error-free reception of a retryable flit. ESeq stops incrementing after an
error is detected on a received flit until retransmission begins (RETRY.Ack message
is received). Link layer reset initializes ESeq to 0. Note that there is no way for the
receiver to tell whether it has detected an error on a non-retryable control flit. In
this case it will initiate the link layer retry flow as usual, and effectively the
transmitter will replay from the first retryable flit sent after that non-retryable
control flit.

The sending entity maintains two indices into its LLRB, as indicated below.

< WTrPtr: This indexes the entry of the LLRB that will record the next new flit. When
an entity sends a flit, it copies that flit into the LLRB entry indicated by the WrPtr
and then increments the WrPtr by one (modulo the size of the LLRB). This is
implemented using a wrap-around counter that wraps around to O after reaching
the depth of the LLRB. Certain LLCTRL flits do not affect the WrPtr. WrPtr stops
incrementing after receiving an error indication at the remote entity (RETRY.Req
message), until normal operation resumes again (all flits from the LLRB have been
retransmitted). WrPtr is initialized to O and is incremented only when a flit is put
into the LLRB.

= RdPtr: This is used to read the contents out of the LLRB during a retry scenario.
The value of this pointer is set by the sequence number sent with the
retransmission request (RETRY.Req message). The RdPtr is incremented by one
(modulo the size of the LLRB) whenever a flit is sent, either from the LLRB in
response to a retry request or when a new flit arrives from the transaction layer
and irrespective of the states of the local or remote retry state machines. If a flit is
being sent when the RdPtr and WrPtr are the same, then it indicates that a new flit
is being sent, otherwise it must be a flit from the retry queue.

The LLR scheme uses an explicit acknowledgment that is sent from the receiver to the
sender to remove flits from the LLRB at the sender. The acknowledgment is indicated
via an ACK bit in the headers of flits flowing in the reverse direction. In CXL.cache, a
single ACK bit represents 8 acknowledgments. Each entity keeps track of the number of
available LLRB entries and the number of received flits pending acknowledgment
through the following variables.

< NumFreeBuf: This indicates the number of free LLRB entries at the entity.
NumFreeBuf is decremented by 1 whenever an LLRB entry is used to store a
transmitted flit. NumFreeBuf is incremented by the value encoded in the Ack/
Full_Ack field of a received flit. NumFreeBuf is initialized at reset time to the size of
the LLRB. The maximum number of retry queues at any entity is limited to 255 (8
bit counter). Also, note that the retry buffer at any entity is never filled to its
capacity, therefore NumFreeBuf is never ‘0. If there is only 1 retry buffer entry
available, then the sender cannot send an ACK bearing flit. This restriction is
required to avoid ambiguity between a full or an empty retry buffer during a retry
sequence that may result into incorrect operation. This implies if there are only 2
retry buffer entries left (NumFreeBuf = 2), then the sender can send an Ack
bearing flit only if the outgoing flit encodes a value of at least 1, else a LLCRD
control flit is sent. This is required to avoid deadlock at the link layer due to retry
buffer becoming full at both entities on a link and their inability to send ACK
through header flits.

Compute Express Link Specification
107

EVALUATION COPY

Compute Express Link Link Layers

4.2.8.2

June 2019
Revision 1.1

< NumAck: This indicates the number of acknowledgments accumulated at the
receiver. NumAck increments by 1 when a retryable flit is received. NumAck is
decremented by 8 when the ACK bit is set in the header of an outgoing flit. If the
outgoing flit is coming from the LLRB and its ACK bit is set, NumAck does not
decrement. At initialization, NumAck is set to 0. The minimum size of the NumAck
field is the size of the LLRB. NumAck at each entity must be able to keep track of at
least 255 acknowledgments.

The LLR protocol requires that the number of retry queue entries at each entity must
be at least 23 entries (Size of Forced Ack (16) + Max All-Data-Flit (5) + 2) to prevent
deadlock.

ACK Forcing

Recall that the LLR protocol requires space available in the LLRB to transmit a new flit,
and that the sender must receive explicit acknowledgment from the receiver before
freeing space in the LLRB. In scenarios where the traffic flow is very asymmetric, this
requirement could result in traffic throttling and possibly even starvation.

Suppose that the A—B direction has very heavy traffic, but there is no traffic at all in
the B—>A direction. In this case A could exhaust its LLRB size, while B never has any
return traffic in which to embed Acks. In CXL we want to minimize injected traffic to
reserve bandwidth for the other traffic stream(s) sharing the link.

To avoid starvation, CXL must still permit Ack forcing (injection of a non-traffic flit to
carry an Ack return), but this function is more heavily constrained so as not to waste
bandwidth. In CXL, when B has accumulated at least 16 Acks to return, B’s CXL.cache/
mem link layer will inject a LLCRD flit for Ack return.

The CXL.cache link layer must accumulate a minimum of 8 Acks to set the ACK bit. If
Ack forcing occurred after the accumulation of 8 Acks, it could result in a negative beat
pattern where real traffic always arrives soon after a forced Ack, but not long enough
after for enough Acks to re-accumulate to set the ACK bit. In the worst case this could
double the bandwidth consumption of the CXL.cache side. By waiting for at least16
Acks to accumulate, the CXL.cache/mem link layer ensures that it can still
opportunistically return Acks in any real traffic that arrives after a forced Ack return.

Compute Express Link Specification
108

EVALUATION COPY

Compute Express Link Link Layers

Figure 75.

4.2.8.3

June 2019
Revision 1.1

Retry Buffer and Related Pointers.

Retry queue . |Freeentry
WiPtr — B Used entry

RdPtr
= WrPtr if not in
retry mode

Sender

Receiver

| NumAcks | Increment after receiving a flit

decrement after returning acks

IESEGI Sequence number of the next flit

WrPtr incremented after storing the sent flit
RdPtr points to the next flit to be sent

LLR Control Flits

The LLR Scheme uses several LLCTRL (link layer control) flits of the RETRY format to
communicate the state information and the implicit sequence numbers between the
entities.

= RETRY.Req: This flit is sent from the entity that received a flit in error to the
sending entity. The flit contains the expected sequence number (ESeq) at the
receiving entity, indicating the index of the flit in the retry queue at the remote
entity that must be retransmitted. It also contains the NUM_RETRY value of the
sending entity.

< RETRY.Ack: This flit is sent from the entity that is responding to an error detected
at the remote entity. It contains a reflection of the NUM_RETRY value from the
corresponding Retry.Req message. The flit contains the WrPtr value at the sending
entity for debug purposes only. The WrPtr value should not be used by the retry
state machines in any way. This flit will be followed by the flit identified for retry by
the ESeq number.

= RETRY.ldle: This flit is sent during the retry sequence when there are no other
protocol flits to be sent (see Section 4.2.8.5.2 for details) or a retry queue is not
ready to be sent. For example, it can be used for debug purposes for designs that
need additional time between sending the RETRY.Ack and the actual contents of
the LLR queue.

< RETRY.Frame: This flit is sent in conjunction with a RETRY.Req or RETRY.Ack flit to
prevent aliased decoding of these flits. See Section Section 4.2.8.5 for further
details.

Compute Express Link Specification
109

EVALUATION COPY

Compute Express Link Link Layers

4.2.8.4

Table 43.

Note:

4.2.8.5

June 2019
Revision 1.1

The table below describes the impact of RETRY messages on the local and remote retry
state machines. In this context, the “sender” refers to the Device sending the message
and the “receiver” refers to the Device receiving the message. Note that how this maps
to which device detected the CRC error and which sent the erroneous message depends
on the message type; e.g., for a RETRY.Req sequence, the sender detected the CRC
error, but for a RETRY.Ack sequence, it’s the receiver that detected the CRC error.

RETRY Framing Sequences

Recall that the CXL.cache flit formatting specifies an all-data flit for link efficiency. This
flit is encoded as part of the header of the preceding flit and contains no header
information of its own. This introduces the possibility that the data contained in this flit
could happen to match the encoding of a RETRY flit.

This introduces a problem at the receiver. It must be certain to decode the actual
RETRY flit, but it must not falsely decode an aliasing data flit as a RETRY flit. In theory
it might use the header information of the stream it receives in the shadow of a CRC
error to determine whether it should attempt to decode the subsequent flit. Therefore
the receiver cannot know with certainty which flits to treat as header-containing
(decode) and which to ignore (all-data).

CXL introduces the RETRY.Frame flit for this purpose to disambiguate a control
sequence from an all-data flit (ADF). Due to MDH, 5 ADF can be sent back-to-back.
Hence, a RETRY.Req sequence comprises 5 RETRY.Frame flits immediately followed by a
RETRY.Req flit, and a RETRY.Ack sequence comprises 5 RETRY.Frame flits immediately
followed by a RETRY.Ack flit. This is shown in Figure 76.

Control Flits and Their Effect on Sender and Receiver States

RETRY Message Sender State Receiver State
RETRY.Idle Unchanged. Unchanged.
Local Retry State Machine Remote Retry State Machine
RETRY.Frame + RETRY.Req (LRSM) is updated. NUM_RETRY | (RRSM) is updated. RdPtr is set
Sequence is incremented. See to ESeq sent with the flit. See
Section 4.2.8.5.1 Section 4.2.8.5.3
RETRY.Frame + RETRY.Ack . .
Sequence RRSM is updated. LRSM is updated.
RETRY.Frame, RETRY.Req, or
RETRY.Ack message that is not Unchanged. Unchanged (drop the flit).

as part of a valid framed
sequence

A RETRY.Ack sequence that arrives when a RETRY.Ack is not expected will be treated as
an error by the receiver. Error resolution in this case is device specific though it is
recommended that this results in the machine halting operation. It is recommended
that this error condition not change the state of the LRSM.

LLR State Machines

The LLR scheme is implemented with two state machines: Remote Retry State Machine
(RRSM) and Local Retry State Machine (LRSM). These state machines are implemented
by each entity and together determine the overall state of the transmitter and receiver
at the entity. The states of the retry state machines are used by the send and receive
controllers to determine what flit to send and the actions needed to process a received
flit.

Compute Express Link Specification
110

Compute Express Link Link Layers

4.2.85.1 Local Retry State Machine (LRSM)

This state machine is activated at the entity that detects an error on a received flit. The
possible states for this state machine are:

e RETRY_LOCAL_NORMAL: This is the initial or default state indicating normal
operation (no CRC error has been detected).

e RETRY_LLRREQ: This state indicates that the receiver has detected an error on a
received flit and a RETRY.Req sequence must be sent to the remote entity.

< RETRY_LOCAL_IDLE: This state indicates that the receiver is waiting for a
RETRY.Ack sequence from the remote entity in response to its RETRY.Req
sequence. The implementation may require sub-states of RETRY_LOCAL_IDLE to
capture, for example, the case where the last flit received is a Frame flit and the
next flit expected is a RETRY.Ack.

< RETRY_PHY_REINIT: The state machine remains in this state for the duration of a
physical layer reset.

< RETRY_ABORT: This state indicates that the retry attempt has failed and the link
cannot recover. Error logging and reporting in this case is device specific. This is a
terminal state.

The local retry state machine also has the three counters described below. The
counters and thresholds described below are implementation specific.

< TIMEOUT: This counter is enabled whenever a RETRY.Req request is sent from an
entity and the LRSM state becomes RETRY_LOCAL_IDLE. The TIMEOUT counter is
disabled and the counting stops when the LRSM state changes to some state other
than RETRY_LOCAL_IDLE. The TIMEOUT counter is reset to O at link layer
initialization and whenever the LRSM state changes from RETRY_LOCAL_IDLE to
RETRY_LOCAL_NORMAL or RETRY_LLRREQ. The TIMEOUT counter is also reset
when the Physical layer returns from re-initialization (the LRSM transition through
RETRY_PHY_REINIT to RETRY_LLRREQ). If the counter has reached its threshold
without receiving a Retry.Ack sequence, then the RETRY.Req request is sent again
to retry the same flit. See Section 4.2.8.5.2 for a description of when TIMEOUT
increments. Note: It is suggested that the value of TIMEOUT should be no less than
4096 transfers.

 NUM_RETRY: This counter is used to count the number of RETRY.Req requests
sent to retry the same flit. The counter remains enabled during the whole retry
sequence (state is not RETRY_LOCAL_NORMAL). It is reset to O at initialization. It is
also reset to O when a RETRY.Ack sequence is received or whenever the LRSM state
is RETRY_LOCAL_NORMAL and an error-free retryable flit is received. The counter
is incremented whenever the LRSM state changes from RETRY_LOCAL_LLRREQ to
RETRY_LOCAL_IDLE. If the counter reaches a threshold (called MAX_NUM_RETRY),
then the local retry state machine transitions to the RETRY_PHY_REINIT. The
NUM_RETRY counter is also reset when the Physical layer returns from re-
initialization (the LRSM transition through RETRY_PHY_REINIT to RETRY_LLRREQ).
Note: It is suggested that the value of MAX_NUM_RETRY should be no less than
OxA.

e NUM_PHY_REINIT: This counter is used to count the number of physical layer re-
initializations generated during a LLR sequence. The counter remains enabled
during the whole retry sequence (state is not RETRY_LOCAL_NORMAL). It is reset
to O at initialization and when receipt of a retryable flit triggers a transition from
RETRY_LOCAL_IDLE or RETRY_LOCAL_NORMAL to RETRY_LOCAL_NORMAL. The
counter is incremented whenever the LRSM changes from RETRY_LLRREQ to
RETRY_PHY_REINIT. If the counter reaches a threshold (called
MAX_NUM_PHY_REINIT) instead of transitioning from RETRY_LLRREQ to
RETRY_PHY_REINIT, the LRSM will transition to RETRY_ABORT. The
NUM_PHY_REINIT counter is also reset whenever a Retry.Ack sequence is received

EVALUATION COPY

Compute Express Link Specification
June 2019 111
Revision 1.1

Compute Express Link Link Layers

with the Empty bit set. Note: It is suggested that the value of
MAX_NUM_PHY_REINIT should be no less than OxA.

Note that the condition of TIMEOUT reaching its threshold is not mutually exclusive
with other conditions that cause the LRSM state transitions. Retry.Ack sequences can
be assumed to never arrive at the time that the retry requesting device times out and
sends a new RETRY.Req sequence (by appropriately setting the value of TIMEOUT — see
Section Section 4.2.8.5.2). If this case occurs, no guarantees are made regarding the

EVALUATION COPY

behavior of the device (behavior is “undefined” from a Spec perspective and is not
validated from an implementation perspective). Consequently, the LLR Timeout value
should not be reduced unless it can be certain this case will not occur. If an error is
detected at the same time as TIMEOUT reaches its threshold, then the error on the
received flit is ignored, TIMEOUT is taken and a repeat Retry.Req sequence is sent to
the remote entity.

Table 44.

Local Retry State Transitions (Sheet 1 of 2)

Current Local Retry
State

Condition

Next Local Retry State

Actions

RETRY_LOCAL_NORMAL

An error free retryable flit is
received.

RETRY_LOCAL_NORMAL

Increment NumFreeBuf using the
amount specified in the ACK or
Full_Ack fields.

Increment NumAck by 1.
Increment Eseq by 1.
NUM_RETRY is reset to O.
NUM_PHY_REINIT is reset to 0.

Received flit is processed
normally by the link layer.

RETRY_LOCAL_NORMAL

Error free non-retryable flit
(other than Retry.Req
sequence) is received.

RETRY_LOCAL_NORMAL

Received flit is processed.

RETRY_LOCAL_NORMAL

Error free Retry.Req sequence is
received.

RETRY_LOCAL_NORMAL

RRSM is updated.

RETRY_LOCAL_NORMAL

Error is detected on a received
flit.

RETRY_LLRREQ

Received flit is discarded.

RETRY_LOCAL_NORMAL

PHY_RESET / PHY_REINIT
detected.

RETRY_PHY_REINIT

None.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT ==
MAX_NUM_PHY_REINIT

RETRY_ABORT

Indicate link failure.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT <
MAX_NUM_PHY_REINIT

RETRY_PHY_REINIT

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.

Any other flit is discarded.
Reset sent to physical layer.
Increment NUM_PHY_REINIT.

RETRY_LLREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has not
been sent.

RETRY_LLRREQ

If an error-free Retry.Req or
Retry.Ack sequence is received,
process the flit.

Any other flit is discarded.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
Retry.Req sequence has been
sent.

RETRY_LOCAL_IDLE

If an error free Retry.Req or
Retry.Ack sequence is received,
process the flit.

Any other flit is discarded.
Increment NUM_RETRY.

RETRY_LLRREQ

PHY_RESET/PHY_REINIT
detected.

RETRY_PHY_REINIT

None.

RETRY_LLREQ

Error is detected on a received
flit

RETRY_LLREQ

Received flit is discarded.

Compute Express Link Specification
June 2019 112
Revision 1.1

Compute Express Link Link Layers

Table 44.

Local Retry State Transitions (Sheet 2 of 2)

State

Current Local Retry

Condition

Next Local Retry State

Actions

RETRY_PHY_REINIT

Physical layer still in reinit.

RETRY_PHY_REINIT

None.

RETRY_PHY_REINIT

Physical layer returns from
Reinit.

RETRY_LLRREQ

Received flit is discarded.
NUM_RETRY is reset to O.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
matches the value in the local
entity

RETRY_LOCAL_NORMAL

TIMEOUT is reset to 0.

If Retry.Ack sequence is received
with Empty bit set, NUM_RETRY is
reset to 0 and NUM_PHY_REINIT
is reset to O.

RETRY_LOCAL_IDLE

Retry.Ack sequence is received
and NUM_RETRY from Retry.Ack
does NOT match the value in
the local entity

RETRY_LOCAL_IDLE

Any received retryable flit is
discarded

RETRY_LOCAL_IDLE

TIMEOUT has reached its
threshold.

RETRY_LLRREQ

TIMEOUT is reset to 0.

RETRY_LOCAL_IDLE

Error is detected on a received
flit.

RETRY_LOCAL_IDLE

Any received retryable flit is
discarded.

RETRY_LOCAL_IDLE

A flit other than RETRY.Ack/
Retry.Req sequence is received.

RETRY_LOCAL_IDLE

Any received retryable flit is
discarded.

RETRY_LOCAL_IDLE

A Retry.Req sequence is
received.

RETRY_LOCAL_IDLE

RRSM is updated.

RETRY_LOCAL_IDLE

PHY_RESET / PHY_REINIT
detected.

RETRY_PHY_REINIT

None.

RETRY_ABORT

A flit is received.

RETRY_ABORT

Any received retryable flit is
discarded.

4.2.8.5.2

TIMEOUT Definition

After the local receiver has detected a CRC error, triggering the LRSM, the local Tx
sends a RETRY.Req sequence to initiate LLR. At this time, the local Tx also starts its

4.2.8.5.3

EVALUATION COPY

June 2019
Revision 1.1

TIMEOUT counter.

The purpose of this counter is to decide that either the Retry.Req sequence or
corresponding Retry.Ack sequence has been lost, and that another RETRY.Req attempt
should be made. Recall that it is a fatal error to receive multiple Retry.Ack sequences
(i.e., a subsequent Ack without a corresponding Req is unexpected). Therefore, the link
layer must guarantee that it not send another Retry.Req sequence until it is certain it
will not receive a Retry.Ack sequence for a previously sent Req. Thus the purpose of the
TIMEOUT counter is to estimate the worst-case latency for a Retry.Req sequence to
reach the remote side and for the corresponding Retry.Ack sequence to return.

Certain unpredictable events (such as physical layer re-initialization, low power
transitions, etc.) that interrupt link availability could add a very large amount of latency
to the RETRY round-trip. To make the TIMEOUT robust to such events, instead of
incrementing per link layer clock, TIMEOUT increments whenever the local Tx transmits
a flit, protocol or control. Due to the TIMEOUT protocol, it must force injection of
RETRY.Idle flits if it has no real traffic to send, so that the TIMEOUT counter continues
to increment.

Remote Retry State Machine (RRSM)

The remote retry state machine is activated at an entity if a flit sent from that entity is
received in error by the local receiver, resulting in a link layer retry request (Retry.Req
sequence) from the remote entity. The possible states for this state machine are:

Compute Express Link Specification
113

Compute Express Link Link Layers

e RETRY_REMOTE_NORMAL: This is the initial or default state indicating normal
operation.

e RETRY_LLRACK: This state indicates that a link layer retry request (Retry.Req
sequence) has been received from the remote entity and a Retry.Ack sequence
followed by flits from the retry queue must be (re)sent.

The remote retry state machine transitions are described in the table below.

Remote Retry State Transition

Current Remote Retry State

Condition

Next Remote Retry State

RETRY_REMOTE_NORMAL

Any flit, other than error free Retry.Req sequence, is

received.

RETRY_REMOTE_NORMAL

RETRY_REMOTE_NORMAL

Error free Retry.Req sequence received.

RETRY_LLRACK

Retry.Ack sequence not sent.

RETRY_LLRACK

Retry.Ack sequence sent.

RETRY_REMOTE_NORMAL

Physical Layer Reinitialization

RETRY_REMOTE_NORMAL

O Table 45.
< > RETRY_LLRACK
RETRY_LLRACK
RETRY_LLRACK
Z o
]
P Figure 76.
< 4.2.8.6
June 2019

Revision 1.1

In order to select the priority of sending flits, the following rules apply:

1. Whenever the RRSM state becomes RETRY_LLRACK, the entity must give priority to
sending the LLCTRL flit with Retry.Ack

2. Except RRSM state of RETRY_LLRACK, the priority goes to LRSM state of
RETRY_LLRREQ and in that case the entity must send a LLCTRL flit with Retry.Req over
all other flits.

The overall sequence of replay is shown in Figure 76.

CXL.cache/mem Replay Diagram

Local
(LRSM)
NORMAL

-
URREQ |—— =~
. — 5 Retry.Frame

Retry Reg; Eseq: N; Ny mRetry: ON

IDLE

Interaction with Physical Layer Reset or Reinitialization

On detection of a physical layer reset or reinitialization, the receiver side of the link
layer must force a link layer retry on the next flit. Forcing an error will either initiate
LLR or cause a current LLR to follow the correct error path. The LLR will ensure that no
flits are dropped during the physical layer reset. Without initiating a LLR it is possible
that packets/flits in flight on the physical wires could be lost or the sequence numbers
could get mismatched.

Compute Express Link Specification
114

EVALUATION COPY

Compute Express Link Link Layers

4.2.8.7

4.2.8.7.1

4.2.8.7.2

June 2019
Revision 1.1

Upon detection of a physical layer reset, the LLR RRSM needs to be reset to its initial
state and any instance of Retry.Ack sequence needs to be cleared in the link layer and
physical layer. The device needs to make sure it receives a Retry.Req sequence before it
ever transmits a RETRY.Ack sequence.

CXL.cache/CXL.mem Flit CRC
The CXL.cache Link Layer uses a 16b CRC for transmission error detection. The 16b
CRC is over the 528 bit flit. The assumptions about the type errors is as follows:

= Bit ordering runs down each lane

= Bit Errors occur randomly or in bursts down a lane, with majority of errors single bit
random errors.

< Random errors can statistically cause multiple bit errors in a single flit, so it is more
likely to get 2 errors in a flit then 3 errors, and more likely to get 3 errors in a flit
then 4 errors, and so on...

« There is no requirement for primitive polynomial (a polynomial that generates all
elements of an extension field from a base field) since we do have a fixed payload.
Primitive may be the result, but it's not required.

CRC-16 Polynomial and Detection Properties
The CRC polynomial to be used is 0x1f053.

The 16b CRC Polynomial has the following properties:
e 16 Bit Burst Detection — Provides 2 Adjacent wire protection for 8UlI flit
< All Single, double, and triple bit errors detected
< Polynomial selection based on best 4-bit error detection characteristics and perfect
1, 2, 3-bit error detection

CRC-16 Computation

Below are the 384 bit data masks for use with an XOR tree to produce the 16 CRC bits.
The mask bit order is CRC[N]=DM[527:016]. Data Mask bits [527:016] are applied to
the Flit bits [527:016], as flit bits [015:000] are defined to be CRC[15:00].

The Flit Data Mask for the 16 CRC bits is located in the table below.

Compute Express Link Specification
115

EVALUATION COPY

Compute Express Link Link Layers

Figure 77.

4.2.9

4.2.9.1

June 2019
Revision 1.1

CRC Data Mask for 527 bit Flit

Fit Bit Location

5-49% | 49544 83432 41-400 399- 368 367- 3% 3304|010 239-208 207-178 15-14 | 13- 11-80 -4 4-1

(RCLS | EFOCDYY | C33.B03A 3EB4.AOTC | DVAEDA3 FARB 0198 | SB0ALC | AZIE 79D | 77535020 DCJFDDGA | 3803577 | FSFS2ADC | 636DBOSC | 3978.EA30 | COSO_EODY | 9B05.93D4 | 746B 2431
(RC4 | 98523505 | D6E6.6427 CGFDC2 | BCT9B7IA O7SEB164 | TB0.6FEA | FSL14535 | CCPAFBL 340 330F | 2488.204C | (OFOF BRA | S20.6872 | 5C4 9728 | ABRB 9065 | S689_DABE | 4ESE3629
(RCI3 | 23858378 | S7CR.8A29 AEG7.D7OD | GO%D.O1E FOp4 £10A | GU7R7DFY | D29%.DB4Y | GIDE D4 4S5 CABS | AMBAZEDN | FTDFSBL | AADO.O4BS | 2894 A5 | DRAC_ABR | 3M4TECR | S TFDS
(RCLD | 7Ed61844 | 6FSFFDIE E9B7.42B) | 137.0ADC 86792130 | GIC74B0 | 47550478 | OFCA.4°SD TEDO3FB | DAAD9OF | OCCCSF4 | CH6D_BDGE | ACBSBB2 | 8106.B<8 | 0324 ACBL | DDC9_1A3
(RCLL | SOBFDSDR | P34 46AD 4ASF 025 | DEID.37/D BAD7 9126 | EEAE7014 | BOB4.F3ES | ZOBLJABF 6317.COFE | LED50ARR | 73930256 | (USBG%6R | 67223641 | 80D3.BAGS | OAB4.COOC | 9A8F ASKO
(RCIO | AGSF_EAED | FORA.23% ASDF Q12 | EFOE.OBBE DCER.CBSS | 77573808 | 46DAJYD | 94SB8D47 BAGBELTF | 2712.957C | 39C9.8128 | (0D B4BS | B7911820 | CGE9.DDA | (DAA_GXCH | 4D47.D4F0
(RCOY | S42F 7576 | FOCSM1AB S5207.(209 | 777400 6E79E4A9 | BABOCOS | 236D3C79 | 4ADCSEAD DRCSFOBF | 389 4ABE | 1CE4.C0% | B0I6DASA | DBCBBDAD | 6374 EEAS | 66453163 | 2643 EATR
(RCOB | 2AL77ABD | TEELORDS AGMBEL04 | BBC3.AGEF BT3AF4 | DDS_CEOD | GMB6.ETC | ASIJFSL ECGDFBSF | COC4.ASY | OETLEOMA | CO0BGDD | GDE446CB | 31BA7752 | B3f2.98B1 | 9351 53¢
(RCO7 | 1503_DSD | BF3IA46A DAAS FOBD | SDERD377 DB9D 7912 | GEEAE7OL | 48DBAP3E | SO8B.17AB Fe3L7CF | EAEDLSDAF | §739.3005 | 6OUS.B6% | BEF2 2364 | 1BDD_3BAD | SOAD.ACSB | (94 FASE
(RCOG | 8ARS FEAE | DFSBALS GASLF841 | DEFDE9BB EDCEBCRY | 37757380 | AdGD ATOF | 20458804 7BIG BEL7 | F271 2857 | (39C_3R12 | BLODDBB | SB79.11B | CCGESDD‘ | ACDLAGDC | G4DA_TDLF
(RCOS | AADEJGAT | ABT7ES20 B3ADDSSC | 40DA ARCE OCOCSFFC | CO9AF38C | FC28.AM6 | E3FLBCB E1F3 8261 | CICBAADC | 143B.6625 | 3B6CDDFY | O4C4 6269 | CBAT.AE33 | CDBCCOCD | 460t 1A%
(RCO4 | DSEF 1357 | SOBBF490 4ADG.EAAE | 206B.5767 OGDG.DFFE | 604079CE | 7EM4_550B | 7IRB.CCES FOF9.C130 | QB4 SS6E | OAID.BA12 | 9DBG.6EFC | CAGL3174 | ESB3 D7AS | EGBA6061 | 23008048
(RCO3 | GSIBS0S2 | 6ESE4272 1CEFDCD | (T9B7LAD TER 1647 | GROEFGN° | 914 535C | CRAFIBI3 D403.30F) | 48R2.14C0 | FOFBF3AS | 20B6.8722 | SCA9F28A | BFR9.0BS5 | 6850 3E4 | ESEB 6
(RCO2 | (295.AR9 | 37332138 QE37EEAS | E3CDBGDO 3CRAOB23 | BSE37BS7 | CRBAJGAE | 67D7 %0BY 90 0EFS | 24410860 | 7870902 | 96034391 | 224 FO4S | SFCA BSMA | B4EDIRD | 725 BL4A
(RCOL | 6144 D414 | 9B93.909C Q7B FOA | FIG6.DCE 1670591 | DACLBDAB | Ed5 D7 | B3EBCECY CODO.CFIC | 922008530 | 3CEFCEQ | 4B6D_AICB | 9712.7CAD | AFED4005 | SA7 689 | 3074 DRAS
CRCOD | DF39.BIF3 | 89777074 70095269 | AFSDB427 FSDGOB0 | BG0.%430 | SCCP3BD | EEAG.BAY3 BAFFBAD | TIEOCEF | EBEAS458 | CED.60BS | 72F1.DMGL | GAMLCIE3 | 36002748 | E8D6 4683

CXL.cache-Side Poison and Viral

Viral

Viral is a containment feature as described in Section 11.4, “CXL Viral Handling” on
page 198. As such, when the local socket is in a viral state, it is the responsibility of all
off-die interfaces to convey this state to the remote side for appropriate handling.
CXL.cache/mem side conveys viral status information. As soon as the viral status is
detected locally, the link layer forces a CRC error on the next outgoing flit. If there is no
traffic to send, the transmitter will send a LLCRD flit with a CRC error. It then embeds
viral status information in the LLR.Ack message it generates as part of the defined CRC
error recovery flow.

There are two primary benefits to this methodology. First, by using the LLR.Ack to
convey viral status, we do not have to allocate a bit for this in protocol flits. Second, it
allows immediate indication of viral and reduces the risk of race conditions between the
viral distribution path and the datapath. These risks could be particularly exacerbated
by the large CXL.cache flit size and the potential limitations in which components
(header, slots) allocate dedicated fields for viral indication.

88

Compute Express Link Specification
116

EVALUATION COPY

Compute Express Link ARB/MUX

5.0 Compute Express Link ARB/MUX
The figure below shows where the CXL ARB/MUX exists in the Flex Bus layered
hierarchy. The ARB/MUX provides dynamic muxing of the CXL.io and CXL.cache/
CXL.mem link layer control and data signals to interface with the Flex Bus physical
layer.
Figure 78. Flex Bus Layers -- CXL ARB/MUX Highlighted
‘\
CXL Transaction Layer
~
PCle/CXL.io Transaction Layer
PCIE_ Trai’::i:ion CXL.cache + CXL.mem
Transaction Layer Transaction Layer
Layer enhancements
N)
<
CXL Link Layer
PCle /CXL.io Link Layer
|
q CXLio Link
R Layer CXL.cache + CXL.mem Link Layer
Layer enhancements
e
p # # /
\ CXL ARB/MUX /
Flex Bus Physical Layer
PCle/CXL Logical Sub-block
PCle Electrical Sub-block
RX TX
-
Compute Express Link Specification
June 2019 117

Revision 1.1

EVALUATION COPY

Compute Express Link ARB/MUX

In the transmit direction, the ARB/MUX arbitrates between requests from the CXL link
layers and multiplexes the data. It also processes power state transition requests from
the link layers: resolving them to a single request to forward to the physical layer,
maintaining virtual link state machines (VLSMs) for each link layer interface, and
generating ARB/MUX link management packets (ALMPs) to communicate the power
state transition requests across the link on behalf of each link layer. Please refer to

Section 9.4, Section 9.5, and Section 9.6 for more details on how the ALMPs are
utilized in the overall flow for power state transitions. In PCle mode or single protocol
mode, the ARB/MUX is bypassed, and thus ALMP generation by the ARB/MUX is

disabled.

In the receive direction, the ARB/MUX determines the protocol associated with the CXL
flit and forwards the flit to the appropriate link layer. It also processes the ALMP

packets,

participating in any required handshakes and updating its vLSMs as

appropriate.

51 Virtual LSM States
The ARB/MUX maintains vLSMs for each CXL link layer it interfaces with, transitioning
the state based on power state transition requests it receives from the local link layer
or from the remote ARB/MUX on behalf of a remote link layer. Table 46 below lists the
different possible states for the vLSMs. PM States and Retrain are virtual states that
can differ across interfaces (CXL.io and CXL.cache and CXL.mem), however all other
states such as LinkReset, LinkDisable and LinkError are forwarded to the Link Layer and
are therefore synchronized across interfaces.
Table 46. Virtual LSM States Maintained Per Link Layer Interface
Virtual LSM State Description
Reset Power-on default state during which initialization occurs
Active Normal operational state
L1.1 Power savings state, from which the link can enter Active via Retrain
L1.2 Power savings state, from which the link can enter Active via Retrain
L1.3 Power savings state, from which the link can enter Active via Retrain
L1.4 Power savings state, from which the link can enter Active via Retrain
DAPM Deepest Allowable PM State (not a resolved state; a request that resolves to an L1 substate)
SLEEP_L2 Power savings state, from which the link must go through Reset to reach Active
LinkReset Reset propagation state resulting from software or hardware initiated reset
LinkError Link Error state due to hardware detected errors
LinkDisable Software controlled link disable state
Retrain Transitory state that transitions to Active
Note: When the Physical Layer enters Hot-Reset or LinkDisable state, that state is
communicated to all link layers as LinkReset or LinkDisable respectively. No ALMPs are
exchanged, irrespective of who requested, for these transitions.
Compute Express Link Specification
June 2019 118

Revision 1.1

EVALUATION COPY

Compute Express Link ARB/MUX

Note:

Table 48.

June 2019
Revision 1.1

The ARB/MUX looks at the status of each VLSM to resolve to a single state request to
forward to the physical layer as specified in Table 47. For Example if current vLSM[O]
state is L1.1 (row = L1.1) and current vLSM[1] state is Active (column = Active), then
the resolved request from the ARB/MUX to the Physical layer will be Active.

Table 47. ARB/MUX Multiple Virtual LSM Resolution Table
Resolved Request from ARB/MUX
(Row et o anto] Yie: Reset |Active | L1.1 | L1.2 | L1.3 | L1.4 |SLEEP L2
Column = current vLSM[1] state)
Reset RESET Active L1.1 L1.2 L1.3 L1.4 SLEEP_L2
Active Active Active | Active | Active | Active | Active | Active
L1.1 L1.1 Active L1.1 L1.1 L1.1 L1.1 L1.1
L1.2 L1.2 Active L1.1 L1.2 L1.2 L1.2 L1.2
L1.3 L1.3 Active L1.1 L1.2 L1.3 L1.3 L1.3
L1.4 L1.4 Active L1.1 L1.2 L1.3 L1.4 L1.4
SLEEP_L2 SLEEP_L2 | Active L1.1 L1.2 L1.3 L1.4 SLEEP_L2

ARB/MUX State Transition Table

Table 47 is presented as a suggestion, not a requirement.

When any of the above link layers request for LinkReset or LinkError, the ARB/MUX will
unconditionally propagate the request to the Physical layer ignoring the direction of the
state consolidator.

Table 48 describes the conditions under which a vLSM transitions from one state to the
next. A transition to the next state happens after all the steps in the trigger conditions
column are complete. Some of the trigger conditions are sequential and indicate a
series of actions from multiple sources. For example, on the transition from Active to
L1.x state on an upstream port, the state transition will not occur until the vLSM has
received a request to enter L1.x from the Link Layer followed by the vLSM sending a
Request ALMP{L1.x} to the remote vLSM. Next the vLSM must wait to receive a Status
ALMP{L1.x} from the remote VLSM. Once all these conditions are met in sequence, the
vLSM will transition to the L1.x state as requested.

Current vLSM State

Next State

Upstream Port Trigger

Downstream Port Trigger

Active

Condition Condition
Upon receiving a Request to Upon receiving a Request to
enter L1.x from Link Layer, the enter L1.x from Link Layer and
L1.x ARB/MUX must initiate a receiving a Request ALMP{L1.x}

Request ALMP{L1.x} and
receive a Status ALMP{L1.x}
from the remote vLSM

from the Remote vLSM, the
ARB/MUX must send Status
ALMP{L1.x} to the remote VLSM

L2

Upon receiving a Request to
enter L2 from Link Layer the
ARB/MUX must initiate a
Request ALMP{L2} and receive
a Status ALMP{L2} from the
remote VLSM

Upon receiving a Request to
enter L2 from Link Layer and
receiving a Request ALMP{L2}
from the Remote vLSM the ARB/
MUX must send Status
ALMP{L2} to the remote vLSM

L1 (Physical Layer
LTSSM also in L1)

Retrain (Physical
LTSSM in Recovery)

Upon receiving an ALMP Active
request from remote ARB/MUX

Upon receiving an ALMP Active
request from remote ARB/MUX

L1 (Physical Layer
LTSSM in LO)

Retrain (Physical
Layer LTSSM in LO)

Upon receiving an ALMP Active
request from remote ARB/MUX

Upon receiving an ALMP Active
request from remote ARB/MUX

Compute Express Link Specification

119

Compute Express Link ARB/MUX

Table 48. ARB/MUX State Transition Table
Current vLSM State Next State Upstream Port Trigger Downstream Port Trigger
Condition Condition
Active (Physical Retrain LogPHY enters Retrain from LogPHY enters Retrain from
Layer in Recovery) Active state Active state
Link Layer stops requesting Link Layer stops requesting
Retrain (LTSSM in Active Retrain and after State Status Retrain and after State Status
Recovery) ALMP is sent and received which | ALMP is sent and received which
resolves to Active state resolves to Active state
Link Layer is requesting Active Link Layer is requesting Active
and the following conditions are | and the following conditions are
Retrain (Exit from L1 met: met:
state) (LTSSM in Active Sent and received State Status | Sent and received State Status
Recovery) ALMP; Entry to Active ALMP ALMP; Entry to Active ALMP
exchange protocol is complete exchange protocol is complete
(See Section 5.1.1.2) (See Section 5.1.1.2)
ANY (Except Disable/ LinkReset Indication of LinkReset from Indication of LinkReset from
LinkError) Physical Layer Physical Layer
ANY (Except Disabled Indication of Disabled from Indication of Disabled from
LinkError) Physical Layer Physical Layer
Directed to enter LinkError from | Directed to enter LinkError from
ANY LinkError Link Layer or indication of Link Layer or indication of
LinkError from Physical Layer LinkError from Physical Layer
Retrain LinkError Implementation Specific Implementation Specific
LinkError Reset Implementation Specific Implementation Specific
LinkReset Reset Implementation Specific Implementation Specific
Link Layer is asking for Active Link Layer is asking for Active
Reset Active and Entry to Active ALMP and Entry to Active ALMP
I exchange protocol is complete exchange protocol is complete
I (See Section 5.1.1.2) (See Section 5.1.1.2)
51.1 Rules for Virtual LSM State Transitions Across Link
This section refers to vLSM state transitions.
51.1.1 General Rules
= The link cannot operate for any other protocols if CXL.io protocol is down. (CXL.io
operation is a minimum requirement)
I 51.1.2 Entry to Active Exchange Protocol
The ALMP protocol required for the entry to active consists of 4 ALMP exchanges
between the local and remote vLSMs as seen in Figure 79. Entry to active begins with a
Active State Request ALMP sent to the remote vLSM which responds with a Active State
Status ALMP. The only valid response to an Active State Request is an Active State
Status once the corresponding VvLSM is ready. The remote vLSM must also send an
Active State Request ALMP to the local vLSM which responds with an Active State
Status ALMP.

Compute Express Link Specification
June 2019 120
Revision 1.1

Compute Express Link ARB/MUX

>_ Figure 79
al
o,
O
Z
9 5113
P Figure 80.
<
)
_
LL

Revision 1.1

Once all four ALMPs are received, the vLSM states transition to Active State.

Entry to Active Protocol Exchange

Host
LTSSM

CHANNE
vLSM

|___sTATE_REQ ALMP {ACT

] ——STATE_STS ALMP {ACT

[—STATE_REQ ALMP {ACT

| STATE_STS ALMP {ACT!

L Device
LTSSM

WE} LSM0}—

VE} LSM{0]———]

e R

VE} LSM[0}—]

[

vLSM

L=

Status Synchronization Protocol

As a part of Recovery, all active vLSMs transition into the Retrain state. A State Status
ALMP is sent by each vLSM after the indication of LTSSM Recovery exit is received, as
shown in Figure 80. The exchange of State Status ALMPs is all that is needed to
synchronize the vLSM. The state indicated in the State Status ALMPs for
synchronization is the state of the vLSM before entry to LTSSM Recovery. Therefore the
ARB/MUX must take a snapshot of its vVLSM states when notified that the Physical Layer
enters Recovery and before it transitions its vLSMs to Retrain.

Status Synchronization

LSM[0] Host LTSSM CHANNEL Device LTSSM LSM[0]
| I
Notification of Recovery State Notification of
Recovery Exit =~ —— ————__ Recovery Exit

STATE S S ALMP (PFEVVO\sStam} Sm

State Request ALMP

The following rules apply for sending a State Request ALMP. A State Request ALMP is
sent to request a state change to Active or PM. For PM, the request can only be initiated
by the Upstream ARB/MUX.

For Entry Into Active

< All Recovery state operations must complete before the entry to Active sequence
starts

= An ALMP State Request is sent to initiate the entry into Active State.

Compute Express Link Specification
121

EVALUATION COPY

Compute Express Link ARB/MUX

Figure 81.

June 2019
Revision 1.1

< A vLSM must send a Request and receive a Status before the transmitter is
considered active.

Figure 81 shows an example of entry into the Active state. The flows in Figure 81 show
four independent actions (ALMP handshakes) that may not necessarily happen in the
order or small time-frame shown. The vLSM transmitter and receiver may become
active independently. Both transmitter and receiver must be active before the vLSM
state is Active. The transmitter becomes active after a vLSM has transmitted and
received Status ALMP{Active}. The receiver becomes active after a vLSM receives a
Request ALMP{Active} and sends a Status ALMP{Active} in return.

CXL Entry to Active Flow

Host LSM[1] Ready]
o Transmit |

Receiver Active

Hast LSM([

LSM

HostLSM[1]

a1l

Host LSM[0] Ready |
o Transmit

Host LSM[0]
Receiver active 4

Lsm[o]

Host LSM[0] = Active

<LTSSM in LO>

CHANNEL

P LACTIVE) LM (O

LSMI0] LSV

——)

<

Device LSM

/| Device LSM[0] Ready

to Transmit

Device LSM[0]
Receiver Active

[0]= Active

1] = Active

TATE STS ALMP (AL TIVEN L5811 .

=

Normal Operation

Device LSM[1] Ready
to Transmit

\ \

Device LSM)

A[1]

Device LSM[1]
Receiver Active

3
)

[1] = Active

Compute Express Link Specification

122

EVALUATION COPY

Compute Express Link ARB/MUX

5.1.1.4.2 For Entry into PM State (L1/L2)

< An ALMP State Request is sent to initiate the entry into PM States

< A vLSM must send a Request and receive a Status before the transmitter is placed
into a low power state.

Figure 82 shows an example of Entry to PM State (L1) initiated by the device side ARB/
MUX. Each vLSM will be ready to enter L1 State once the VLSM has sent a Request
ALMP{L1} and received a Status ALMP{L1%} in return or the vLSM has received a
Request ALMP{L1} and sent a Status ALMP{L1} in return. The vLSMs operate
independently and actions may not complete in the order or the timeframe shown.
Once all vLSMs are ready to enter PM State (L1), the Channel will complete EIOS
exchange and enter L1.

Figure 82. CXL Entry to PM State

S SM([0] CHANNEL . ‘ .
LSma] Lsmio] Host LTSSM Device LTSSM LSM[0] Lsaial

| _STATE_REQ ALMP (L1} LSM{OT—

[~——STATL_STS ALMP (L1} LMt0}-

~ |
e

L CfATE_REQ ALMP (L1} LSM{I}
%1 ‘ ‘ -~

— B TN [—SIATE_STSAIMP {L1} LsM[1)

v

Gotoll e

== Oktogotoll -
e -
|

TEEgE L

sl

5.1.1.5 State Status ALMP

5.1.1.5.1 When State Request ALMP is received

= A State Status ALMP is sent after a State Request ALMP is received for entry into
Active State or PM States when entry to the PM state is accepted. No State Status
ALMP is sent if the PM state is not accepted. See Section 9.4, “Compute Express
Link Power Management” on page 186 for more details.

51.1.5.2 Recovery State

e A vLSM cannot conduct any other communication on the link coming out of
recovery until it has sent and received State Status ALMP.

= The vLSM will enter Recovery if a State Status ALMP is received without a State
Request first being sent by the vLSM except when the vLSM is coming out of
Retrain, as shown in Figure 85.

Compute Express Link Specification
June 2019 123
Revision 1.1

EVALUATION COPY

Compute Express Link ARB/MUX

Figure 83.

June 2019
Revision 1.1

Figure 83 shows a general example of Recovery exit. The state sent in the State Status
ALMP exchange is the state of the vLSM prior to it going into the Retrain state.

CXL Recovery Exit Flow

LSMI[1]

Host LSM[1] = Retrain

LSM[0]

Host LSM[D] = Retrain

CHANNEL

| RecoveryState

My trigger

STATE_REQif current
state and requested
state ace dilferent

=~

Normal Operation

'.‘:T STATE 51
|

Device LTSSM

== Notification of
Recovery Bxit

|
Device LSM

———b|

LSM[0]

0] = Retrain | | Device LSM

LSM[1]

1] = Retrain

On Exit from Recovery, the vLSMs on either side of the channel will send a Status ALMP
in order to synchronize the LSMs. The Status ALMP will provide the state of the vLSM
prior to it entering Retrain. The Status ALMPs for synchronization may trigger a State
Request ALMP if the provided state and the requested state are not the same, as seen
in Figure 84. The ALMP for synchronization may trigger a re-entry to recovery if the
vLSMs on either side of the channel are not in the same state out of Retrain, as seen in
Figure 85. If the provided states from both vLSMs are the same as the requested state
prior to the Recovery, the vLSMs are considered synchronized and will continue normal
operation, see figure Figure 83.

Compute Express Link Specification

124

EVALUATION COPY

Compute Express Link ARB/MUX

Figure 84 shows an example of the exit from a PM State (L1) through Recovery. The
Host LSM[O0] in L1 state receives the Active Request, and the link enters Recovery. After
the exit from recovery, each vLSM sends Status ALMP{L1} (State of the vLSM before
Recovery entry) to synchronize the vLSMs. Because the state in the Status ALMP for
synchronization is not equal to the requested state that triggered the entry to recovery,
Request ALMP{Active} and Status ALMP{Active} handshakes are completed to enter
Active State.

Figure 84. CXL Exit from PM State

a1l Atol CHANNEL it Al
LSM[1 LsmM([0] Host LTSSM Device LTSSM LsmM[o] LsM[1]
Host LSM[1] = L1 Host LSMI0] = L1 T Device LSM[0] = L1 Device LSM[1] = [1
L5M[0] Requested
to enter Active

ARB/MUX takes snapshot of

ARB/MUX takes snapshot of | ™, B
o "
current vLSM states before going \ g current viSM states before going
to Retrain | ™ to Retrain
| N
/ ——p Recovery State

Motification of

Netification of
Recovery Fxi

Recovery Exit

STATE_STS ALMPs
communicate LSM
states for syncronization

— |
— I
I |
STATE_STS 1= ™ o=t TS ALMP {11
requested state, e
STATE_REQ sent
R

[STATE_REQ ALMP fActive) LSM[o}

T ——————
) Device LSM[0] = Retrain
/‘ —
/ R
(L e
\ -
\d Host LSM[0] = Retrain

Host LSM[0] = Active

e EE . [] Device (SM[0] = Active
[STATE_REQ ALMP {Active) ISM[{}——

Device LSM[1] = Retrain

l———————

Host LSM[1] = Retrain

i TATE_S15 ALMP {Active] L5M1}—|
Host LSM[1] = Active _STS ALMP {Active] LSML1] -

Device (SM[1] = Active

Lo

Compute Express Link Specification
June 2019 125
Revision 1.1

EVALUATION COPY

Compute Express Link ARB/MUX

Figure 85.

51.1.6

d
N

June 2019
Revision 1.1

Figure 85 shows an example of error in the Recovery flow. The error shown is one
example of how an error may occur where the device does not properly receive the
request to go to Retrain and therefore remains in Active. On indication of exit from
Recovery from the LTSSM the Host LSMs send Status ALMP{Active} to synchronize
VLSM across the Channel. Since the Device side received Status ALMP{Active} without
first sending a Request ALMP or being in Retrain State, the Device LSM requests the
Physical Layer to enter recovery. Recovery flow is then entered by both Host and
Device and exited and synchronized correctly.

CXL Recovery Error Flow

"1 . CHANNEL . enlo
Lsm[1 Lsm[o Host LTSSM Y Device LTSSM Lsmio]

<LTSSM in Active>

Recovery State

Host LSM[1] = Active Host LSM[0] = Active Device LSM[0] = Active | | Device LSM[1] = Active

1 pecovery

Ay ——
Ny - Rece
ik in <LTSSM in LO>
Host LSM }1= Retrain Host LSM[0] = Retrain 5 d 5
/ v woficto™_____—1
{ s N
W — | vetotfcdt

R P

STATE_STS sent td sync LSMs_ |

Recovory Reauest—" e

| —Recovery REauest—

Recovery State

I
<LTSSM in LO>

el Lsig|

[0)~—— |

. Device LSM[0] = Active

|

-
Host LSM[0] = Active

| STATE_STSsent tosync SMs_|

b Device LSM[1] = Active
tActive} LSM{L}——

lt——
Host LSM[1] = Active

Normal Operation

Unexpected ALMPs

The following situations describe circumstances where an unexpected ALMP will cause
entry to Retrain State:

= When in the Synchronization portion on exit from Retrain, any ALMP other than a
Status ALMP is considered an unexpected ALMP and will trigger recovery.

< When an Active Request ALMP has been sent, any ALMP other than an Active State
Status ALMP that is sent in response is considered an unexpected ALMP and will
trigger recovery.

ARB/MUX Link Management Packets

The ARB/MUX uses ALMPs to communicate virtual link state transition requests and
responses associated with each link layer to the remote ARB/MUX.

An ALMP is a 1DW packet with format shown in Figure 86 below. The message code
used in Byte 1 of the ALMP is 0000_1000b. This 1DW packet is replicated four times on
the lower 16-bytes of a 528-bit flit to provide data integrity protection; the flit is zero
padded on the upper bits. If the ARB/MUX detects an error in the ALMP, it initiates a
retrain of the link.

Compute Express Link Specification
126

EVALUATION COPY

Compute Express Link ARB/MUX

Figure 86.

Table 49.

521

June 2019
Revision 1.1

ARB/MUX Link Management Packet Format

Byte O Byte 1 Byte 2 Byte 3
7‘6‘5‘4|3|2|1‘0 7|6|5‘4|3|2|1‘D 7‘6|5|4‘3‘2‘1|D 7 6|5|4‘3‘2‘1|D

Reserved Message Message Specific

Bytes 2 and 3 of the ALMP packet is as shown in Table 49 below. ALMPs can be request
or status type. The local ARB/MUX initiates transition of a remote VLSM using a request
ALMP. After receiving a request ALMP, the local ARB/MUX processes the transition
request and returns a status ALMP to indicate that the transition has occurred. If the
transition request is not accepted, no status ALMP is sent and both local and remote
VLSMs remain in their current state.

ALMP Byte 2 and Byte 3 Encoding

Byte2 Bit Description

Virtual LSM State Encoding:

0000: NOP/Reset (for Status ALMP only)
0001: ACTIVE

0010: Reserved

0011: DEEPEST ALLOWABLE PM STATE/Reserved (for Status ALMP only)
0100: IDLE_L1.1

0101: IDLE_L1.2

0110: IDLE_L1.3

3:0 0111: IDLE_L1.4

1000: L2

1001: LINKRESET (for Status ALMP only)
1010: LINKERROR (for Status ALMP only)
1011: Retrain (for Status ALMP only)
1100: DISABLE (for Status ALMP only)
1101: Reserved

1110: Reserved

1111: Reserved

6:4 Reserved

Request/Status Type
7 1: Virtual LSM Request ALMP
0: Virtual LSM Status ALMP

Byte3 Bit Description

Virtual LSM Instance Number: Indicates the targeted Virtual LSM interface
when there are multiple Virtual LSMs present.

0000: Reserved

3:0 0001: ALMP for CXL.io

0010: ALMP for CXL.cache and CXL.mem

Note: When a single Virtual LSM is present, the ARB/MUX should be bypassed.
7:4 Reserved

ARB/MUX Bypass Feature

The ARB/MUX must disable generation of ALMPs when there is no dynamic multiplexing
of CXL.io with other CXL protocols, e.g., when the Flex Bus link is operating in PCle
mode or when only CXL.io protocol is enabled. Determination of the bypass condition
can be via hwinit or during link training.

Compute Express Link Specification
127

EVALUATION COPY

Compute Express Link ARB/MUX

o
W

June 2019
Revision 1.1

Arbitration and Data Multiplexing/Demultiplexing

The ARB/MUX is responsible for arbitrating between requests from the CXL link layers
and multiplexing the data based on the arbitration results. The arbitration policy is
implementation specific as long as it satisfies the timing requirements of the higher
level protocols being transferred over the Flex Bus link. Additionally, there must be a
way to program the relative arbitration weightages associated with the CXL.io and
CXL.cache+CXL.mem link layers as they arbitrate to transmit traffic over the Flex Bus
link. See Section 7.2.2.2.1 for more details. Interleaving of traffic between different
CXL protocols is done at the 528-bit flit boundary.

88

Compute Express Link Specification
128

EVALUATION COPY

Flex Bus Physical Layer

6.0 Flex Bus Physical Layer

6.1 Overview

Figure 87. Flex Bus Layers -- Physical Layer Highlighted

~
CXL Transaction Layer
~
PCle/CXL.io Transaction Layer
Y
PCle . Tmi':';l:ion CXL.cache + CXL.mem
Transaction Layer Transaction Layer
Layer enhancements
s 2,
P)
CXL Link Layer
PCle /CXL.io Link Layer
o CXLio Link
PCle Data Link Layer CXL.cache + CXL.mem Link Layer
Layer enhancements
N
: ; /
CXL ARB/MUX /
~
Flex Bus Physical Layer
PCle/CXL Logical Sub-block
PCle Electrical Sub-block
RX TX
hS

The figure above shows where the Flex Bus physical layer exists in the Flex Bus layered
hierarchy. On the transmit side, the Flex Bus physical layer prepares data received from
either the PCle link layer or the CXL link layer for transmission across the Flex Bus link.

Compute Express Link Specification
June 2019 129
Revision 1.1

EVALUATION COPY

Flex Bus Physical Layer

Table 50.

%
N

6.2.1

June 2019
Revision 1.1

On the receive side, the Flex Bus physical layer deserializes the data received on the
Flex Bus link and converts it to the appropriate format to forward to the PCle/CXL link
layer. The Flex Bus physical layer consists of a logical sub-block, aka the logical PHY,
and an electrical sub-block. The logical PHY operates in PCle mode during initial link
training and switches over to CXL mode, if appropriate, depending on the results of
alternate mode negotiation, during recovery after training to 2.5 GT/s. The electrical
sub-block follows the PCle specification.

In CXL mode, normal operation occurs at x16 link width and 32 GT/s link speed.
Bifurcation (aka link subdivision) into x8 and x4 widths is supported in CXL mode.
Degraded modes of operation include 8 GT/s or 16 GT/s link speed and smaller link
widths down to x1. Table 50 summarizes the supported CXL combinations. In PCle
mode, the link supports all widths and speeds defined in the PCle specification, as well
as the ability to bifurcate.

Flex Bus.CXL Link Speeds and Widths for Normal and Degraded Mode

Link Speed Native Width Degraded Modes Supported

x16 @16 GT/s or 8 GT/s;

32 GT/s X16 X8, x4, X2, or x1 @32 GT/s or 16
GT/s or 8 GT/s

X8 @16 GT/s or 8 GT/s;

32 GT/s X8 X4, x2, or x1 @32 GT/s or 16 GT/s
or 8 GT/s
x4 @16 GT/s or 8 GT/s;

32 GT/s X4 x2 or X1 @32 GT/s or 16 GT/sor 8
GT/s

X2 @16 GT/s or 8 GT/s;

32 GT/ 2
s X x1 @32 GT/s or 16 GT/s or 8 GT/s

This chapter focuses on the details of the logical PHY. The Flex Bus logical PHY is based
on the PCle logical PHY; PCle mode of operation follows the PCle specification exactly
while Flex Bus.CXL mode has deltas from PCle that affect link training and framing.
Please refer to the “Physical Layer Logical Block” chapter of the PCl Express Base
Specification for details on PCle mode of operation. The Flex Bus.CXL deltas are
described in this chapter.

Flex Bus.CXL Framing and Packet Layout

The Flex Bus.CXL framing and packet layout is described in this section for x16,x8,x4,
x2, and x1 widths.

Ordered Set Blocks and Data Blocks

Flex Bus.CXL uses the PCle concept of ordered set blocks and data blocks. Each block
spans 128 bits per lane and potentially two bits of sync header per lane.

Ordered set blocks are used for training, entering and exiting electrical idle, transitions
to data blocks, and clock tolerance compensation; they are the same as defined in the
PCle base specification. A 2-bit sync header with value 01b is inserted before each 128
bits transmitted per lane in an ordered set block when 128/130b encoding is used; in
the latency optimized mode, there is no sync header.

Data blocks are used for transmission of the flits received from the CXL link layer. A 16-
bit Protocol ID field is associated with each 528-bit flit payload (512 bits of payload +
16 bits of CRC) received from the link layer, which is striped across the lanes on an 8-

Compute Express Link Specification
130

EVALUATION COPY

Flex Bus Physical Layer

6.2.2

Table 51.

June 2019
Revision 1.1

bit granularity; the placement of the protocol ID depends on the width. A 2-bit sync
header with value 10b is inserted before every 128 bits transmitted per lane in a data
block when 128/130b encoding is used; in the latency optimized mode, there is no sync
header. A 528-bit flit may traverse the boundary between data blocks.

Transitions between ordered set blocks and data blocks are indicated in a couple of
ways. One way is via the 2-bit sync header of O1b for ordered set blocks and 10b for
data blocks. The second way is via the use of Start of Data Stream (SDS) ordered sets
and End of Data Stream (EDS) tokens. Unlike PCle where the EDS token is explicit, Flex
Bus.CXL encodes the EDS token in the protocol ID value.

Protocol 1D[15:0]

The 16-bit protocol ID field specifies whether the transmitted flit is CXL.io, CXL.cache/
CXL.mem, or some other payload. The table below provides a list of valid 16-bit
protocol ID encodings. Encodings that include an implied EDS token signify that the
next block is an ordered set block. Implied EDS tokens can only occur with the last flit
transmitted in a data block; flits that cross the data block boundary cannot be
associated with an implied EDS token.

NULL flits are inserted into the data stream by the physical layer when there are no
valid flits available from the link layer. A NULL flit transferred with an implied EDS token
ends precisely at the data block boundary; these are variable length flits, up to 528
bits, intended to facilitate transition to ordered set blocks as quickly as possible. A
NULL flit is comprised of all zeros payload.

An 8-bit encoding with a hamming distance of four is replicated to create the 16-bit
encoding for error protection against bit flips. A correctable protocol ID framing error is
logged but no further error handling action is taken if only one 8-bit encoding group
looks incorrect; the correct 8-bit encoding group is used for normal processing. If both
8-bit encoding groups are incorrect, an uncorrectable protocol ID framing error is
logged, the flit is dropped, and the physical layer enters into recovery to retrain the
link.

The physical layer is responsible for dropping any flits it receives with invalid protocol
IDs. This includes dropping any flits with unexpected protocol IDs that correspond to
Flex Bus defined protocols that have not been enabled during negotiation. When a flit is
dropped due to an unexpected protocol ID, the physical layer logs an unexpected
protocol ID error in the Flex Bus DVSEC Port Status register.

Please refer to Section 6.2.9 for additional details about protocol ID error detection and
handling.

Flex Bus.CXL Protocol I1Ds (Sheet 1 of 2)

Protocol ID[15:0] Description

0000_0000_0000_0000 Reserved

1111 1111 1111 1111 CXL.io

1101_0010_1101_0010 CXL.io with implied EDS token

0101_0101_0101_0101 CXL.cache/CXL.mem

1000_0111_1000_0111 CXL.cache/CXL.mem with implied EDS token

1001_1001_1001_1001 NULL flit (generated by the Physical Layer)
NULL flit with implied EDS token: Variable length flit containing

0100_1011_0100_1011 NULLs that ends precisely at the data block boundary (generated
by the Physical Layer)

Compute Express Link Specification
131

EVALUATION COPY

Flex Bus Physical Layer

Table 51. Flex Bus.CXL Protocol I1Ds (Sheet 2 of 2)

Protocol ID[15:0] Description
1100_1100_1100_1100 CXL ARB/MUX Link Management Packets (ALMPs)
CXL ARB/MUX Link Management Packets (ALMPs) with implied
0001_1110_0001_1110 EDS token
All Others Reserved
6.2.3 X16 Packet Layout

Figure 88 below shows the x16 packet layout. First, the 16-bits of protocol ID are
transferred, split on an 8-bit granularity across consecutive lanes; this is followed by
transfer of the 528-bit flit, striped across the lanes on an 8-bit granularity. Depending
on the symbol time, as labeled on the leftmost column in the figure, the Protocol ID
plus flit transfer may start on lane O, lane 4, lane 8, or lane 12. The pattern of transfer
repeats after every 17 symbol times. The two-bit sync header shown in the figure,
inserted after every 128 bits transferred per lane, is not present for the latency
optimized mode where sync header bypass is negotiated.

Figure 88. Flex Bus x16 Packet Layout

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Symbol | ProfOF | FrofD{t58 [FiTQ Fi{153] | FH231§ | FM3t4 | FI03Z | Far4g | FHSS4s | 635§ | FW7re] | FreTa | FRErRq | Fosey | FR{10§ | Fa(1iti0f

Symeat | EREHON1Y | FIZ 02 | R3S 18] | FRgia3 1] | Pt | FISSY | FeT1a)] | FITSHG8] | FqI3aTe] | Fiqeor12e] | Fiq10a4aD] | Fiqa07-200] | FW25208] | FW22246] | P23t 22 | F2m 23]

Sympoz | FR2EV2MY | FW{255243 | Fi263256) | FWf2F126d] | FMZrezrz) | Fi2ov200 | Fi2os2oe] | FWR032GE | FWINI0d) | FR3S342) | FaZ I | F3iSaz) | FIATIN) | Fasiaes | FIsaE | P e

Symead | FRITSIGE | F383IN | Fi30133] | FR30030Y | Fige0reQ) | Fige1Se0y | FWAZRAMG | Fiaa42§ | PSR4 | AT 44) | Fi4S 443 | Fi4S30%5] | FATIAS) | FWATSATE | Figearag] | Figaos4ss]

Symcod | FRSORA95 | FMSTES0R | FRSIOST] | FMSZSA] | Profd | Fr[iS8) | mre) | Fqiss) | Fqzaie] | FganIg | FiqEeaz | waren | Figssey | Fease | FaTrs) | mererz

FIqETE0 | Fq938d | FIQI030G | FqUIA04] | FWNS(] | FWIZTA20] | FWI3SA8] | FqUERA3E] | FOISE148 | FWIST) | FROIET18) | Fgt7s 168 | Fgaare) | Feries] | Fiqes-ie2) | Fig20r-200]

EW21S208 | 22215 | CR222] | FizR2a) | FIET08)] | FI235243 | FR253256] | FUG2TII6A] | FAITO2T2 | FRGZET A0 | F205288) | Fa0n2e] | Fiqan-a0e) | F310312) | FETad | Famam)

symoaT | ERaar] | Eaastasy] | EERI] | EA3E A | FMITSA5Y | 337 | FI0t38) | FHI0300) | FR0rA00 | Fiqaisd0g | CREAZRANS | FRA3tEN) | EHARLNY | FWATAN) | FASSINY | FYAERASE

Symead | Figertecs] | Figererz) | Figacr4e) | Figessesy | FWSU345] | FiSIS0Y] | FeS1OS] | PSS | eroeop) | Prowoptsa) | Fgro) Fii5E | Fag2aig | Fwat2d | FEedy | FgaTAg

symeas | FS343 | FE33§ | Ftd | Fipera | FET8 | FSsed | 10395 | Fegt1110d] | Ftiedea] | PRI A0 | Pt A2 | Fpiaae] | mepistied] | PR esg | Fe1eT160] | Feg1TS168]

symeotd | FRgree17G) | FRGI91188) | FRG901S2) | Fiqa0r200] | FW215208 | FI{2221G | FiaN238) | e | Figaar2a)] | P24 | el | Figevi26e] | Fiqareld) | Fi2aroan | Fiqassaed) | Fiqane2os)

Symeatt | FRGI1308] | FREM031T] | FETAN) | FiEIS3) | Fr34333) | FG3SI3M | RIS | FRGISTIS) | FITSASR) | F33TH | a0t 3se] | FRE0030) | Fae0renD) | Fsisecm) | FAE2A05] | cigsareng

Symooit: | FIEXN437] | FifeST48] | FifeS5443 | FifecI85 | FigeTI-45A) | FRTSATZ] | Fi{AST4d) | FieSsem | FifS034%5] | FHS1ES0E | PSSR | FMSZSA | Prtop) | Pesopss | eerm Fiqise !

Symbai13 L el) Fi3124 P332 FieT4q sS4 Fie2sg Fi(r1q FR7e72 FigaTan Fifg38g | Fifi030§ | Fufiii{08 | PRGN | FROIZHZ] | PRI nqmm;[

Symoci14 | FRISIA8] | FR(ISs2] | FR6T160] | Fiqi7s 168 | Fuqisai7e) | Fiieiies] | Fijiseie] | Fij207200] | Fif2S208] | Fizeaeg | Fza2ae] | ez | Fig2er2e0] | Fif25243] | Fig2e3 23] F!ru'mzaq_‘!

symeats | FiITR2T] | FR2ET200] | FiEISE20] | FiGI0R295 | FW(31E304 | FiIEE | FIIT AN | FIEIRE | FgI3%] | FIStIs | FIRIT | FIErIa | SIS IeY | FiERaTE] | iqaenasg nmm|

SympoQ | FIGADTA00] | Fife15:408 | Fifezi:ate] | FRfA3tdd | FifA30d30) | FR{ALT4AY | F{ASTA4Y | FW{4624%] | Figevi-2c8] | FR{eo472 | FR{467890 | FW{405805 | FRES03:8%H] | FRESTISON | FRS1ES1Z] | FRESZSA]

Symbot | ProD{70) | ProdO{15g [PTG P15 | P26 | Pge12q | Feees2) | Fere | Figs3es | Fpasy | P14 | Fegrara | FWgEreq | Figosey nmmgq’n-wum}[

Figure 89 provides an example where CXL.io and CXL.cache/CXL.mem traffic is
interleaved with an interleave granularity of two flits on a x16 link. The top figure
shows what the CXL.io stream looks like before mapping to the Flex Bus lanes and
before interleaving with CXL.cache/CXL.mem traffic; the framing rules follow the x16
framing rules specified in the PCI Express specification, as stated in Section 4.1. The
bottom figure shows the final result when the two streams are interleaved on the Flex
Bus lanes. For CXL.io flits, after transferring the 16-bit protocol ID, 512 bits are used to
transfer CXL.io traffic and 16 bits are unused. For CXL.cachemem flits, after
transferring the 16-bit protocol ID, 528 bits are used to transfer a CXL.cachemem flit.
Please refer to Chapter 4.0, “Compute Express Link Link Layers” for more details on the

Compute Express Link Specification
June 2019 132
Revision 1.1

EVALUATION COPY

Flex Bus Physical Layer

flit format. As this example illustrates, the PCle TLPs and DLLPs encapsulated within
the CXL.io stream may be interrupted by non-related CXL traffic if they cross a flit
boundary.

Figure 89. Flex Bus x16 Protocol Interleaving Example

) u 2 3 4 5 [u it} 9 10 u L2 L3 L4 115

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SyncHir

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Symboll

Symboll

Symbol2

Symbor}

Symbold

Symball

Symbolf

Symboll

Symbol}

L L ¥ u L4 It 5 u L8] L1 [h) mn L3 L4 L5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sync Har

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sputa) | PACTOF | Pl PO STP Toben PCk TLP Header DWO POoTPHe Wl [PoETREmE
Syl Preer POk TLP Data Peoad WD POk TLP Data Payiond DT POk TLP Doa Poyoad DV

oW 6]
Symbal? o
S - = - DW21150]
Symbald DW231:16] e el | "ol | oot DW2[15-0]
St ow2g1 1o Oug[S
Syt :
w116

Syl Im PG STPToken [T S o
Symbelf oD or e e MM - -
Symbal) B2 ; [Frtran |
Symbolll Fareran | [Femisam | Fezazie] | P12 | Fege e | FapiTan] | P2 |
Synteltt [Fepona | g P50 | FROSTON] | Fapsessn | FapsT 0] | FRETSRY | FREBIFT | PRy
Symbolt2 m mmmwww "R ST
Syierl] E O ["Femm | e | e | : :
Symiath - 60 | FartBa e | PRI | mmm :
Sy’s e G E R : :

[] 0 [] 0 0 [] 0 0 0 0 0 0 [] 0 [] 0
Sy Hir

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Symtal) ["Famsaa | 55 4 [Fastison |
e | P —

6.2.4 x8 Packet Layout

Figure 90 below shows the x8 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. Depending on the symbol
time, the Protocol ID plus flit transfer may start on lane O or lane 4. The pattern of
transfer repeats after every 17 symbols. The two-bit sync header shown in the figure is
not present for the latency optimized mode.

Compute Express Link Specification
June 2019 133
Revision 1.1

EVALUATION COPY

Flex Bus Physical Layer

Figure 90.

June 2019
Revision 1.1

Flex Bus x8 Packet Layout

L0

L1

L3

4

L7

Sy Hir

0

0

Symboll
Symboll
Symbol2
Symbold
SymboM
Symbolh
Symbolo
Symboly
Symbold
Symbol
Symbalil
Symboll1
Symboli2
Symbol13
Symboll4

Symboll5

PratiD[7:0]

ProtiD[158]

FrotiD[7:0]

ProtiD[13:8]

Sync Hdr

Figure 91 illustrates how CXL.io and CXL.cache/CXL.mem traffic is interleaved on a x8
Flex Bus link. The same traffic from the x16 example in Figure 89 is mapped to a x8

link.

Compute Express Link Specification

134

EVALUATION COPY

Flex Bus Physical Layer

Figure 91.

June 2019
Revision 1.1

Flex Bus x8 Protocol Interleaving Example

]

u

L2

)

4

L7

Syne Hir

1

Symboll
Symboll
Symbol2
Symbold
Symbold
Symbold
Symbolh
Symboll
Symboll
Symbof
Symbolll
Symbolll
Symboll2
Symbolld
Symboll4

Symboll3

POl |
CLio

DWOB1:16]
DW2[31:16]
DW1[31:16]

DW0[31:16]
DW2[31:16]
DWOR1:16]

DWAT3 :16]
DW5p1:16
DWB[31:16]

~CiLio

Sync Hir

Symbolll

SeTve!

Prot[D[13:

DWO15:0]
DW2[15:0]
owW1I5:0]

rTER
ow215:0]
WIS
ow215:0]
OWAL15:0)
OWe[150]

DWB[15:0

DW1[31:16]

Symball

Symbol2
Symbold
Symbold
Symbolh
Symbolt
Symboll
SymbolB
Symbol
Symboll]
Symboll1
Symboll2
Symboll3
Symboltd

Symboll

ProtlO[T-

CXLcamem | CXLcamem

Prot| DI

Sync Hir

Symbol)
Symboll
Symboll

Symbol

Cxlio =C¥Lio

OWI31:16]

ow1[15:0)

Compute Express Link Specification

135

EVALUATION COPY

Flex Bus Physical Layer

6.2.5

Figure 92.

6.2.6

6.2.7

6.2.8

June 2019
Revision 1.1

x4 Packet Layout

Figure 92 below shows the x4 packet layout. 16-bits of Protocol ID followed by a 528-
bit flit are striped across the lanes on an 8-bit granularity. The Protocol ID plus flit
transfer always starts on lane 0O; the entire transfer takes 17 symbols. The two-bit sync
header shown in the figure is not present for the latency optimized mode.

Flex Bus x4 Packet Layout

Lo L1 L2 L3
(V] (1] (V] (1]
Sync Hdr
1 1 1 1
S ot ProtI DT :0] ProtID[15:8] FR[7 0] FE[15:8]
Sy bol 1 Fm[Z3:16] FR[31:24] Fe[39:32] P47 401
Sy bol2 FR[55 48] Fm[53:-56] Fa[F1:4] Fe[9:r2]
Sy bol3 FRE7 807 Fet[95 58] Fe[103:9:] Fe[111:104]
Sy bodd Fe[119:-112] Fe[127-120] Fet[135:128] Fet[143:136]
Sy bolS FEe[151:144] Fe[159:152] Fe[167:-160] Fe[175:168]
Sy kol FEe[183:176] Fe[191:184] Fee[199:1927] Pt [P0 7 22007
Soynn bol 7 FR215208] FR[Z23:216] FR[Z31:224] FR[Z39:2327]
Sy ol FEe[24 72407 FEe[255-24 8] FEe[253:256] FRe[27 1:7%4]
Sy bol3 FRP279Fr2] FR[2ET 280] Ft [F95288] FR[I0 3 796]
Symbol 10 Fet[311:304] FeRE19:312] FR[327-3200 Fet335:328]
Symbol 11 FEe[343:335] FEE51-344] FEee[359:-3527] FePBaT 360]
Symbaol 12 FRBE7 536581 FRE83:376] FEE91:384] P[5 397]
Symbol 13 Fe[A07 4007 FRE15408] FeE423:416] FE[A31:424]
Symbolld FEMAISAZT2] FE[447:4400 FR[455:448] FEAS3A56]
Symbol15 FEe[47 1:454] FRAa79:473 FRMA87:4800 FRM95488]
L] L] L] L]
Sync Hdr
1 1 1 1
Sy boll P[50 3:496] FEe[511:504] Fe[519:5312] FEe[527:5207
Symiboll Progl D7 0] ProtID{15:8] Fe[7 0] Fe[15:8]

X2 Packet Layout

The x2 packet layout looks very similar to the x4 packet layout in that the Protocol ID
aligns to lane 0. 16-bits of Protocol ID followed by a 528-bit flit are striped across two
lanes on an 8-bit granularity, taking 34 symbols to complete the transfer.

x1 Packet Layout

The x1 packet layout is used only in degraded mode. The 16-bits of Protocol ID
followed by 528-bit flit are transferred on a single lane, taking 68 symbols to complete
the transfer.

Special Case: CXL.io -- When a TLP Ends on a Flit Boundary

For CXL.io traffic, if a TLP ends on a flit boundary and there is no additional CXL.io
traffic to send, the receiver still requires a subsequent EDB indication if it is a nullified
TLP or all IDLE flit to confirm it is a good TLP before processing the TLP. Figure 93
illustrates a scenario where the first CXL.io flit encapsulates a TLP that ends at the flit
boundary, and the transmitter has no more TLPs or DLLPs to send. To ensure that the

Compute Express Link Specification
136

EVALUATION COPY

Flex Bus Physical Layer

transmitted TLP that ended on the flit boundary is processed by the receiver, a
subsequent CXL.io flit containing PCle IDLE tokens is transmitted; this flit is generated
by the link layer.

Figure 93. CXL.io TLP Ending on Flit Boundary Example

1] u V] 3 4 L5 L6)] 1) Lo m L2 L3 L4 L5
[} 0 0 0 0 [} 0 0 0 0 0 0 0 0 0 0

Sync Hir

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pl 0% | PralbliE] PCETIPTEde |

Sl ey ~CxLio POk STPTaken PCk TLP Header DWO POl TLP Header DIV -

Symbol! Htmgﬁ;’ PCle TLP Data Payioad DW0 PCle TLP Data Payioad DW{ PCle TLP Data Payload DW2 FCe E—;}Da:ﬂ"’ﬂhd
FCE TLP Daia Fayioad &

Symiol? it PCe TLPDats Payoad D4 PCle TLP Data Payioad DWS r PCe TLP Data Payioad D6)

Symbol3 DWTE! lal! PCle TLP Data Payioad DW3 PCle TLP Data Payioad DW3 | PCle TLP Data Payload DW10 PCle TLP LCRC[I5:0]

Syt || PORTLPLORCOIE] | Rewned | Resened | Tabl 0 | PO [Fon iy | "Pocm | “Poem | kDL | Peeor 1 PORDL | POeDL | PGeDL | PCeDL | PO=DL |

Symbold PCee DL PCe DL PCee DL PCe DL PCe IDL PCle DL PCe DL PCee DL PCe IDL PCe IDL ‘ PCl DL PCl IDL PCE DL PCE DL PCle DL PCl DL I

Symbolf PCeDL | PCeDL | PCeDL | PCeDL | PCeDL | PCeDL | PCeL | PCEDL | PCRDL | PCeDL | PCeiDL | PCeDL | PCeDL | PCeDL | PCkDL | PCeDL ‘

Symbol] PCe IDL PCE DL PCl IDL PCE DL PCl IDL PCl DL PCE IDL PCl DL PCle IDL PCle IDL PCle DL PC IDL PCl DL PCE DL PCle DL PCle DL

Smiob | POEDL | POEDL | ACeDL | FCEDL | POEDL | PCeDl | Rewned | Rewned | boovi- | Pty ™ Ty | ramder | FBIZ | a8 | e

Symbol | FRESAE] | PRB3%] | Feid] | 072 | PG | FRRS8R] | Pei03%6] | FartiA04] | FRON9MZ | FRO27-1200 | FRO35126] | FRNA3A36] | F[ST 4] | Feii9-152) | FAtoT160] | FRI1T566]
Symbolt) | Fe@3:176) | FR91184] | FR{192192) | FRROT00) | PRS28] | FRR23216) | FRZBE24] | FRRIGNY | FRATH0) | FRSSME] | FROSI25E) | Fepri64] | Feproary) | FereTa80) | FR0S280 | Fe(03296)
Symboll] | FREIT04] | FROISIZ] | FRp2-320) | FRGIS30 | Fapddd06) | P14 | FRS9352) | FROGT-60 | FROTS60 | FRGHIT6] | FROSTI0N | FRE99392] | FRiOTA00] | Fept15408] | FE23416] | Fijt3t24]
Symbolf? | PRSI | FRIATAAO] | PS5 448 | Fepsl4S6] | FedT14ed] | FETOATD) | FeUsTA00) | Fei95480] | FRp0340R | PRGS04 | cRe e | PROTIE m;‘f OO | P58]
Symboll3 | FRIB6) | FAGI] | FRDS2 | FRBTAD] | FRGSM] | FRESS6] | Fumi4] | FROOTZ) | FRGTRD] | FeESG) | Fe{0306] | FR(404] | FR[19:12) | Faif2r120] | Fenasios) rnnuﬂs][

Symborid | FROST4] | FRIS9:152 | FROGT-160 | FRO7S166] | FRlie176) | FR(I9TI84] | Fen9o192) | FRi207:00] | FRRIS208] | Fa223216] | Fa23120] | FeiZ3232) | Fapd7-240) | FRS5:248) | FREE3256] | Fer27i26d]
Symeots | FRRTSITE | FRBTZB0] | FRIS5288) | FRBO3Z0G] | R3304 | Fep9312] | FRE2T00) | FRE3SIE | FR(M3E) | PR3] | FRRSS5Y | PRSI0 | FROTSISH | FepE3ATE) | FREOTIM4) | Fep9997]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sync Hir

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Symbol) | FREAOTAD0] | FRU15A08] | FRAZ3A16] | FRUSTARA] | FR@dS432] | FREMT.A0) | FRESSME] | FR463456] | FReid7i454) | FR{ATO472] | FREST-480) | FRM95-488] | FRp03496] | FRIH11:504) CRC CRC

6.2.9 Framing Errors

The physical layer is responsible for detecting framing errors and, subsequently,
initiating entry into recovery to retrain the link.

The following are framing errors detected by the physical layer:
e Sync header errors
= Protocol ID framing errors
= PCle framing errors located within the 528-bit CXL.io flit

Protocol ID framing errors are described in Section 6.2.2 and summarized below in
Table 52. A protocol ID with a value that is defined in the CXL specification is
considered a valid protocol ID. A valid protocol ID is either expected or unexpected. An
expected protocol ID is one that corresponds to a protocol that was enabled during
negotiation. An unexpected protocol ID is one that corresponds to a protocol that was
not enabled during negotiation; if only one CXL protocol is enabled, any ARB/MUX
protocol IDs are treated as unexpected. A protocol ID with a value that is not defined in
the CXL specification is considered an invalid protocol ID. Whenever a flit is dropped by
the physical layer due to either an Unexpected Protocol ID Framing Error or an
Uncorrectable Protocol ID Framing Error, the physical layer enters LTSSM recovery to
retrain the link and notifies the link layers to enter recovery and, if applicable, to
initiate link level retry.

Compute Express Link Specification
June 2019 137

Revision 1.1

EVALUATION COPY

Flex Bus Physical Layer

Table 52.

6.3

6.3.1

June 2019
Revision 1.1

Protocol ID Framing Errors

Protocol ID[7:0] Protocol ID[15:8] Expected Action
Process normally using Protocol
ID[15:8];
Invalid Valid & Expected Log as

CXL_Correctable_Protocol_ID_Fra
ming_Error in DVSEC Flex Bus Port
Status register.

Process normally using Protocol
ID[7:0];

Log as

Valid & Expected Invalid CXL_Correctable_Protocol_ID_Fra
ming_Error in DVSEC Flex Bus Port
Status register.

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port
Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Valid & Unexpected & Equal to

Valid & Unexpected Protocol ID[7:0]

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port
Invalid Valid & Unexpected Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Drop flit and log as
CXL_Unexpected_Protocol_ID_Dro
pped in DVSEC Flex Bus Port

Valid & Unexpected Invalid Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Drop flit and log as
CXL_Uncorrectable_Protocol_ID_Fr
aming_Error in DVSEC Flex Bus
Port Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Valid & Not Equal to Protocol

Valid ID[7:0]

Drop flit and log as
CXL_Uncorrectable_Protocol_ID_Fr
aming_Error in DVSEC Flex Bus
Port Status register; enter LTSSM
recovery to retrain the link; notify
link layers to enter recovery and, if
applicable, initiate link level retry

Invalid Invalid

Link Training

PCle vs Flex Bus.CXL mode selection

After reset, an Flex Bus link begins training and completes link width negotiation and
speed negotiation according to the PCle LTSSM rules. During link training, the CPU
initiates Flex Bus mode negotiation via the PCle alternate mode negotiation
mechanism. Flex Bus mode negotiation is completed before entering LO at 2.5 GT/s. If
sync header bypass is negotiated, sync headers are bypassed as soon as the link has

Compute Express Link Specification
138

Flex Bus Physical Layer

6.3.1.1

Table 53.

transitioned to a speed of 8GT/s or higher. The Flex Bus logical PHY transmits NULL flits
as soon as it transitions to 8GT/s or higher link speeds if CXL mode was negotiated
earlier in the training process. These NULL flits are used in place of PCle Idle Symbols
to facilitate certain LTSSM transitions to LO as described in Section 6.4. After the link
has transitioned to its final speed, it can start sending CXL traffic on behalf of the upper
layers after the SDS Ordered Set is transmitted if that was what was negotiated earlier
in the training process. For upstream facing ports, the physical layer notifies the upper
layers that the link is up and available for transmission only after it has received a flit
that was not generated by the physical layer of the partner downstream port (refer to
Table 51). To operate in CXL mode, the link speed must be at least 8 GT/s. If the link is
unable to transition to a speed of 8 GT/s or greater after committing to CXL mode
during link training at 2.5 GT/s, the link may ultimately fail to link up even if the device
is PCle capable.

Hardware Autonomous Mode Negotiation

Dynamic hardware negotiation of Flex Bus mode occurs during link training in
Configuration before entering LO at Genl speeds using the alternate protocol
negotiation mechanism, facilitated by exchanging modified TS1 and TS2 Ordered Sets.
The host initiates the negotiation process by sending TS1 Ordered Sets advertising its
Flex Bus capabilities. The device responds with a proposal based on its own capabilities
and those advertised by the host. The host communicates the final decision of which
capabilities to enable by sending modified TS2 Ordered Sets before or during
Configuration.Complete.

Please refer to the PCle 5.0 base specification for details on how the various fields of
the modified TS1/TS2 OS are set. Table 53 shows how the modified TS1/TS2 OS is
used for Flex Bus mode negotiation. The “Flex Bus Mode Negotiation Usage” column
describes the deltas from the PCle base specification definition that are applicable for
Flex Bus mode negotiation. Additional explanation is provided in Table 55. The
presence of retimerl and retimer2 must be programmed into the Flex Bus DVSEC by
software before the negotiation begins; if retimers are present the relevant retimer bits
in the modified TS1/TS2 OS are used.

Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation (Sheet 1 of 2)

Symbol Number PCle Description Flex Bus Mode Negotiation Usage

O thru 4

See PCle 5.0 Base Spec Symbol

Training Control
Bits 0:6: See PCle 5.0 Base

Bit 7: Modified TS1/TS2 supported (see PCle
5.0 Base Spec for details

Bit 7:6 = 11b

For Modified TS1: TS1 Identifier, encoded as | TS1 Identifier during Phase 1 of Flex Bus mode
D10.2 (4Ah) negotiation

For Modified TS2: TS2 Identifier, encoded as | TS2 ldentifier during Phase 2 of Flex Bus mode
D5.2 (45h) negotiation

For Modified TS1: TS1 Identifier, encoded as | TS1 Identifier during Phase 1 of Flex Bus mode
D10.2 (4Ah) negotiation
For Modified TS2: TS2 Identifier, encoded as | TS2 Identifier during Phase 2 of Flex Bus mode
D5.2 (45h) negotiation

8-9

EVALUATION COPY

Bits 2:0 = 010b (indicating alternate protocols)
Bits 0:2: Usage (see PCle 5.0 Base Spec) Bits 4:3 = Alternate Protocol Negotiation Status per

Bits 3:4: Alternate Protocol Negotiation PCle spec
Status if Usage is 010b, Reserved Otherwise
(see PCle 5.0 Base Spec for details) Bit 7:5 = Alternate Protocol ID (3'd0 = ‘Flex Bus’)
Bits 5:15: Alternate Protocol Details Bit 8: Common Clock

Bits 15:8: Reserved

June 2019
Revision 1.1

Compute Express Link Specification
139

Flex Bus Physical Lay

er

Table 53. Modified TS1/TS2 Ordered Set for Flex Bus Mode Negotiation (Sheet 2 of 2)
Symbol Number PCle Description Flex Bus Mode Negotiation Usage
élltgtr)nate Protocol ID/Vendor ID if Usage = 8086h
Note: This may change to include the PCI SIG
10-11 See PCle 5.0 Base Spec for other assigned Vendor ID for CXL.
descriptions applicable to other Usage
values
Bits 7:0 = Flex Bus Mode Selection, where
Bit 0: PCle capable/enable
Bit 1: CXL.io capable/enable
Bit 2: CXL.mem capable/enable
Bit 3: CXL.cache capable/enable
Bit 7:4: Reserved
o1a See PCle 5.0 Base Spec 3::38?3’?:;;55; Bus Additional Info, where
If =01 ifi i)
Usage = 010b, Specific proprietary usage Bit 9: Reserved
Bit 10: Sync Header Bypass capable/enable
Bit 11: Reserved
Bit 12: Retimerl CXL aware®
Bit 13: Reserved
Bit 14: Retimer2 CXL aware?
Bits 23:15: Reserved
15 See PCle 5.0 Base Spec
Notes:

1. Retimerl is equivalent to Retimer X or Retimer Z in the PCI Express Specification
2. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Additional Information on Symbols 8-9 of Modifed TS1/TS2 Ordered Set

Bit Field in Symbols 8-9

Description

Alternate Protocol ID[2:0]

This is set to 3'd0 to indicate Flex Bus

mon Clock

The CPU uses this bit to communicate to retimers that there is a
common reference clock. Depending on implementation, retimers may
use this information to determine what features to enable.

Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets
(Sheet 1 of 2)

it Field in Symbols 12-14

Description

PCle capable/enable

The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.%

io capable/enable

The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

mem capable/enable

The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

cache capable/enable

The CPU and endpoint advertise their capability in Phase 1. The CPU
communicates the results of the negotiation in Phase 2.

EVALUATION COPY

Table 54.
Com
Table 55.
B
CXL.
CXL.
CXL.
June 2019

Revision 1.1

Compute Express Link Specification
140

EVALUATION COPY

Flex Bus Physical Layer

Table 55.

Note:

June 2019
Revision 1.1

Additional Information on Symbols 12-14 of Modified TS1/TS2 Ordered Sets
(Sheet 2 of 2)

Bit Field in Symbols 12-14 Description

Sync Header Bypass capable/
enable

The CPU, endpoint, and any retimers advertise their capability in Phase
1. The CPU communicates the results of the negotiation in Phase 2.
Note: The Retimer must pass this bit unmodified from its Upstream
Pseudo Port to its Downstream Pseudo Port. The retimer clears this bit if
it does not support this feature when passing from its Downstream
Pseudo Port to its Upstream Pseudo Port but it must never set it (only
the endpoint can set this bit in that direction). If the Retimer(s) do not
advertise that they are CXL aware, the CPU assumes this feature is not
supported by the Retimer(s) regardless of how this bit is set.

Retimerl CXL aware

Retimerl advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.?

Retimer2 CXL aware

Retimer2 advertises whether it is CXL aware in Phase 1. If it is CXL
aware, it must use the “Sync Header Bypass capable/enable” bit.3

Notes:

1. PCle mode and CXL mode are mutually exclusive; when the CPU communicates the results of the
negotiation in Phase 2.

2. Retimerl is equivalent to Retimer X or Retimer Z in the PCI Express Specification

3. Retimer2 is equivalent to Retimer Y in the PCI Express Specification

Hardware autonomous mode negotiation is a two phase process that occurs while in
Configuration.Lanenum.Wait, Configuration.Lanenum.Accept, and
Configuration.Complete before entering LO at Genl speed:

e Phase 1: The root complex sends a stream of modified TS1 Ordered Sets

advertising its Flex Bus capabilities; the endpoint device responds by sending a
stream of modified TS1 Ordered Sets indicating which Flex Bus capabilities it
wishes to enable. This exchange occurs during Configuration.Lanenum.Wait and/or
Configuration.Lanenum.Accept. At the end of this phase, the root complex has
enough information to make a final selection of which capabilities to enable.

Phase 2: The root complex sends a stream of modified TS2 Ordered Sets to the
endpoint device to indicate whether the link should operate in PCle mode or in CXL
mode; for CXL mode, it also specifies which CXL protocols to enable. The endpoint
acknowledges the enable request by sending modified TS2 Ordered Sets with the
same Flex Bus enable bits set. This exchange occurs during
Configuration.Complete.

The Flex Bus negotiation process is complete before entering LO at 2.5GT/s. At this
point the upper layers may be notified of the decision. If CXL mode is negotiated, the
physical layer enables all the negotiated modes and features only after reaching LO at
8GT/s or higher speed.

If CXL is negotiated but the link does not achieve a speed of at least 8GT/s, the link
with fail to link up.

A flow chart describing the mode negotiation process during link training is provided in
the figure below. Note, while this flow chart represents the flow for several scenarios, it
is not intended to cover all possible scenarios.

Compute Express Link Specification
141

EVALUATION COPY

Flex Bus Physical Layer

Figure 94.

6.3.1.2

June 2019
Revision 1.1

Flex Bus Mode Negotiation During Link Training (Sample Flow)

‘ Start

Begin training to LO at PCle Genl

A

Sample Flow Chart—Not Intended to Cover All Cases

odified TS1/TS:
Supported Bit Set
During Polling

l YES

During training to L0 in Genl, in

Configuration, CPU (RC) sends

Modified TS1 OS's to advertise
its Flex Bus capabilities

l

Device sends Modified TS1 0S's
to propose which Flex Bus
capabilities to enable

l

Enabling Flex Bus.CXL
capabilities supported

NO

A

Complete training with

Complete training with
command and status

command and status

t— . 5
suggesting PCle — go to highest suggesting CXL — go to highest
supported data rate supported data rate

Data Rate at

Go Backto least 8 GT/s?

Detect
YES
Switch to Flex
Bus.CXL mode
'

L_'lnk is PCle Link is CXL

(‘LinkUp = 1b’) (‘LinkUp = 1b’)

Flex Bus.CXL Negotiation with Maximum Supported Link
Speed of 8GT/s or 16GT/s

If a Flex Bus physical layer implementation supports Flex Bus.CXL operation only at a
maximum speed of 8GT/s or 16GT/s, it must still advertise support of 32GT/s speed
during link training at 2.5GT/s to perform alternate protocol negotiation using modified

Compute Express Link Specification
142

EVALUATION COPY

Flex Bus Physical Layer

6.3.1.3

%
N

o
o1

@
o

o
ﬂ

June 2019

Revision 1.1

TS1 and TS2 Ordered Sets. Once the alternate protocol negotiation is complete, the
Flex Bus logical PHY can then advertise the true maximum link speed that it supports
as per the PCle Specification.

Link Width Degradation and Speed Downgrade

If the link is operating in Flex Bus.CXL and degrades to a lower speed or lower link
width that is still compatible with Flex Bus.CXL mode, the link should remain in Flex
Bus.CXL mode after exiting recovery without having to go through the process of mode
negotiation again. If the link drops to a speed or width not compatible with Flex
Bus.CXL, it must go through the Detect state and come up in PCle mode, if supported.

Recovery.ldle and Config.ldle Transitions to LO

The PCI Express Specification requires transmission and receipt of a specific number of
consecutive ldle data Symbols on configured lanes to transition from Recovery.ldle to
LO or Config.ldle to LO (see sections 4.2.6.4.5 and 4.2.6.3.6 of the PCI Express
Specification, revision 5.0). When the Flex Bus logical PHY is in CXL mode, it looks for
NULL flits instead of Idle Symbols to initiate the transition to LO. When in CXL mode and
either Recovery.ldle or Config.ldle, the next state is LO if four consecutive NULL flits are
received and eight NULL flits are sent after receiving one NULL flit; all other rules called
out in the PCI Express Specification regarding these transitions apply.

L1 Abort Scenario

Since the CXL ARB/MUX virtualizes the link state seen by the link layers and only
requests the physical layer to transition to L1 when the link layers are in agreement,
there may be a race condition that results in an L1 abort scenario. In this case, the
physical layer may receive an EIOS or detect Electrical Idle when the ARB/MUX is no
longer requesting entry to L1. In this scenario, the physical layer is required to initiate
recovery on the link to bring it back to LO.

Exit from Recovery

Upon exit from recovery, the receiver assumes that any partial TLPs that were
transmitted prior to recovery entry are terminated and must be retransmitted in full via
a link level retry. Partial TLPs include TLPs for which a subsequent EDB, Idle, or valid
framing token were not received before entering recovery. The transmitter must satisfy
any requirements to enable the receiver to make this assumption.

Retimers and Low Latency Mode

The Flex Bus specification supports the following features that can be enabled to
optimize latency: bypass of sync hdr insertion and use of a drift buffer instead of an
elastic buffer. Enablement of sync hdr bypass is negotiated during the Flex Bus mode
negotiation process described in Section 6.3.1.1. The CPU, endpoint, and any retimers
advertise their sync hdr bypass capability during Phase 1; and the CPU communicates
the final decision on whether to enable sync header bypass during Phase 2. Drift buffer
mode is decided locally by each component. The rules for enabling each feature are
summarized in Table 56; these rules are expected to be enforced by hardware.

Compute Express Link Specification
143

EVALUATION COPY

Flex Bus Physical Layer

Table 56.

6.7.1

June 2019
Revision 1.1

Rules of Enable Low Latency Mode Features

Feature

Conditions For Enabling

Notes

Sync Hdr Bypass

1) All components support
2) Common reference clock
3) No retimer present or retimer

cannot add or delete SKPS (e.g., in

low latency bypass mode)
4) Not in loopback mode

buffer)

Drift Buffer (instead of elastic

1) Common reference clock

Each component can enable this
independently (i.e., does not have
to be coordinated). The physical
logs in the Flex Bus DVSEC when
this is enabled.

Control SKP Ordered Set Frequency and L1/Recovery Entry

In Flex Bus.CXL mode, if sync header bypass is enabled, the following rules apply:

= After the SDS, the physical layer must schedule a control SKP Ordered Set or SKP
Ordered Set after every 340 data blocks, unless it is exiting the data stream. Note:
The control SKP OSs are alternated with regular SKP OSs

= When exiting the data stream, the physical layer must replace the scheduled
control SKP OS (or SKP OS) with either an EIOS (for L1 entry) or EIEOS (for all
other cases including recovery).

When the sync hdr bypass optimization is enabled, retimers rely on the above
mechanism to know when L1/recovery entry is occurring. When sync hdr bypass is not

enabled, retimers must not rely on the above mechanism.

8§ 8

Compute Express Link Specification
144

EVALUATION COPY

Control and Status Registers

N
o

Control and Status Registers

N
[

7.1.1

The Compute Express Link device control and status registers are mapped into
separate spaces: configuration space and memory mapped space. Configuration
space registers are accessed using configuration reads and configuration writes.
Memory mapped registers are accessed using memory reads and memory writes.
Table 57 has a list of the attributes for the register bits defined in this chapter.

Table 57. Register Attributes

Attribute Description

RO Read Only

RO-V Read-Only-Variant

RW Read-Write

RWS Read-Write-Sticky

RWO Read-Write-Once

RWL Read-Write-Lockable

RW1CS Read-Write-One-To-Clear-Sticky

Configuration Space Registers

CXL configuration space registers are implemented only by the RCIEP(s) in the
downstream device. The CXL upstream and downstream ports do not map any
registers into configuration space.

PCI1 Express Designated Vendor-Specific Extended
Capability (DVSEC) for CXL Device

CXL device creates a new PCle enumeration hierarchy. As such, it spawns a new Root

Bus and can expose one or more PCle device numbers and function numbers at this

bus number. These are exposed as Root Complex Integrated Endpoints (RCIiEP). The

PCle configuration space of Device O, Function O shall include the CXL PCI Express

Designated Vendor-Specific Extended Capability (DVSEC) as shown in the figure below.
The capability, status and control fields in Device 0, Function O DVSEC control the CXL

functionality of the entire CXL device.

Please refer to the PCle Specification for a description of the standard DVSEC register

fields.

June 2019
Revision 1.1

Compute Express Link Specification
145

EVALUATION COPY

Control and Status Registers

Figure 95.

Table 58.

June 2019
Revision 1.1

PCle DVSEC for Flex Bus Device

| 31 15| 15 0|
PCI Express Extended Capability Header 00h
Designated Vendor-Specific Header 1 04h
DVSEC Flex Bus Capability Designated Vendor-Specific Header 2 08h
DVSEC Flex Bus Status DVSEC Flex Bus Control 0Ch
DVSEC Flex Bus Status 2 DVSEC Flex Bus Control 2 10h
Reserved Flex Bus Lock 14h
DVSEC Flexbus Range 1 Size High 18h
DVSEC Flexbus Range 1 Size Low 1Ch
DVSEC Flexbus Range 1 Base High 20h
DVSEC Flexbus Range 1 Base Low 24h
DVSEC Flexbus Range 2 Size High 28h
DVSEC Flexbus Range 2 Size Low 2Ch
DVSEC Flexbus Range 2 Base High 30h
DVSEC Flexbus Range 2 Base Low 34h

To advertise Flex Bus capability, the standard DVSEC register fields should be set to the
values shown in the table below. The DVSEC Length field is set to 16 bytes to
accommodate the Flex Bus registers included in the DVSEC. The DVSEC ID is set to 0x0
to advertise that this is an Flex Bus feature capability structure.

PCI Express DVSEC Register Settings for Flex Bus Device

Register Bit Location Field Value
Designated Vendor-Specific Header 1 (offset 04h) | 15:0 DVSEC Vendor ID | 0x80861
Designated Vendor-Specific Header 1 (offset 04h) | 19:16 DVSEC Revision 0x0
Designated Vendor-Specific Header 1 (offset 04h) | 31:20 DVSEC Length 0x38
Designated Vendor-Specific Header 2 (offset 08h) | 15:0 DVSEC ID 0x0

1. Note: This may change to include CXL assigned Vendor ID.

The Flex Bus device specific registers are described in the following subsections.

Compute Express Link Specification
146

EVALUATION COPY

Control and Status Registers

7.1.1.1 DVSEC Flex Bus Capability (Offset OAh)
Bit Attributes Description
0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex Bus.AL mode.
1 RO 10_Capable: If set, indicates CXL.io protocol support when operating in Flex Bus.AL mode. Must be 1.
2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex Bus.AL mode.
Mem_HwInit_Mode: If set, indicates this CXL.mem capable device initializes memory with assistance
from hardware and firmware located on the device. If clear, indicates memory is initialized by host
3 RO software such as device driver.
This bit should be ignored if CXL.mem Capable=0.
HDM_Count: Number of HDM ranges implemented by the CXL device and reported through this
function.
00 - Zero ranges. This setting is illegal if CXL.mem Capable=1.
5:4 RO 01 - One HDM range.
10 - Two HDM ranges
11 - Reserved
This field must return 00 if CXL.mem Capable=0.
13:6 N/A Reserved (RSVD).
14 RO Viral_Capable: If set, indicates CXL device supports Viral handling.
15 N/A Reserved (RSVD).
7.1.1.2 DVSEC Flex Bus Control (Offset OCh)
Bit Attributes Description
0 RWL Cache_Enable: When set, enables CXL.cache protocol operation when in Flex Bus.AL mode. Locked by
CONFIG_LOCK.
1 RO 10_Enable: When set, enables CXL.io protocol operation when in Flex Bus.AL mode.
> RWL Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.AL mode. Locked by
CONFIG_LOCK.
Cache_SF_Coverage: Performance hint to the device. Locked by CONFIG_LOCK.
7:3 RWL 0x00: Indicates no Snoop Filter coverage on the Host
. For all other values of N: Indicates Snoop Filter coverage on the Host of 2~(N+15d) Bytes.
For example, if this field contains the value 5, it indicates snoop filter coverage of 1 MB.
Cache_SF_Granularity: Performance hint to the device. Locked by CONFIG_LOCK.
000: Indicates 64B granular tracking on the Host
001: Indicates 128B granular tracking on the Host
010: Indicates 256B granular tracking on the Host
10:8 RWL 011: Indicates 512B granular tracking on the Host
100: Indicates 1KB granular tracking on the Host
101: Indicates 2KB granular tracking on the Host
110: Indicates 4KB granular tracking on the Host
111: Reserved (RSVD)
Cache_Clean_Eviction: Performance hint to the device. Locked by CONFIG_LOCK.
11 RWL O: Indicates clean evictions from device caches are needed for best performance
1: Indicates clean evictions from device caches are NOT needed for best performance
13:12 | N/A Reserved (RSVD).
14 RWL Viral_Enable: When set, enables Viral handling in the CXL device.
Locked by CONFIG_LOCK.
15 N/A Reserved (RSVD).
Compute Express Link Specification
June 2019 147

Revision 1

A

EVALUATION COPY

Control and Status Registers

7.1.1.3 DVSEC Flex Bus Status (Offset OEh)

Bit Attributes Description
13:0 N/A Reserved (RSVD).
14 RWS Viral_Status: When set, indicates that the CXL device has entered Viral self-isolation mode. See

Section 11.4, “CXL Viral Handling” on page 198 for more details.

15 N/A Reserved (RSVD).

7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)

Bit Attributes Description

15:0 N/A Reserved (RSVD).

7.1.1.5 DVSEC Flex Bus Status2 (Offset 12h)

Bit Attributes Description

15:0 N/A Reserved (RSVD).

7.1.1.6 DVSEC Flex Bus Lock (Offset 14h)

Bit Attributes Description
0 RWO CONFIG_LOCK: When set, control register, Memory Base Low and Memory Base High registers become
read only.
15:1 N/A Reserved (RSVD).
7.1.1.7 DVSEC Flex Bus Range registers

DVSEC Flex Bus Range 1 register set must be implemented if CXL.mem Capable=1.
DVSEC Flex Bus Range 2 register set must be implemented if (CXL.mem Capable=1
and HDM_Count=10) . Each set contains 4 registers - Size High, Size Low, Base High,
Base Low.

7.1.1.7.1 DVSEC Flex Bus Range 1 Size High (Offset 18h)

Bit Attributes Description

31:0 RO Memory_Size_High: Corresponds to bits 63:32 of Flex Bus Range 1 memory size.

Compute Express Link Specification
June 2019 148
Revision 1.1

EVALUATION COPY

Control and Status Registers

7.1.1.7.2 DVSEC Flex Bus Rangel Size Low (Offset 1Ch)
Bit Attributes Description
0 RO Memory_Info_Valid: When set, indicates that the Flex Bus Range 1 Size high and Size Low registers
are valid. Must be set within 1 second of deassertion of reset to CXL device.
Memory_Active: When set, indicates that the Flex Bus Range 1 memory is fully initialized and available
1 RO for software use. Must be set within 1 second of deassertion of reset to CXL device if CXL.mem HwInit
Mode=1.
Media_Type: Indicates the memory media characteristics
X 000 - Volatile memory
4:2 RO 001 - Non-volatile memory
Other encodings are reserved.
Memory_Class: Indicates the class of memory
7.5 RO 000 - Memory Class (e.g., normal DRAM)
. 001 - Storage Class (e.g., Intel 3D XPoint))
All other encodings are reserved.
Desired_Interleave: If a CXL.mem capable device is connected to a single CPU via multiple Flex Bus
links, this field represents the memory interleaving desired by the device. BIOS will configure the CPU
to interleave accesses to this HDM range across links at this granularity.
10:8 RO 00 - No Interleave
01 - 256 Byte Granularity
10 - 4K Interleave
all other settings are reserved
27:11 | N/A Reserved (RSVD).
31:28 | RO Memory_Size_Low: Corresponds to bits 31:28 of Flex Bus Range 1 memory size.
7.1.1.7.3 DVSEC Flex Bus Range 1 Base High (Offset 20h)
Bit Attributes Description
31:0 RWL Memory_Base_High: Corresponds to bits 63:32 of Flex Bus Range 1 base in the host address space.
) Configured by system BIOS.
7.1.1.7.4 DVSEC Flex Bus Range 1 Base Low (Offset 24h)
Bit Attributes Description
27:0 N/A Reserved (RSVD).
31:28 | RWL Memory_Base_Low: Corresponds to bits 31:28 of Flex Bus Range 1 base in the host address space.
A CXL.mem capable device directs host accesses to an address A its local HDM memory
if the following two equations are satisfied -
Memory_Base[63:28] <= (A <<28) < Memory_ Base[63:28]+Memory_Size[63:28]
Memory_Active AND Mem_Enable=1
If the address A is not backed by real memory (e.g. a device with less than 256 MB of
memory), the device must handle those accesses gracefully i.e. return all 1's on reads
and drop writes.
Compute Express Link Specification
June 2019 149

Revision 1.1

EVALUATION COPY

Control and Status Registers

7.1.1.7.5 DVSEC Flex Bus Range 2 Size High (Offset 28h)

Bit

Attributes

Description

31:0

RO

Memory_Size_High: Corresponds to bits 63:32 of Flex Bus Range 2 memory size.

7.1.1.7.6 DVSEC Flex Bus Range 2 Size Low (Offset 2Ch)

Bit Attributes Description

0 RO Memory_Info_Valid: When set, indicates that the Flex Bus Range 2 Size high and Size Low registers
are valid. Must be set within 1 second of deassertion of reset to CXL device.
Memory_Active: When set, indicates that the Flex Bus Range 2 memory is fully initialized and available

1 RO for software use. Must be set within 1 second of deassertion of reset to CXL device if CXL.mem HwInit
Mode=1.
Media_Type: Indicates the memory media characteristics
000 - Volatile memory

4:2 RO 001 - Non-volatile memory
111 - Not Memory.
Other encodings are reserved.
Memory_Class: Indicates the class of memory

7:5 RO 000 - Memory Class (e.g., normal DRAM)

. 001 - Storage Class (e.g., Intel 3D XPoint)

All other encodings are reserved.
Desired_Interleave: If a CXL.mem capable device is connected to a single CPU via multiple Flex Bus
links, this field represents the memory interleaving desired by the device. BIOS will configure the CPU
to interleave accesses to this HDM range across links at this granularity.

10:8 RO 00 - No Interleave
01 - 256 Byte Granularity
10 - 4K Interleave
all other settings are reserved

27:11 | N/A Reserved (RSVD).

31:28 | RO Memory_Size_Low: Corresponds to bits 31:28 of Flex Bus Range 2 memory size.

7.1.1.7.7 DVSEC Flex Bus Range 2 Base High (Offset 30h)

Bit

Attributes

Description

31:0

RWL

Memory_Base_High: Corresponds to bits 63:32 of Flex Bus Range 2 base in the host address space.
Configured by system BIOS.

7.1.1.7.8 DVSEC Flex Bus Range 2 Base Low (Offset 34h)

Bit Attributes Description

27:0 N/A Reserved (RSVD).

31:28 | RWL Memory_Base_Low: Corresponds to bits 31:28 of Flex Bus Range 2 base in the host address space.

7.2 Memory Mapped Registers
CXL memory mapped registers are located in four general regions as specified in
Table 59. Notably, the CXL downstream port and CXL upstream port are not
discoverable through PCle configuration space. Instead the downstream and upstream
port registers are implemented using PCle root complex registers blocks (RCRBS).

Compute Express Link Specification
June 2019 150

Revision 1

A

EVALUATION COPY

Control and Status Registers

Table 59.

June 2019
Revision 1.1

Additionally, the CXL downstream and upstream ports each implement an MEMBARO
region to host registers for configuring the CXL subsystem components associated with

the respective port.

The four memory mapped register regions appear in memory space as shown in
Figure 96. Note that the RCRBs do not overlap with the MEMBARO regions. Also, note
that the upstream port’s MEMBARO region must fall within the range specified by the
downstream port’s memory base and limit register. So long as these requirements are
satisfied, the details of how the RCRBs are mapped into memory space are

implementation specific.

CXL Memory Mapped Registers Regions

Memory Mapped Region

Description

Location

CXL Downstream Port RCRB

This is a 4K region with registers
based upon PCle defined registers
for a root port with deltas listed in
this chapter. Includes registers
from PCle Type 1 Config Header
and PCle capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the downstream port’s
MEMBARO region. Note: The
combined CXL Downstream and
Upstream Port RCRBs are a
contiguous 8K region.

CXL Upstream Port RCRB

This is a 4K region with registers
based upon PCle defined registers
for an upstream port with deltas
listed in this chapter. Includes 64B
Config Header and PCle
capabilities and extended
capabilities.

This is a contiguous 4K memory
region relocatable via an
implementation specific
mechanism. This region is located
outside of the upstream port’s
MEMBARO region. This region may
be located within the range
specified by the downstream port’s
memory base/limit registers, but
that is not a requirement. Note:
The combined CXL Downstream
and Upstream Port RCRBs are a
contiguous 8K region.

CXL Downstream Port MEMBARO

This memory region hosts registers
that allow software to configure
CXL downstream port subsystem
components, such as the CXL
protocol, link, and physical layers
and the CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBARO
register located at offset 0x10 and
0x14 of the downstream port’s
RCRB.

CXL Upstream Port MEMBARO

This memory region hosts registers
that allow software to configure
CXL upstream port subsystem
components, such as CXL protocol,
link, and physical layers and the
CXL ARB/MUX.

The location of this region is
specified by a 64-bit MEMBARO
register located at offset 0x10 and
0x14 of the upstream port’s RCRB.
This MBARO region is located
within the range specified by the
downstream port’s memory base/
limit registers.

Compute Express Link Specification
151

EVALUATION COPY

Control and Status Registers

Figure 96.

7.2.1

7.2.1.1

June 2019

Revision 1.1

CXL Memory Mapped Register Regions

Address 0
CXL Downstream Port RCRB
(4K Region)
CXL Upstream Port RCRB
(4K Region)
.
CXL Upstream Port MEMBARO
CXLDP
Memory
Base/
Limit
e
CXL Downstream Port
MEMBARD

Upstream and Downstream Port Registers

CXL Downstream Port RCRB

The downstream port RCRB is a 4K memory region that contains registers based upon
the PCle specification defined registers for a root port. Figure 97 illustrates the layout
of the CXL RCRB for a downstream port. With the exception of the first DW, the first 64
bytes of the CXL DP RCRB implement the registers from a PCle Type 1 Configuration
Header. The first DW of the RCRB contains a NULL Extended Capability ID with a
Version of Oh and a Next Capability Offset pointer. A 64-bit MEMBARO is implemented at
offset 10h and 14h; this points to a private memory region that hosts registers for
configuring downstream port subsystem components as specified in Table 59. The
supported PCle capabilities and extended capabilities are discovered by following the
linked lists of pointers. Supported PCle capabilities are mapped into the offset range
from 040h to OFFh. Supported PCle extended capabilities are mapped into the offset
range from 100h to FFFh. The CXL downstream port supported PCle capabilities and
extended capabilities are listed in Table 60; please refer to the PCle 5.0 Base
Specification for definitions of the associated registers.

Compute Express Link Specification
152

Control and Status Registers

> Figure 97. CXL Downstream Port RCRB
Byte
31
Offset
& N e e A O
Next Capability Offset=100h | Version=0h Null Extended Capability ID = 0000h 000h
O Status Command 004h
Class Code Revision ID 008h
‘ ’ Reserved Header Type Reserved Cache Line Size 00Ch
010h
MEMBARO
014h
Z .. rest of PCle Type 1 Config Header registers
03Ch
040h
... supported PCle capabilities registers . . .
|
I OFCh
100h
< .. supported PCle extended capabilities registers . . .
FFCh
Table 60. CXL Downstream Port Supported PCle Capabilities and Extended Capabilities
(Sheet 1 of 2)
Supported PCle Capabilities - 1
and Extended Capabilities Exceptions Notes
Slot Capabilities, S_Ic_>t Control, Slot
PCI Express Capability gf;ttl:rzl S{O;n%agfgl'stf:tfs’ SIOt N/A
registers are not applicable.
PCI Power Management Capability | None N/A
MSI Capability None N/A
Advanced Error Reporting None Required for CXL despite being
Extended Capability optional for PCle.
ACS Extended Capability None N/A
Compute Express Link Specification
June 2019 153

Revision 1.1

EVALUATION COPY

Control and Status Registers

Table 60.

7.2.1.2

June 2019
Revision 1.1

CXL Downstream Port Supported PCle Capabilities and Extended Capabilities
(Sheet 2 of 2)

Supported PCle Capabilities
and Extended Capabilities

1

Exceptions Notes

Multicast Extended Capability None N/A

Downstream Port Containment

Extended Capability None N/A

Please refer to section
None Figure 7.2.1.3 for Flex Bus Port
DVSEC definition.

Designated Vendor-Specific
Extended Capability (DVSEC)

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCle and CXL mode.

CXL Upstream Port RCRB

The upstream port RCRB is a 4K memory region that contains registers based upon the
PCle specification defined registers. The upstream port captures the upper address bits
[63:12] of the first memory access received after link initialization as the base address
for the upstream port RCRB. Figure 98 illustrates the layout of the CXL RCRB for an
upstream port. With the exception of the first DW, the first 64 bytes of the CXL UP
RCRB implement the registers from a PCle Type O Configuration Header. The first DW of
the RCRB contains a NULL Extended Capability ID with a Version of Oh and a Next
Capability Offset pointer. A 64-bit MEMBARO is implemented at offset 10h and 14h; this
points to a memory region that hosts registers for configuring upstream port
subsystem CXL.mem as specified in Table 59. The supported PCle capabilities and
extended capabilities are discovered by following the linked lists of pointers. Supported
PCle capabilities are mapped into the offset range from 040h to OFFh. Supported PCle
extended capabilities are mapped into the offset range from 100h to FFFh. The CXL
upstream port supported PCle capabilities and extended capabilities are listed in

Table 61; please refer to the PCle 5.0 Base Specification for definitions of the
associated registers.

Compute Express Link Specification
154

EVALUATION COPY

Control and Status Registers

Figure 98.

June 2019
Revision 1.1

CXL Upstream Port RCRB

O

Byte
Offset

Next Capability Offset = 100h

Version = Oh

Null Extended Capability ID = 0000h 000h

Status

Command 004h

Class Code

Revision ID 008h

Reserved

Header Type Reserved

Cache Line Size 00Ch

MEMBARO

010h

014h

Reserved

018h

01Ch

020h

024h

028h

Subsystem ID

Subsystem Vendor ID 02Ch

Reserved

030h

Reserved

Capabilities Pointer 034h

Reserved

038h

Reserved Interrupt Pin

Interrupt Line 03Ch

... supported PCle capabilities registers . . .

040h

OFCh

... supported PCle extended capabilities registers . ..

100h

FFCh

Compute Express Link Specification
155

Control and Status Registers

al
O
O
—
<C
D
—
=
LL]

Revision 1.1

CXL Upstream Port Supported PCle Capabilities and Extended Capabilities

Support PCle Capabilties and
Extended Capabilties

1

Exceptions Notes

PCI Express Capability None N/A

Advanced Error Reporting Required for CXL despite being

Extended Capability None optional for PCle.
Multicast Extended Capability None N/A
Virtual Channel Extended None VCO and VC1

Capability

Please refer to section
None Figure 7.2.1.3 for Flex Bus Port
DVSEC definition.

Designated Vendor-Specific
Extended Capability (DVSEC)

1. Note: It is the responsibility of software to be aware of the registers within the capabilities that are not
applicable in CXL mode in case designs choose to use a common code base for PCle and CXL mode.

Upstream and Downstream Flex Bus Port DVSEC

The upstream and downstream Flex Bus ports implement a Flex Bus Port DVSEC, which
is distinct from that implemented by a CXL device. This DVSEC is located in the RCRBs
of the upstream and downstream ports. Figure 99 shows the layout of the Flex Bus Port
DVSEC and Table 62 shows how the headerl and header2 registers should be set. The
following subsections give details of the registers defined in the Flex Bus Port DVSEC.

PCle DVSEC for Flex Bus Port

3t 16] 15 0|

PCl Express Extended Capability Header 00h

Designated Vendor-Specific Header 1 04h

DVSEC Flexbus Port Capability Designated Vendor-Specific Header 2 | 03h
DVSEC Flexbus Port Status DVSEC Flexbus Port Control 0Ch

PCIl Express DVSEC Header Registers Settings for Flex Bus Port

Register Bit Location Field Value
Designated Vendor-Specific Header 1 (Offset 04h) | 15:0 DVSEC Vendor ID | 0x8086
Designated Vendor-Specific Header 1 (Offset 04h) | 19:16 DVSEC Revision 0x0
Designated Vendor-Specific Header 1 (Offset 04h) | 31:20 DVSEC Length 0x10
Designated Vendor-Specific Header 2 (Offset 08h) | 15:0 DVSEC ID ox7

Compute Express Link Specification
156

Control and Status Registers

7.2.1.3.1

Note:

1. Note: This may change to include CXL assigned Vendor ID

DVSEC Flex Bus Port Capability Offset (OAh)

The Mem_Capable, 10_Capable, and Cache_Capable fields are also present in the Flex
Bus DVSEC for the device. This allows for future scalability where multiple devices,
each with potentially different capabilities, may be populated behind a single port.

Bit Attributes Description
0 RO Cache_Capable: If set, indicates CXL.cache protocol support when operating in Flex Bus.AL mode.
1 RO 10_Capable: If set, indicates CXL.io protocol support when operating in Flex Bus.AL mode. Must be 1.
2 RO Mem_Capable: If set, indicates CXL.mem protocol support when operating in Flex Bus.AL mode.
15:3 N/A Reserved (RSVD).
7.2.1.3.2 DVSEC Flex Bus Port Control (Offset OCh)

Bit Attributes Description
0 RW Cache_Enable: When set, enables CXL.cache protocol operation when in Flex Bus.AL mode.
1 RO 10_Enable: When set, enables CXL.io protocol operation when in Flex Bus.AL mode. (Must always be
set to 1)
2 RW Mem_Enable: When set, enables CXL.mem protocol operation when in Flex Bus.AL mode.
CXL_Sync_Hdr_Bypass_Enable: When set, enables bypass of the 2-bit sync header by the Flex Bus
3 RW - P S R
physical layer when operating in Flex Bus.AL mode. This is a performance optimization.
RW Drift_Buffer_Enable: When set, enables drift buffer (instead of elastic buffer) if there is a common
reference clock
N/A Reserved (RSVD)
RW Retimerl_Present: When set, indicates presence of retimerl. This bit is defined only for a downstream
port. This bit is reserved for an upstream port.
Retimer2_Present: When set, indicates presence of retimer2. This bit is defined only for a downstream
9 RW =
port. This bit is reserved for an upstream port.
15:10 | N/A Reserved (RSVD).
7.2.1.3.3 DVSEC Flex Bus Port Status (Offset OEh)

EVALUATION COPY

Bit Attributes Description
Cache_Enabled: When set, indicates that CXL.cache protocol operation has been enabled as a result of
0 RO-V :
PCle alternate protocol negotation for Flex Bus.
1 RO-V 10_Enabled: When set, indicates that CXL.io protocol operation has been enabled as a result of PCle
alternate protocol negotiation for Flex Bus.
Mem_Enabled: When set, indicates that CXL.mem protocol operation has been enabled as a result of
2 RO-V "
PCle alternate protocol negotiation for Flex Bus..
CXL_Sync_Hdr_Bypass_Enabled: When set, indicates that bypass of the 2-bit sync header by the Flex
3 RO-V Bus physical layer has been enabled when operating in Flex Bus.AL mode as a result of PCle alternate
protocol negotiation for Flex Bus..
4 RO-V Drift_Buffer_Enabled: When set, indicates that the physical layer has enabled its drift bufferinstead of
its elastic buffer.
7:5 N/A Reserved (RSVD)

June 2019

Revision 1.1

Compute Express Link Specification
157

Control and Status Registers

Bit Attributes Description
8 RW1CS CXL_Correctable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.
RW1CS CXL_Uncorrectable_Protocol_ID_Framing_Error: See Section 6.2.2 for more details.
CXL_Unexpected_Protocol_ID_Dropped: When set, indicates that the physical layer dropped a flit with
10 RW1CS an unexpected protocol ID that is not due to an Uncorrectable Protocol ID Framing Error. See Section
6.2.2 for more details
15:11 | N/A Reserved (RSVD).
7.2.2 CXL Upstream and Downstream Port Subsystem Component
Registers
The CXL upstream and downstream port subsystem components implement registers in
memory space allocated via the MEMBARO register. In general, these registers are
expected to be implementation specific; this section defines the architected registers.
Table 63 lists the relevant offset ranges from MEMBARO for CXL.io, CXL.cache,
CXL.mem, and CXL ARB/MUX registers.
Z Table 63. CXL Subsystem Component Register Ranges in MEMBARO
Range Size Destination
0000_0000h - 0000_OFFFh | 4K | CXL.io registers
0000_1000h - 0000_1FFFh | 4K CXL.cache and CXL.mem registers
0000_2000h - 0000_DFFFh | 48K | Implementation specific
0000_EO00h - 0000_E3FFh | 1K | CXL ARB/MUX registers
|
0000 _E400h - 0000_FFFFh | 7K Reserved
P 7.2.2.1 CXL.cache and CXL.mem Registers
Within the 4KB region of memory space assigned to CXL.cache and CXL.mem, the
location of architecturally specified registers will be described using an array of
pointers. The array, described in Table 64, will be located starting at offset Ox0 of this
4KB region. The first element of the array will declare the version of CXL.cache and
CXL.mem protocol as well as the size of the array. Each subsequent element will then
host the pointers to capability specific register blocks within the 4KB region.
Table 64. CXL.cache and CXL.mem Architectural Registers
Offset Register Name
0x0 CXL_Capability_Header
0ox4 CXL_RAS_Capability_Header
0x8 CXL_Security_Capability_Header
0OxC CXL_Link_Capability_Header
Compute Express Link Specification
June 2019 158

Revision 1.1

Control and Status Registers

7.2.2.1.1 CXL Capability Header Register (Offset 0x0)

Bit Location

Attributes

Description

15:0

RO

CXL_Capability_1D: This defines the nature and format of the
CXL_Capability register. For the CXL_Capability_Header register,
this field must be 0x1.

19:16

RO

CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

23:20

RO

CXL_Cache_Mem_Version: This defines the version of the
CXL Cache Mem Protocol supported. For the first generation,
this field must be 0x1.

31:24

RO

Array_Size: This defines the number of elements present in
the CXL_Capability array, not including the
CXL_Capability_Header element. Each element is 1 DWORD in
size and is located contiguous with previous elements.

7.2.2.1.2 CXL RAS Capability Header (Offset 0x4)

Bit Location

Attributes

Description

15:0

RO

CXL_Capability_ID: This defines the nature and format of the
CXL_Capability register. For the CXL_RAS_Capability_Pointer
register, this field should be 0x2.

19:16

RO

CXL_Capability_Version: This defines the version number of
the CXL_Capability structure present. For the first generation,
this field must be 0x1.

31:20

RO

CXL_RAS_Capability_Pointer: This defines the offset of the
CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 7.2.2.1.4.

7.2.2.1.3 CXL Security Capability Header (Offset 0x8)

Bit Location

Attributes

Description

CXL_Capability_1D: This defines the nature and format of the
CXL_Capability register. For the

15:0 RO CXL_Security_Capability_Pointer register, this field should be
0x3.
CXL_Capability_Version: This defines the version number of
19:16 RO the CXL_Capability structure present. For the first generation,
this field must be 0x1.
CXL_Security_Capability_Pointer: This defines the offset of
31:20 RO the CXL_Capability relative to beginning of

CXL_Capability_Header register. Details in Section 7.2.2.1.13

EVALUATION COPY

June 2019
Revision 1.1

Compute Express Link Specification
159

EVALUATION COPY

Control and Status Registers

7.2.2.1.4 CXL Link Capability Header (Offset OxC)
Bit Location Attributes Description
CXL_Capability_ID: This defines the nature and format of the
15:0 RO CXL_Capability register. For the CXL_Link_Capability_Pointer
register, this field should be 0x4.
CXL_Capability_Version: This defines the version number of
19:16 RO the CXL_Capability structure present. For the first generation,
this field must be 0x1.
CXL_Link_Capability_Pointer: This defines the offset of the
31:20 RO CXL_Capability relative to beginning of CXL_Capability_Header
register. Details in Section 7.2.2.1.15
7.2.2.1.5 CXL RAS Capability Structure
Offset Register Name
0x0 Uncorrectable Error Status Register
Ox4 Uncorrectable Error Mask Register
0x8 Uncorrectable Error Severity Register
OoxC Correctable Error Status Register
0x10 Correctable Error Mask Register
0x14 Error Capability and Control Register
0x54 - 0x18 Header Log Registers
7.2.2.1.6 Uncorrectable Error Status Register (Offset Ox0)

Bit Location Attributes Description

0 RWI1CS Cache_Data_Parity: Internal Data Parity error on CXL.cache.
Header Log contains H2D Data Header.

1 RW1CS Cache_Address _Parity: Internal Address Parity error on
CXL.cache. Header Log contains H2D Data Header.

> RW1CS Cache_BE_Parity: Internal Byte Enable Parity error on
CXL.cache. Header Log contains H2D Data Header.

3 RWI1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.
Header Log contains H2D Data Header.

4 RW1CS Mem_Data_Parity: Internal Data Parity error on CXL.mem.
Header Log contains M2S RwD Data Header.
Mem_Address_Parity: Internal Address Parity error on

5 RW1CS CXL.mem. If Bit O of Header Log is 'O, rest of Header Log
contains M2S Req. If Bit O of Header Log is '1, rest of Header
Log contains M2S RwD Data Header.

6 RW1CS Mem_BE_ Parity: Internal Byte Enable Parity error on
CXL.mem. Header Log contains M2S RwD Data Header.

7 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.
Header Log contains M2S RwD Data Header.

Compute Express Link Specification
June 2019 160
Revision 1.1

EVALUATION COPY

Control and Status Registers

Bit Location

Attributes

Description

RWI1CS

REINIT_Threshold: REINIT Threshold Hit. Header Log not

applicable.

RWI1CS

Rsvd_Encoding_Violation: Received unrecognized encoding.

Header Log contains the entire flit received.

10

RW1CS

Poison_Received: Received Poison from the peer. Header Log

contains the entire flit received.

11

RWI1CS

Receiver_Overflow: First 3b of the Header Log are relevant

and should be interpreted as such:

3'b000 --> D2H Req

3'b001 --> D2H Rsp

3'b010 --> D2H Data

3'b100 --> S2M NDR

3'b101 --> S2M DRS

The above shows which buffer had the overflow

7.2.2.1.7 Uncorrectable Error Mask Register (Offset 0x4)
Bit Location Attributes Description

0 RWS Cache_Data_Parity_Mask

1 RWS Cache_Address _Parity_Mask

2 RWS Cache_BE_Parity_Mask

3 RWS Cache_Data_ECC_Mask

4 RWS Mem_Data_Parity_Mask

5 RWS Mem_Address_Parity_Mask

6 RWS Mem_BE_Parity_Mask

7 RWS Mem_Data_ECC_Mask

8 RWS REINIT_Threshold_Mask

9 RWS Rsvd_Encoding_Violation_Mask

10 RWS Poison_Received_Mask

11 RWS Receiver_Overflow_Mask
7.2.2.1.8 Uncorrectable Error Severity Register (Offset Ox8)

Bit Location Attributes Description

0 RWS Cache_Data_Parity_Severity

1 RWS Cache_Address _Parity_Severity

2 RWS Cache_BE_Parity_Severity

3 RWS Cache_Data_ECC_Severity

4 RWS Mem_Data_Parity_Severity

5 RWS Mem_Address_Parity_Severity

6 RWS Mem_BE_Parity_Severity

7 RWS Mem_Data_ECC_Severity

8 RWS REINIT_Threshold_Severity

Compute Express Link Specification

June 2019 161

Revision 1.1

EVALUATION COPY

Control and Status Registers

7.2.2.1.9

7.2.2.1.10

7.2.2.1.11

June 2019
Revision 1.1

Bit Location

Attributes

Description

9 RWS Rsvd_Encoding_Violation_Severity
10 RWS Poison_Received_Severity
11 RWS Receiver_Overflow_Severity

Correctable Error Status Register (Offset OxC)

Bit Location Attributes Description

0 RW1CS Cache_Data_ECC: Internal Data ECC error on CXL.cache.

1 RW1CS Mem_Data_ECC: Internal Data ECC error on CXL.mem.

2 RW1CS CRC_Threshold: CRC Threshold Hit

3 RW1CS Retry_Threshold: Retry Threshold Hit

4 RWI1CS Cache_Poison_Received: Received Poison from the peer on
CXL.cache.
Mem_Poison_Received: Received Poison from the peer on

5 RW1CS CXL.mem.

6 RWI1CS Physical_Layer_Error: Received error indication from

Physical Layer

Correctable Error Mask Register

(Offset 0x10)

Bit Location

Attributes

Description

0 RWS Cache_Data_ECC_Mask

1 RWS Mem_Data_ECC_Mask

2 RWS CRC_Threshold_Mask

3 RWS Retry_Threshold_Mask

4 RWS Cache_Poison_Received_Mask
5 RWS Mem_Poison_Received_Mask
6 RWS Physical_Layer_Error_Mask

Error Capabilities and Control Register (Offset 0x14)

Bit Location

Attributes

Description

3:0

ROS-V

First_Error_Pointer: This identifies the bit position of the first
error reported in the Uncorrectable Error Status register.

RO

Multiple_Header_Recording_Capability: This indicates if
recording more than one error header is supported. For the
first generation, his will be set to ‘O.

13

RWS

Poison_Enabled: This indicates if poison is supported.

Compute Express Link Specification
162

EVALUATION COPY

Control and Status Registers

7.2.2.1.12

7.2.2.1.13

7.2.2.1.14

7.2.2.1.15

June 2019
Revision 1.1

Header Log Registers (Offset 0x54 - 0x18)

Bit Location

Attributes

Description

511:0

ROS

Header Log: The information logged here depends on the type
of Uncorrectable Error Status bit recorded as described in
Section 7.2.2.1.6

CXL Security Capability Structure

This capability structure only applies for CXL Downstream Port.

Offset

Register Name

0x0

CXL Security Policy Register

CXL Security Policy Register (Offset Ox0)

Bit Location

Attributes

Description

1:0

RW

Device Trust Level:

'0 --> Trusted CXL Device. At this setting, a CXL Device will be
able to get access on CXL.cache for both host-attached and
device attached memory ranges. The Host can still protect
security sensitive memory regions.

'1 --> Trusted for Device Attached Memory Range Only. At this
setting, a CXL Device will be able to get access on CXL.cache
for device attached memory ranges only. Requests on
CXL.cache for host-attached memory ranges will be aborted by
the Host.

'2 --> Untrusted CXL Device. At this setting, all requests on
CXL.cache will be aborted by the Host.

Please note that these settings only apply to requests on
CXL.cache. The device can still source requests on CXL.io
regardless of these settings. Protection on CXL.io will be
implemented using IOMMU based page tables.

CXL Link Capability Structure

Offset

Register Name

0x0 CXL Link Layer Capability Register

0x8 CXL Link Control and Status Register
0x10 CXL Link Rx Credit Control Register

0x18 CXL Link Rx Credit Return Status Register
0x20 CXL Link Tx Credit Status Register

0x28 CXL Link Ack Timer Control Register

0x30 CXL Link Defeature

Compute Express Link Specification
163

Control and Status Registers

7.2.2.1.16 CXL Link Layer Capability Register (Offset 0x0)

Bit Location Attributes Description
3:0 RWS CXL Link Version Supported: Version of AL the port is
. compliant with. For CXL 1.0, this should be ‘0001.
7:4 RO-V CXL Link Version Received: Version of AL received from
: INIT.Param flit. Used for debug.
15:8 RWS LLR Wrap Value Supported: LLR Wrap value supported by
) this entity. Used for debug.
23:16 RO-V LLR Wrap Value Received: LLR Wrap value received from
) INIT.Param flit. Used for debug.
) NUM_Retry_Received: Num_Retry value reflected in the last
28:24 RO-V :
Retry.Req message received. Used for debug.
33:29 RO-V NUM_Phy_Reinit_Received: Num_Phy_Reinit value reflected
) in the last Retry.Req message received. Used for debug.
B Wr_Ptr_Received: Wr_Ptr value reflected in the last
41:34 RO-vV Retry.Ack message received
49:42 RO-V Echo_Eseq_Recelved:_ Echo_Eseq value reflected in the last
Retry.Ack message received
. Num_Free_Buf_Received: Num_Free_Buf value reflected in
57:50 RO-V — — = L= —
the last Retry.Ack message received

7.2.2.1.17 CXL Link Layer Control and Status Register (Offset 0x8)

EVALUATION COPY

Bit Location Attributes Description

LL_Reset: Re-initialize without resetting values in sticky
registers.

0 RW-V Write '1 to reset link - this is a destructive reset all link layer
state. When link layer reset completes, HW will clear the bit to
'0.
Entity triggering soft reset should ensure that link is quiesced

1 RWS LL_Init_Stall: If set, link layer stalls the transmission of the
LLCTRL-INIT.Param flit until this bit is cleared

5 RWS LL_Crd_Stall: If set, link layer stalls credit initialization until
this bit is cleared
INIT_State:
This field reflects the current initialization status of the Link
Layer, including any stall conditions controlled by bits 2:1
'00 --> NOT_RDY_FOR_INIT (stalled or unstalled): LLCTRL-
INIT.Param flit not sent

4:3 RO-V ‘01 --> PARAM_EX: LLCTRL-INIT.Param sent and waiting to
receive it
'10 --> CRD_RETURN_STALL: Parameter exchanged
successfully and Credit return is stalled
'11 --> INIT_DONE: Link Initialization Done - LLCTRL-
INIT.Param flit sent and received, and initial credit refund not
stalled

3 LL_Retry_Buffer_Consumed: Snapshot of link layer retry

12:5 RO-V

buffer consumed

June 2019
Revision 1.1

Compute Express Link Specification
164

EVALUATION COPY

Control and Status Registers

7.2.2.1.18

7.2.2.1.19

7.2.2.1.20

June 2019
Revision 1.1

CXL Link Layer Rx Credit Control Register (Offset 0x10)

Bit Location

Attributes

Description

Cache Req Credits: Credits to advertise for Cache Request

9:0 RWS channel at init
B Cache Rsp Credits: Credits to advertise for Cache Response

19:10 RWS channel at init

29:20 RWS Cache Dat_a _Credlts: Credits to advertise for Cache Data
channel at init

39:30 RWS Mem Req _Rsp Credlts_,: _Credlts to advertise for Mem Request
or Response channel at init

49:40 RWS Mem Data Credits: Credits to advertise for Mem Data channel

at init

CXL Link Layer Rx Credit Return

Status Register (Offset 0x18)

Bit Location

Attributes

Description

Cache Req Credits: Running snapshot of accumulated Cache

9:0 RO-V Request credits to be returned
19:10 RO-V Cache Rsp Credits: Running snapshot of accumulated Cache
) Response credits to be returned
29:20 RO-V Cache Data Credits: Running snapshot of accumulated Cache
) Data credits to be returned
B Mem Req _Rsp Credits: Running snapshot of accumulated
39:30 RO-V .
Mem Request or Response credits to be returned
49:40 RO-V Mem Data Credits: Running snapshot of accumulated Mem

Data credits to be returned

CXL Link Layer Tx Credit Status Register (Offset 0x20)

Bit Location

Attributes

Description

Cache Req Credits: Running snapshot of Cache Request

9:0 RO-V credits for Tx
B - Cache Rsp Credits: Running snapshot of Cache Response

19:10 RO-V credits for Tx

29:20 RO-V Cache Data Credits: Running snapshot of Cache Data credits
for Tx

39:30 RO-V Mem Req _Rsp Credits: Running snapshot of Mem Req or
Response credits for Tx

49:40 RO-V Mem Data Credits: Running snapshot of Mem Data credits for

T

Compute Express Link Specification
165

EVALUATION COPY

Control and Status Registers

7.2.2.1.21 CXL Link Layer Ack Timer Control Register (Offset 0x28)
Bit Location Attributes Description
7:0 RWS Ack Force Threshold: This specifies how many Flit Acks the
. Link Layer should accumulate before injecting a LLCRD
Ack Flush Retimer: This specifies how many link layer clock
17:8 RWS cycles the entity should wait in case of idle, before flushing
accumulated Acks using a LLCRD
7.2.2.1.22 CXL Link Layer Defeature Register (Offset 0x30)
Bit Location Attributes Description
MDH Disable: Write '1 to disable MDH. Software needs to
) RWS ensure it programs this value consistently on the UP & DP. After
programming, a warm reset is required for the disable to take
effect.
7.2.2.2 CXL ARB/MUX Registers
7.2.2.2.1 ARB/MUX Arbitration Control Register for CXL.io (Offset 0x180)
Bit Attributes Description
3:0 N/A Reserved (RSVD)
2.4 RW CXL.io Weighted Round Robin Arbitration Weight:
: This is the weight assigned to CXL.io in the weighted round robin arbitration between CXL protocols.
31:8 N/A Reserved (RSVD)
7.2.2.2.2 ARB/MUX Arbitration Control Register for CXL.cache and CXL.mem
(Offset 0Ox1CO)
Bit Attributes Description
3:0 N/A Reserved (RSVD)
CXL.cache and CXL.mem Weighted Round Robin Arbitration Weight:
7:4 RW This is the weight assigned to CXL.cache and CXL.mem in the weighted round robin arbitration
between CXL protocols.
31:8 N/A Reserved (RSVD)
Compute Express Link Specification
June 2019 166

Revision 1.1

EVALUATION COPY

Control and Status Registers

7.3 CXL RCRB Base Register
A register is required to communicate to software the memory address location of the
CXL RCRB for each CXL port.
Bit Attributes Description
0 RW CXL RCRB Enable: When set, the RCRB region is enabled.
12:1 N/A Reserved (RSVD).
63:13 | RW CXL_RCRB_Base_Address: This points to an 8K memory region where the lower 4K hosts the
) downstream port RCRB and the upper 4K hosts the upstream port RCRB.
Compute Express Link Specification
June 2019 167

Revision 1

A

Reset, Initialization, Configuration and Manageability

8.0 Reset, Initialization, Configuration and
Manageability

8.1 Compute Express Link Boot and Reset Overview

8.1.1 General

Boot and Power-up sequencing of Flexbus devices follows the conventions of PCIE-CEM
and as such, will not be discussed in detail in this section. However, this section will
highlight the differences that exist between CXL and native PCle for these operations.

Reset and Sx-entry flows require coordinated coherency domain shutdown before the
sequence can progress. Therefore, the CXL flow will adhere to the following rules:

« Warnings will be issued to all CXL devices before the above transitions are initiated,
including CXL.io.

e To extend the available messages, CXL PM messages will be used to communicate
between the host and the device. Devices must respond to these messages with
the proper acknowledge, even if no actions are actually performed on the said
device.

8.1.2 Comparing CXL and PCle behavior

The following table summarizes the difference in event sequencing and signaling
methods across Reset and Sx flows, for discrete CXL.io/Cache/Cache+Mem and PCle.

The terms used in the table are as follows

= Warning: an early notification of the upcoming event. Devices with coherent cache
or memory are required to complete outstanding transactions, flush internal caches
as needed, and place system memory in a Self_refresh state as required. Devices
are required to complete all internal actions and then respond with a proper Ack to
the processor

« Signaling: Actual initiation of the state transition, using either wires and/or link-
layer messaging

EVALUATION COPY

Compute Express Link Specification
June 2019 168
Revision 1.1

Reset, Initialization, Configuration and Manageability

Table 65. Event Sequencing for Reset and Sx Flows
Case PCle CXL
Warning: None; . >
Signaling: Warning: PM2IP (CXL PM VDM)%;
Cold Reset Entry 9 o Signaling:
LTSSM Hot-Reset followed by PERST#
LTSSM Hot-Reset, followed by PERST#
Warning: None; Warning: PM2IP (CXL PM VDM)Z;
Warm Reset Entry | Signaling: Signaling:
LTSSM Hot-Reset LTSSM Hot-Reset
. Warning: None; Warning: None;
Surprise Reset . L . L
Entry Signaling: Signaling:
LTSSM detect-entry LTSSM detect-entry
Warning: Warning: PM2IP (CXL PM VDM)2;
PME-Turn_off/Ack; PME-Turn_off/Ack;
Sx Entry
Signaling: Signaling:
PERST# (Power will go down) PERST# (Power will go down)
Notes:
1. All CXL profiles support CXL PM VDMs and use end-end (PM - PM controller) sequences where possible
2. CXL PM VDM with different encodings for different events. If CXL.io devices do not respond to the CXL
PM VDM, the host will still end up in the correct state due to timeouts
3. Flex Bus Physical Layer link states across cold reset, warm reset, surprise reset, and Sx entry match

PCle Physical Layer link states.

8.2 Compute Express Link Device Boot Flow

CXL devices will follow with PCle CEM spec defined boot flows.

8.3 Compute Express Link Device Warm Reset Entry Flow

Note: In an OS orchestrated warm reset flow, it is expected that the CXL devices are already
in D3 state with their contexts flushed to the system memory before the platform warm
reset flow is triggered.

Note: In a platform triggered warm reset flow (due to unexpected CATERR etc.), a CXL.io
device can be in a D3 or DO.

Host issues a CXL PM VDM defined as ResetPrep (ResetType = Warm Reset; PrepType =
General Prep) to the CXL device as specified in Table 3. CXL device flushes any relevant
context to the host (if any), cleans up the data serving the host and puts any CXL
device connected memory into self-refresh. CXL device takes any additional steps for
the CXL host to enter LTSSM Hot-Reset. After all the Warm reset preparation is
completed, the CXL device will issue a CXL PM VDM defined as ResetPrepAck
(ResetType = Warm Reset; PrepType = General Prep) to the CXL device as specified in
Table 3.

Note: CXL device may or may not have PERST# asserted after warm reset handshake. If
PERST# is asserted, CXL device should clear any sticky content internal to the device.

EVALUATION COPY

Compute Express Link Specification
June 2019 169
Revision 1.1

Reset, Initialization, Configuration and Manageability

Figure 100. CXL Device Warm Reset Entry Flow

Host CXL

rEﬂf.‘Dd,'n 2lp
TpesiysetWam, = —
M Reset) '
cXLPM “:EM -
2P -
b — oding=Rese
(Enc peset)
Type=
8.4 Compute Express Link Device Cold Reset Entry Flow
Note: In an OS orchestrated cold reset flow, it is expected that the CXL devices are already in

D3 state with their contexts flushed to the system memory before the platform warm
reset flow is triggered.

Note: In a platform triggered cold reset flow (due to unexpected CATERR etc.), a CXL device
can be in a D3 or DO.

Note: Host cannot differentiate between a platform warm vs cold reset. The host issues a CXL
PM VDM defined as ResetPrep (ResetType = Warm Reset; PrepType = General Prep) to
the CXL device as specified in Table 3.

CXL device flushes any relevant context to the host (if any), cleans up the data serving
the host and puts any CXL device connected memory into self-refresh. CXL device
takes any additional steps for the CXL host to enter LTSSM hot reset. After all the Warm
reset preparation is completed, CXL device will issue a CXL PM VDM defined as
ResetPrepAck (ResetType = Warm Reset; PrepType = General Prep) to the CXL device
as specified in Table 3.

CXL device will have PERST# asserted after warm reset handshake on a Cold Reset. On
PERST# assertion, CXL device should clear any sticky content internal to the device.

EVALUATION COPY

Compute Express Link Specification
June 2019 170
Revision 1.1

Reset, Initialization, Configuration and Manageability

Figure 101. CXL Device Cold Reset Entry Flow

Host CXL

8.5 Compute Express Link Device Sleep State Entry Flow

Note: Since OS is the orchestrator of Sx flows always, it is expected that the CXL devices are
already in D3 state with their contexts flushed to the CPU-attached or CXL-attached
memory before the platform Sx flow is triggered.

Note: The host issues a CXL PM VDM defined as ResetPrep (ResetType = S3/S4/S5; PrepType
= General Prep) to the CXL device as specified in Table 3. CXL device flushes any
relevant context to the host (if any), cleans up the data serving the host and puts any
CXL device connected memory into self-refresh. CXL device takes any additional steps
for the CXL host to initiate a L23 flow. After all the Warm reset preparation is
completed, the CXL device will issue a CXL PM VDM defined as ResetPrepAck
(ResetType = S3/S4/S5; PrepType = General Prep) to the CXL device as specified in
Table 3. PERST# to the CXL device can be asserted any time after this handshake is
completed. On PERST# assertion, CXL device should clear any sticky content internal to
the device.

Note: PERST# will always be asserted for CXL Sx Entry flows.

EVALUATION COPY

Compute Express Link Specification
June 2019 171
Revision 1.1

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

Figure 102. CXL Device Sleep State Entry Flow

©
o

@
\l

June 2019
Revision 1.1

Host CXL

— — P
(Encodiy, ijr‘izfp
gﬁResetWar —_—
ype:SXJ 4 —
CXLPM :TM P
\P2P -
ResetWarmAc

— - ing=
e~ T(EncodnE s

Mﬁﬁﬁﬁ“““=~mﬁﬁ PERSTH
Assertiop, T

Function Level Reset (FLR)

PCle FLR mechanism enables software to quiesce and reset Endpoint hardware with
Function-level granularity. CXL devices expose one or more PCle functions to host
software. These functions can expose FLR capability and existing PCle compatible
software can issue FLR to these functions. PCle specification provides specific
guidelines on impact of FLR on PCle function level state and control registers. For
compatibility with existing PCle software, CXL PCle functions should follow those
guidelines if they support FLR. For example, any software readable state that
potentially includes secret information associated with any preceding use of the
Function must be cleared by FLR.

FLR has no effect on CXL.cache and CXL.mem protocol. Any CXL.cache and CXL.mem
related control registers and state held by the CXL device is not affected by FLR. The

memory controller hosting HDM is not reset by FLR. Upon FLR, certain cache lines in a
CXL.cache device side cache may be flushed, but cache coherency must be maintained.

In some cases, system software uses FLR to attempt error recovery. In the context of
CXL devices, errors in CXL.mem and CXL.cache logic cannot be recovered by FLR. FLR
may succeed in recovering from CXL.io domain errors.

Hotplug

None of the current usage models for Flex Bus require hotplug support. Additionally,
surprise hot remove is not supported.

Compute Express Link Specification
172

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

©
o0

8.8.1

8.8.2

Figure 103.

June 2019
Revision 1.1

Software Enumeration

Software Model

CXL device is exposed to the host software as one or more PCI express endpoints. PCle
is the most widely used device model by various OSs. In addition to leveraging the SW
infrastructure and device driver writer expertise, this choice also enables us to readily
use PCle extensions like SR-10V and PASID.

The link itself is not exposed to the Operating System. This is different from PCle model
where PCle bus driver in OS is able to manage the PCle link. Hiding CXL link ensures
100% compatibility with legacy PCle software.

Since the link is not exposed to OS, each CXL device creates a new PCle enumeration
hierarchy in the form of an ACPI defined PCle Root Bridge (PNP ID PNPOAO8). CXL
endpoints appear as Root Complex Integrated Endpoints (RCIEP).

CXL endpoints report “PCle” interface errors to OS via Root Complex Event Collector

(RCEC) implemented in the host. This is enabled via an extension to the RCEC (Root
Complex Event Collector Bus Number Association ECN) to PCle specification.

PCle Software View of the Hierarchy

PCle Software View

CPU
CXL Downstream Port
CPU Root bus (not OS enumerable)
I _
[
CPU Root bus +N CXL Upstream Port
(not OS enumerable)
Accelerator

Compute Express Link Specification
173

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

8.8.2.1

8.8.2.2

8.8.3

June 2019
Revision 1.1

Since the CXL link is not exposed to OS, the BIOS view of the hierarchy is different than
that of the OS.

BIOS View

The functionality of the CXL downstream port and the CXL upstream port can be
accessed via memory mapped registers. These will not show up in standard PCI bus
scan by existing Operating Systems. The base addresses of these registers are set up
by BIOS and BIOS can use that knowledge to configure CXL.

BIOS configures the downstream port to decode the memory resource needs of the CXL
device as expressed by PCle BAR registers and upstream port BAR(s). PCle BARs do
not decode any HDM associated with the CXL device.

OS View

The CXL device instantiates one or more ACPI root bridges. The _BBN method for this
root bridge matches the bus number that hosts CXL RCIEPs.

This ACPI root bridge spawns a legal PCle hierarchy. All PCI/PCle endpoints located in
the CXL device are children of this ACPI root bridge. These endpoints may appear
directly on the Root bus number or may appear behind a root port located on the Root
bus.

The _CRS method for PCle rootbridge returns bus and memory resources claimed by
the CXL Endpoints. _CRS response does not include HDM on CXL.mem capable device.
Nor does it comprehend any Upstream Port BARs (hidden from OS).

CXL devices cannot claim 10 resources.

BIOS Enumeration Flow

CXL device discovery

= Parse configuration space of device 0, function O on the Secondary bus # and
discover CXL specific attributes. These are exposed via Flex Bus DVSEC Capability
structures. See Section 7.0.

If the device supports CXL.cache, configure the CPU coherent bridge. Set Cache
Enable.

If the device supports CXL.mem, check Mem_HwInit_Mode.

If Mem_HwInit_Mode =1

= The device must set Memory_Info_Valid and Memory_Active within 1 second of
reset deassertion.

< When Memory_Info_Valid and Memory_Active are 1, BIOS reads
Memory_Size_High and Memory_Size_Low fields for each HDM range.

= BIOS computes the size of the HDM range and maps those in system address
space.

< BIOS programs Memory_Base_Low and Memory_Base_High for each HDM range.
« BIOS programs ARB/MUX arbitration control registers.

« BIOS sets CXL.mem Enable. Any subsequent accesses to HDM are decoded and
routed to the local memory by the device.

= Each HDM range is exposed as a separate, memory-only NUMA node via ACPI SRAT
table.

Compute Express Link Specification
174

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

June 2019
Revision 1.1

BIOS obtains latency and bandwidth information from the UEFI device driver and
uses this information during construction of ACPI memory map and ACPI HMAT. The
latency information reported by UEFI driver is measured from the point of ingress
and must be adjusted to accommodate other hops.

If Mem_HwlInit_Mode =0

The device must set Memory_Info_Valid within 1 second of reset deassertion.

When Memory_Info_Valid is 1, BIOS reads Memory_Size_High and
Memory_Size_Low fields for each HDM range.

BIOS computes the size of the HDM range and maps those in system address
space.

BIOS programs Memory_Base_Low and Memory_Base_High for each HDM range.
BIOS programs ARB/MUX arbitration control registers.

BIOS sets CXL.mem Enable. Any subsequent accesses to the HDM ranges are
decoded and completed by the device. The reads shall return all 1's and the writes
will be dropped.

Each HDM range is exposed as a separate, memory-only NUMA node via ACPI SRAT
table.

If the memory is initialized prior to OS boot by UEFI device driver,
— The UEFI driver is responsible for setting Memory_Active.

— Once Memory_Active is set, any subsequent accesses to the HDM range are
decoded and routed to the local memory by the device.

— The UEFI device driver is responsible for reporting presence of memory to BIOS
via UEFI APIls. UEFI driver reports the latency and bandwidth information
associated with HDM to BIOS.

— BIOS uses the information supplied by UEFI driver during construction of ACPI
memory map and ACPI HMAT. The latency information reported by UEFI driver
is measured from the point of ingress and must be adjusted to accommodate
other hops.

If the memory is initialized by an OS device driver post OS boot,

— UEFI driver reports the latency and bandwidth information associated with each
HDM range to BIOS.

— BIOS uses the information supplied by UEFI driver during construction of ACPI
memory map and ACPlI HMAT. The latency information reported by UEFI driver
is measured from the point of ingress and must be adjusted to accommodate
other hops.

— At OS hand-off, BIOS reports that the size of memory associated with HDM
NUMA node is zero.

— The OS device driver is responsible for setting Memory_Active after memory
initialization is complete. Any subsequent accesses to the HDM memory are
decoded and routed to the local memory by the device.

— Availability of memory is signaled to the OS via capacity add flow.

CXL.io resource needs are discovered as part of PCle enumeration. PCle Root Complex
registers including Downstream Port registers are appropriately configured to decode
these resources. CXL Downstream Port and Upstream Port requires MMIO resources.

BIOS programs the memory base and limit registers in the downstream port to decode
CXL Endpoint MMIO BARs, CXL Downstream Port MMIO BARs, CXL Upstream Port MMIO
BARs.

Compute Express Link Specification
175

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

8.8.4

Table 66.

June 2019
Revision 1.1

If an accelerator supports CXL.mem and Mem_HwInit_Mode=0, system BIOS will
unconditionally bind the accelerator to the appropriate UEFI driver by calling Start()

function

Software View of CXL.cache

Legacy OS or legacy PCle bus driver is not made aware of CXL.cache capability. The
device driver is aware of this CXL.cache capability and manages the CXL cache. As
shown in the table below, software cannot assume that lines in device cache that map
to HDM will be flushed by CPU cache flush instructions. Software must use device
specific mechanism to flush these lines.

Interaction Between CPU Cache Flush Instructions and CXL.cache

Lines held in CPU cache

Lines held in device cache

Lines mapped to CPU attached
memory

Behavior specified in Intel
Software Developers Manual
(SDM)

Behavior specified in Intel
Software Developers Manual
(SDM)

Lines mapped to device attached
memory (HDM)

Behavior specified in Intel
Software Developers Manual
(SDM)

Implementation specific.

Compute Express Link Specification
176

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

8.9 Accelerators with Multiple Flex Bus Links

8.9.1 Single CPU Topology

Figure 104. One CPU Connected to One Accelerator Via Two Flex Bus Links

CPU

Home Agent and Coherency Bridge

1

CXL Downstream CXL Downstream Port 2
Port 1 (not OS enumerable) (not OS enumerable)

7 N

Memory

Controller

CXL Upstream Port 1
(not OS enumerable)

CXL Upstream Port 2]
(not OS enumerable)

DO,FO
CXL

CXL

DVSEC

DVSEC

Device Serial
Number Cap

. J Accelerator

Device Serial
Number Cap

In this configuration, BIOS shall report two PCI root bridges to the Operating system,
one that hosts the left Device 0, Function O and the second one that hosts the Device O,
function 0 on the right. Both Device 0, function O instances implement Flex Bus DVSEC
and a Device Serial Number PCle Extended Capability. A vendor ID and serial number
match indicates that the two links are connected to a single accelerator and this
enables BIOS to perform certain optimizations.

In some cases, the accelerator may expose a single accelerator function that is
managed by the accelerator device driver, whereas the other Device 0/function O
represents a dummy device. In this configuration, application software submits the
work to the single accelerator device instance. However, the accelerator hardware is
free to use both links for traffic and snoops as long as the programming model is not
violated.

The BIOS maps the HDM into system address space using the following rules.

Compute Express Link Specification
June 2019 177
Revision 1.1

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

Table 67. Memory Decode rules in presence of one CPU/two Flex Bus links
Left DO, FO Left DO, FO Right DO, FO Right DO, FO BIOS requirements
Mem_Capable Mem_Size Mem_ Capable Mem_Size a

(o] NA 0] NA No HDM
Range of size M decoded by Left Flex Bus

1 M (6] NA link. Right Flex Bus link does not receive
CXL.mem traffic.
Range of size N decoded by Right Flex Bus

0 NA 1 N link. Left Flex Bus link does not receive
CXL.mem traffic.
Two ranges set up, Range of size M decoded

1 M 1 N by Left Flex Bus link, Range of size N decoded
by right Flex Bus link
Single range of size M. CXL.mem traffic is

1 M 1 0 interleaved across two links at a cache line
granularity
Single range of size N. CXL.mem traffic is

1 0 1 N interleaved across two links at a cache line
granularity

8.9.2 Multiple CPU Topology

Figure 105. Two CPUs Connected to One Accelerator Via Two Flex Bus Links

CPU 1

Home Agent and

Coherency Bridge

-
CXL Downstream Port 1

(not OS enumerable)

CXL Upstream Port 1
(not OS enumerable)

DO,FO

CXL DVSEC

Device Serial
Number Cap

Memory
Controller

Accelerator

CPU 2

Home Agent and

Coherency Bridge

CXL Downstream Port 2
(not OS enumerable)

CXL Upstream Port 2
(not OS enumerable)

DO,FO

CXL DVSEC

Device Serial
Number Cap

June 2019
Revision 1.1

Compute Express Link Specification
178

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

Table 68.

In this configuration, BIOS shall report two PCI root bridges to the Operating system,
one that hosts the left Device 0, Function O and the second one that host the Device O,
function 0 on the right. Both Device 0O, function O instances implement Flex Bus DVSEC
and a Device Serial Number PCle Extended Capability. A vendor ID and serial number
match indicates that the two links are connected to a single accelerator and this
enables BIOS to perform certain optimizations.

In some cases, the accelerator may choose to expose a single accelerator function that
is managed by the accelerator device driver and handles all work requests. This may be
necessary if the accelerator framework or applications do not support distributing work
across multiple accelerator instances. Even in this case, both links should spawn a legal
PCle root bridge hierarchy with at least one PCle function. However, the accelerator
hardware is free to use both links for traffic and snoops as long as the programming
model is not violated. To minimize the snoop penalty, the accelerator needs to be able
to distinguish between the system memory range decoded by CPU 1 versus CPU 2. The
device driver can obtain this information via ACPlI SRAT table and communicate it to the
accelerator using device specific mechanisms.

The BIOS maps the HDM into system address space using the following rules. Unlike

the single CPU case, the BIOS shall never interleave the memory range at a cache line
granularity across the two Flex Bus links.

Memory Decode rules in presence of two CPU/two Flex Bus links

Left DO, FO
Mem_Capable

Left DO, FO
Mem_Size

Right DO, FO
Mem__ Capable

Right DO, FO
Mem_Size

BIOS requirements

NA

NA

No HDM

NA

Range of size M decoded by Left Flex Bus

link. Right Flex Bus link does not receive
(o] CXL.mem traffic.

| O] O

NA

[
z

Range of size N decoded by Right Flex Bus

rlo|r|rRr|o

link. Left Flex Bus link does not receive
CXL.mem traffic.

Two ranges set up, Range of size M decoded
by Left Flex Bus link, Range of size N
decoded by right Flex Bus link

8.10

June 2019
Revision 1.1

Software View of HDM

HDM is exposed to OS/VMM as normal memory. However, HDM likely has different
performance/latency attributes compared to host attached memory. Therefore, a
system with CXL.mem devices can be considered as a heterogeneous memory system.

ACPI HMAT table was introduced for such systems and can report memory latency and
bandwidth characteristics associated with different memory ranges. ACPI Specification
version 6.2 carries the definition of revision 1 of HMAT. As of August 2018, ACPI WG
has decided to deprecate revision 1 of HMAT table because it had a number of
shortcomings. As a result, the subsequent discussion refers to revision 2 of HMAT
table.In addition, ACPI has introduced a new type of Affinity structure called Generic
Affinity (GI) Structure. Gl structure is useful for describing execution engines such as
accelerators that are not processors. Existing software ignores Gl entries in SRAT, but
newer software can take advantage of it. As a result, CXL.mem accelerators will result
in two entries in SRAT - One Gl entry to represent the accelerator cores and one
memory entry to represent the attached HDM. Gl entry is especially useful when
describing CXL.cache accelerator. Previous to introduction of GI, CXL.cache accelerator
could not be described as a separate entity in SRAT/HMAT and had to be combined with
the attached CPU. With this specification change, CXL.cache accelerator can be
described as a separate proximity domain. _PXM method can be used to associate the
proximity domain associated with the PCI device . Since Legacy OSs do not understand

Compute Express Link Specification
179

EVALUATION COPY

Reset, Initialization, Configuration and Manageability

8.10.1

8.11

June 2019

Revision 1.1

Gl, BIOS is required to return the processor domain that is most closely associated with
the 10 device when running such an OS. ASL code can use bit 17 of Platform-Wide

_OSC Capabilities DWORD 2 to detect whether the OS supports Gl or not.

BIOS must construct and report HMAT table to OS in systems with CXL.mem devices
and CXL.cache devices. Since system BIOS is not aware of HDM properties, that
information must come from the UEFI driver for the CXL device in the format of HMAT
Fragment Table. The format of this table is described below.

BIOS combines the information it has about the host and CXL connectivity with the
HMAT Fragment Tables during construction of HMAT tables.

Accelerator HMAT Fragment Table Format

The fragment table is published by the accelerator UEFI driver and contains one or
more memory range entries. These entries, when combined together, must cover the
entire HDM range defined by CXL DVSEV base and limit registers.

Each memory range entry contains five fields:
< Memory base in system address space.
< Memory size -

< Memory Type — Represents whether the memory is available for host use or
reserved (may be dedicated for accelerator local use).

« Local Memory Latency — follows HMAT convention
e Local Bandwidth — Follows HMAT convention

Manageability Model for CXL Devices Matches PCle

Manageability is the set of capabilities that a managed entity exposes to a management
entity. In the context of CXL, CXL device is the managed entity. These capabilities are
generally classified in sensors and effectors. Performance counter is an example of a
sensor, whereas ability to update the IA device firmware is an example of an effector.
Sensors and effectors can either be accessed in-band, i.e., by OS/VMM resident
software or out of band, i.e., by firmware running on a management controller that is
OS independent.

In band software can access CXL device's manageability capabilities by issuing PCle
configuration read/write or MMIO read/write transactions. These accesses are generally
mediated by CXL device driver. This is consistent with how PCle cards are managed.

Out of band manageability in SO state can leverage MCTP over PCI express
infrastructure. This assumes CXL.io path will decode and forward MCTP over PCle VDMs
in both directions. Flex Bus slot definition includes two SMBUS pins (clock and data).
The SMBUS path can be used for out of band manageability in Sx state or link down
case. This is consistent with PCle. The exact set of sensors and effectors exposed by
the CXL card over SMBUS interface or PCle are outside the scope of this specification.
These can either be found in class specific specifications such as NVMe-MI specification.

8§ 8

Compute Express Link Specification
180

EVALUATION COPY

Power Management

9.0

Power Management

9.1

9.2

9.2.1

Table 69.

Statement of Requirements

All CXL implementations are required to support the Physical Layer Power management
as defined in this chapter. CXL Power management is divided into protocol specific Link
Power management and CXL Physical layer power management. The Arb&Mux layer is
also responsible for managing protocol specific Link Power Management between the
Protocols on both sides of the link. The Arb&Mux co-ordinates the Power Managed
states between Multiple Protocols on both sides of the links, consolidates the Power
states and drives the Physical Layer Power Management.

Policy based Runtime Control - Idle Power - Protocol Flow

General

For CXL connected devices, there is a desire to optimize power management of the
whole system, with the device included.

As such, a hierarchical power management architecture is proposed, where the discrete
device is viewed as a single autonomous entity, with thermal and power management
executed locally, but in coordination with the processor socket. State transitions are
coordinated with the processor die using Vendor Defined Messages over CXL. The
coordination between primary power management controller and the device is best
accomplished via PM2IP and IP2PM messages that are encoded as VDMs.

Since native support of PCle is also required, support of more simplified protocols is

also possible. The following table highlights the required and recommended handling
method for Idle transitions.

Runtime-Control - CXL Versus PCle Control Methodologies

Case

PCle cxL?t

Devices that do not share coherency with | Optimized handshake protocol, for all non-PCle CXL
CPU can work with the PCle profile: profiles

Pkg-C Entry/Exit 1. LTR-notifications from Device; 1. LTR-notifications from Device;

2. Allow-L1 signaling from CPU on Pkg_C 2. PMreq/Rsp (VDM) signaling between CPU and device
entry on Pkg_C entry and exit

9.2.2

June 2019
Revision 1.1

Notes:
1. All CXL profiles support VDMs and use end-end (PM - PM controller) sequences where possible
2. PM2IP: VDM carrying messages associated with different Reset/PM flows

Package-Level Idle (C-state) Entry and Exit Coordination

At a high level, a discrete CXL device, that is coherent with the processor, is treated like
another processor socket. Expectation is that there is coordination and agreement
between the processor and discrete device before the platform can enter idle power

Compute Express Link Specification
181

EVALUATION COPY

Power Management

June 2019
Revision 1.1

state. Neither device nor processor can enter a low power state individually as long as
its memory resources are needed by the other die. As an example, in a case where the
device may contain shared High-BW memory (HBM) on it, while the processor controls
the system's DDR, if the device wants to be able to go into a low power state, it must
take into account the processor's need for accessing the HBM memory. Likewise, if
processor wants to go into a low power state, it must take into account, among other
things, the need for the device to access DDR. These requirements are encapsulated in
the LTR requirements that are provided by entities that need QOS for access to
memory. In this case, we would have a notion of LTR for DDR access and LTR for HBM
access. We would expect the device to inform the processor about its LTR wrt DDR, and
processor to inform the device about its LTR wrt HBM

Managing latency requirements can be done in two methods.

e CXL devices that do not share coherency with CPU (either a shared coherent
memory or a coherent cache), can notify the processor on changes in its latency
tolerance via the PMReq() and PMRsp() messages. When appropriate latency is
supported and processor execution has stopped, the processor will enter an Idle
state and proceed to transition the Link to L1 (see Link-Layer section, Section 9.4,
“Compute Express Link Power Management” on page 186).

= CXL devices that include a coherent cache or memory device are required to
coordinate their state transitions using the CXL optimized VDM based protocol,
which includes the ResetPrep(), PMReq(), PMRsp() and PMGo() messages, to
prevent loss of memory coherency.

Compute Express Link Specification
182

EVALUATION COPY

Power Management

9.2.3

PkgC Entry flows

Figure 106. PkgC Entry Flows

Processor Power)
Management CXL_Device

____{CXL Device is idle, no new work
\V\,\-TR)/

/pN\ReC\-ReC\(ME being scheduled
e ——
\PMREQ.RSD(CXL MEM Device can enter lower power
- _LTR) - State while observing the LTR
e — requirement
PMReq.Go(CXL_MEM_LTR)\ ‘
Revised LTR when all sockets are
idle
Device PkgC exit flow
(independent of the Processor)
If going deeper, continue to Save context,
Gate local power domains
I
ntry
Processor resolves oxLLLE
the requests for CXL -~
access and when I
—CXL
ready, acknowledges L1Entry Ack—— -

the L1 entry

June 2019
Revision 1.1

Device in deep idle

Figure 106 illustrates the PkgC entry flow. A device (or the processor) when wishing to
enter a higher-latency Idle state, in which CPU is not active, will issue a PMReq() with
LTR field marking the memory access tolerance of the entity.

If Idle state is allowed, the peer entity will respond with a matching PMRsp() message,
with the negotiated allowable latency tolerance LTR. Both entities can independently
enter an ldle state without coordination, as long as the shared resources remain
accessible.

For a full package C entry, both entities need to negotiate as to the depth/latency
tolerance, by responding with a PMRsp() message with the agreeable latency tolerance.
Once the master power mgmt. agent has coordinated LTR across all the agents in the
system, it will send a PMGo() with the proper Latency field set, indicating local idle
power actions can be taken subject to the communicated latency tolerance value.

In case of a transition into deep-idle states (client systems mostly), device will initiate a
CXL transition into L1.

Compute Express Link Specification
183

Power Management

9.2.4

PkgC Exit Flows

Figure 107. PkgC Exit Flows - Triggered by device access to system memory

Processor transitions
shared resources into

Processor Power

TR
 omReaRealMEMt

————PMReq.Rsp(cxL_mem_|1q

Sow)

remains unchanged)

Management CXL_Device
i ——— " |Local Wake
Processor brings up _oexuvex
only essential la——
resources
Processor brings link |
out of L1 T —XLua exit

Link open for communication

If local wake, don’t wait for
PMGo, start exit sequence

Device PkgC exit flow
(independent of the Processor)

| For Main-Memory access, Device
may choose to demand a lower-
latency QoS, to prevent data-drop

Device accesses memory

low-latency mode and
acknowledges the
request

Figure 107 illustrates the PkgC exit flow initiated by the device. Link state during ldle
may be in one of the select L1.x states, during Deep-Ildle (as depicted here). In-band
wake signaling will be used to transition the link back to LO. For more, see Section 9.4,
“Compute Express Link Power Management” on page 186.

Once CXL is out of L1, signaling can be used to transfer the device into a Package-C2
state, in which shared resources are available across CXL.

Processor will bring the shared resources out of Idle and acknowledge with a PMRsp()
to indicate low-latency QoS has been achieved.

EVALUATION COPY

Compute Express Link Specification
June 2019 184

Revision 1.1

Power Management

Figure 108. PkgC Exit Flows - Execution Required by Processor

Processor Power .
Management CXL_Device
Processor detects a peer
device (or itself) requiring low
latency access to resources
Processor brings linkoutof L1 ——
XL Llexit ——
T
Processor signals resources Link open for communication
must be made available at 0 [————p
lstency MREQ.GO(CXLMEM_LTR:o]_‘f_7_. Device idle state exit flow
to accommodate Latency=0
Device resources become
available to processor
T T T T T T T T T T T 1
| Device “could” also transition into an |
ow)—— — I execution state, and reduce its LTR }
LTR=l0W e
_ _pwReqRealMEN-
- Device exits all idle states
- -PMReq.Rsp(CXL_MEM LTR=0) —
- e

Figure 108 illustrates the PkgC exit flow initiated by the processor. In the case where
the processor, or one of the peer devices connected to it requires to have coherent low
latency access to system memory, the processor will initiate a Link L1 exit towards the
device.

Once the link is running, the processor will follow with a PMGo(Latency=0), indicating
some device in the platform requires low latency access to coherent memory and
resources. A device receiving PMGO with latency O must ensure that further low power
actions that might impede access to memory are not taken.

©
W

Compute Express Link Physical Layer Power Management
States

CXL Physical layer supports L1 and L2 states as defined in PCI Express Base
Specification. CXL Physical layer does not support LOs. The entry and exit conditions
from these states are as defined in the PCI Express Base Specification. The notable
difference is that for CXL Physical Layer the entry and exit from Physical Layer Power
Managed states is directed by CXL ARB&MUX.

EVALUATION COPY

Compute Express Link Specification
June 2019 185
Revision 1.1

EVALUATION COPY

Power Management

9.4

9.4.1

Figure 109.

9.4.2

June 2019
Revision 1.1

Compute Express Link Power Management

CXL Link Power Management supports Active Link State Power Management and L1 and
L2 are the only 2 Power states supported. The PM Entry/Exit process is further divided
into 3 phases as described below.

Compute Express Link PM Entry Phase 1

The CXL PM Entry phase 1 involves protocol specific mechanisms to negotiate entry into
PM state. Once the conditions to enter PM state as defined in the protocol section are
satisfied, transaction layer is ready for Phase 2 entry and directs the ARB&MUX to enter
PM State.

CXL Link PM Phase 1

CXL.IO CXL.SMem CXL.SMem CXL.IO
' Lot
ARB&MUX~ ARB&MUX
A A
\ 4 A 4
CXL PHY CXL PHY
RF Tx Rx Tx
'y y
Y
" Phase 1 Phase 1 /
Y

Compute Express Link PM Entry Phase 2

When directed by the transaction layer to enter PM, the Phase 2 entry process is
initiated by ARB&MUX. The second Phase of PM entry consists of bringing the ARB&MUX
interface of both sides of the Link into PM state. This entry into PM state is coordinated

Compute Express Link Specification
186

EVALUATION COPY

Power Management

using ALMPs as described below. The Phase 2 entry is independently managed for each
protocol. The Physical Layer continues to be in LO until all the transaction layers enter
Phase 2 state.

Figure 110. CXL Link PM Phase 2

CXL.1O0 CXL.SMem CXL.SMem CXL.1IO
A A A
A 4 A
= ~
ARB&MUX ARB&MUX
A A
\ 4 v
CXL PHY CXL PHY
Rx Tx Rx T
A A
\ Phase 2 [|/
Phase 2 | Phase 2
¥

Rules for Phase 2 entry into ASPM are as follows:

1.

2.

June 2019
Revision 1.1

The Phase 2 Entry into PM State is always initiated by ARB&MUX on the
Downstream Component.

When directed by the transaction layer the ARB&MUX on the Downstream
Component must transmit ALMP request to enter Virtual LSM state PM.

. When the ARB&MUX on the Upstream Component is directed to enter L1 and

receives ALMP request from the Downstream Component, the Upstream
Component responds with an ALMP response indicating acceptance of entry into L1
state. The transaction layer on the Upstream Component must also be notified that
the ARB&MUX port has accepted entry into PM state.

The Upstream Component ARB&MUX port does not respond with an ALMP response
if not directed by protocol on the Upstream Component to enter PM.

Compute Express Link Specification
187

EVALUATION COPY

Power Management

9.4.3

June 2019
Revision 1.1

5. When the ARB&MUX on the Downstream Component is directed to enter L1 and
receives ALMP response from the Upstream Component, it notifies acceptance of
entry into PM state to the transaction layer on the Downstream component.

6. The Downstream Component ARB&MUX port must wait for <TBD> amount of time
for a response from the Upstream Component. If no response is received from the
Upstream component then the Downstream Component is permitted to abort the
PM entry or retry entry into PM again.

7. L2 entry is an exception to rule number 6. Protocol must ensure that Upstream
component is directed to enter L2 before setting up the conditions for the
Downstream Component to request entry into L2 state. This ensures that L2 abort
or L2 Retry conditions do not exist.

8. Transaction layer on either side of the Link is permitted to direct exit from L1 state
once the ARB&MUX interface reaches L1 state.

Compute Express Link PM Entry Phase 3

The third Phase is a conditional phase of PM entry and is executed only when all
Protocol interfaces of ARB&MUX have entered the same virtual PM state. The phase
consists of bringing the Tx lanes to electrical Idle and is always initiated by the
Downstream Component.

Compute Express Link Specification
188

Power Management

Figure 111. CXL PM Phase 3

Intel
CXL.IO CXL.SMem CXL.SMem ALio
A A A A
4 ¥ A y
ARB&MUX ARB&MUX
CXL PHY CXL PHY
Rx Tx Rx Tx

h r A 4’?

N Phase 3

Figure 112. Electrical ldle

aliml Downstream component
‘_,I—f}—H'rl'l"l' transitions upstream
I direction to electrical idle
Upstream component |
transitions downstream ‘m
to electrical idle I
¥ time

EVALUATION COPY

Compute Express Link Specification
June 2019 189
Revision 1.1

EVALUATION COPY

Power Management

9.4.4

©
o1

9.5.1

June 2019
Revision 1.1

Compute Express Link Exit from ASPM L1

Components on either end of the Link may initiate exit from the L1 Link State. The
ASMP L1 exit depends on whether the exit is from phase 3 or phase 2 of L1. The exit is
hierarchical and phase 3 must exit before phase 2.

Phase 3 exit is initiated when directed by the ARB&Mux from either end of the link. The
ARB&MUX layer initiates exit from Phase 3 when there is an exit requested on any one
of its primary protocol interfaces. The phase 3 ASPM L1 exit is the same as exit from L1
state as defined in PCI Express Base Specification. The steps are followed until the
LTSSM reaches LO state. Protocol level information is not permitted to be exchanged
until the virtual LSM on the ARB&MUX interface has exited L1 state.

Phase 2 exit involves bringing the protocol interface at the ARB&MUX out of L1 state
independently. The transaction layer directs the ARB&MUX state to exit virtual LSM
state. If the PHY is in Phase 3 L1 then the ARB&MUX waits for the PHY LTSSM to reach
LO state. Once the PHY is in LO state, the following rules apply.

The ARB&MUX on the protocol side that is triggering an exit transmits a ALMP
requesting entry into Active state.

Any ARB&MUX interface that receives the ALMP request to enter Active State must
transmit an ALMP acknowledge response on behalf of that interface. The ALMP
acknowledge response is an indication that the corresponding protocol side is ready to
process received packets.

Any ARB&MUX interface that receives the ALMP request to enter Active State must also
transmit an ALMP Active State request on behalf of that interface if not sent already.

Protocol level transmission must be permitted by the ARB&MUX after an Active State
Status ALMP is transmitted and received. This guarantees that the receiving protocol is
ready to process packets.

CXL.io Link Power Management
CXL.io Link Power Management is as defined in PCle Express Base Specification with
the following notable differences.

e Only ASPM L1 is supported

e LOs state is not supported

« PCI-PM is not supported

CXL.1o ASPM Phase L1 Entry

= The first phase consists of completing the ASPM L1 negotiation rules as defined in
the PCI Express Base Specification with the following notable exceptions for the
rules in case of acceptance of ASPM L1 Entry. All rules upto the completion of the
ASPM L1 handshake are maintained, however the process of bringing the Transmit
Lanes into Electrical Idle state are divided into 2 additional phases described above.
Phase 1 flow is described below.

Compute Express Link Specification
190

Power Management

Figure 113. ASPM L1 Entry Phase 1

Upstream Component I Downstream Component
ToOPRPDT
Upstream component I Downstream component
layers in active state wishes to enter L1 state

Upstream component blocks

Uipstream component receives
acknowledgment for last TLP

Upstream component sends

S Downstream companent accumulates minimum
I I credits and blocks scheduling of new TLPs

Downstream component receives
acknowledgment for last TLP

I | | PM_Active_State Request L1
—a 110 DLLPs sert repeatedly

scheduling of new TLPs

Component waits for a response to the
PM_Active State Request L1 DLLPs

Pi_Request_Ack DLLPs
repealedly

EVALUATION COPY

June 2019
Revision 1.1

2.

9.5.2 CXL.io ASPM Phase 2 Entry
The following conditions apply for Phase 2 Entry for CXL.io

Phase 2: The second Phase of L1 entry consists of bringing the CXL.io ARB&MUX
interface of both sides of the Link into L1 state. This entry into L1 state is coordinated
using ALMPs as described below.

Rules for Phase 2 entry into ASPM L1.

1.

CXL.io on the Upstream Component must direct the ARB&MUX to be ready to enter
L1 before returning the PM_Request_Ack DLLPs as shown above in Phase 1.

When the PM_Request_Ack DLLPs are successfully received by the CXL.io on the
Downstream Component, it must direct the ARB&MUX on the Downstream
Component to transmit ALMP request to enter Virtual LSM state L1.

When the ARB&MUX on the Upstream Component is directed to enter L1 and
receives ALMP request from the Downstream Component, it notifies the CXL.io that
the interface has received ALMP request to enter L1 state and has entered L1 state

4. When the Upstream Component is notified entry into virtual LSM it ceases sending
PM_Request_Ack DLLP
5. When the ARB&MUX on the Downstream Component is directed to enter L1 and
receives ALMP Status from the Upstream Component, it notifies the CXL.io that the
interface has entered L1 state
9.5.3 CXL.io ASPM Phase 3 Entry

The Phase 3 entry is dependent on the virtual LSM state of multiple protocols and is
managed by the ARB&MUX as described in the section on Phase 3 entry above.

Compute Express Link Specification
191

EVALUATION COPY

Power Management

©
o

June 2019
Revision 1.1

CXL.cache + CXL.mem Link Power Management

CXL.cache and CXL.mem support Active Link State Power Management only, unlike
CXL.io there is no PM Entry handshake defined between the Link Layers. Each side
independently requests to the ARB&MUX to enter L1. The ARB&MUX layers on both
sides of the Link co-ordinate the entry into PM state using ALMPs. CXL.cache +
CXL.mem Link Power Management follows the process for PM entry and exit as defined
in section Compute Express Link Power Management.

8§88

Compute Express Link Specification
192

EVALUATION COPY

Security

10.0 Security
Security requirements are product specific and thus outside of the scope of this
specification.
88
Compute Express Link Specification
June 2019 193

Revision 1.1

Reliability, Availability and Serviceability

Reliability, Availability and Serviceability

>_
2
O
O 1.1
O
|_
<
D 11.2
_1
<C
=
LLI

Revision 1.1

CXL RAS is defined to work with Client Hosts as well as Servers. Therefore RAS features
intended for server use must also consider the impact for client space or provide means
for disabling.

Supported RAS Features

The table below lists the RAS features supported by CXL and their applicability to
CXL.io vs. CXL.cache and CXL.mem.

CXL RAS Features

Feature CXL.io CXL.cache and CXL.mem

Link CRC and Retry Required Required

Link Retraining and Recovery Required Required

eDPC Not Supported N/A

ECRC Optional N/A

Hot-Plug Not Supported Not Supported

Corrected Error Count Information | Requied Required

Data Poisoning Required Required

Viral N/A Required

CXL Error Handling

As shown in Figure 114, CXL can simultaneously carry three protocols: CXL.io,
CXL.cache and CXL.mem. CXL.io carries PCle like semantics and must be supported by
all CXL endpoints. All RAS capabilities must address all of these protocols and usages.
For details of CXL architecture and all protocols, please refer to the other sections in
this document.

Figure 114 below is an illustration of CXL and the focus areas for CXL RAS. Namely,
Link & protocol RAS, which applies to the Host-CXL communication mechanism and
Device RAS which applies exclusively to the device itself. All errors are reflected to the
OS via PCle AER mechanisms as “Correctable Internal Error” (CIE) or “Uncorrectable
Internal Error” (UIE). Errors may also be reflected to Platformm SW if so configured.

Compute Express Link Specification
194

EVALUATION COPY

Reliability, Availability and Serviceability

Figure 114. CXL Error Handling

11.2.1

11.2.1.1

June 2019
Revision 1.1

Root Complex
IO Bridge:
Link & Protocol
L _'—-——-_.______ .
Bridge Error Handling
I u
CXL. IO
C¥L mem C¥L.cache
) J
CXL Device wy Memory
DeviceError
Handling
; [Vlem CHLIO

Referring to Figure 114, the Host/Root Complex is located on the north side and
contains all the usual error handling mechanisms such as MCA, PCle AER, RCEC and
other platform level error reporting and handling mechanisms. CXL.mem and
CXL.cache errors encountered by the device are communicated to the CPU across
CXL.io. to be logged in PCle AER registers. The following sections will focus on the link
layer and transaction layer error handling mechanisms as well as CXL device error
handling.

Protocol and Link Layer Error Reporting

Protocol and Link errors are detected and communicated to the Host where they can be
exposed and handled. There are no error pins connecting CXL devices to the Host.
Errors are communicated between the Host and the CXL device via messages over
CXL.io.

CXL Downstream Port (DP) Detected Errors

Errors detected by the CXL are escalated and reported via the Root Complex error
reporting mechanisms as UIE/CIE.

Compute Express Link Specification
195

EVALUATION COPY

Reliability, Availability and Serviceability

11.2.2

Table 71.

11.2.2.1

June 2019
Revision 1.1

To handle the error, the OS would inspect the RCEC AER and handle as appropriate. For
Platform SW Error handling, the SW would interrogate the Platform specific error logs.

CXL Device Error Handling

CXL connected devices are required to support data poisoning and will use the Data
Poisoning mechanism to communicate uncorrectable data errors whenever possible (all
flavors of CXL.cache, CXL.mem, CXL.io support poison communication).

The Host may send poisoned data to the CXL connected device. How the CXL device
responds to Poison is device specific but must follow PCle guidelines. The device must
consciously make a decision about what to make of poisoned data. In some cases,
simply ignoring poisoned data may lead to SDC (Silent Data Corruption).

Any device errors that cannot be handled with Poison indication will be signaled by the
device back to the Host as messages since there are no error pins. It's highly desirable
to have the same nomenclature and reporting scheme. To that end, Table 71 below
shows a summary of the error types, their mappings and error reporting guidelines.

Device Specific Error Reporting and Nomenclature Guidelines

Error Severity

Definition/
Example

Signaling Options
(SW picks one)

Logging

Host HW/FW/SW
Response

Memory single bit

Device specific

Device specific flow

Recoverable

SW help (e.g., error
localized to single
computation)

MSI to driver

registers

Corrected Eggr corrected via MSI to Device driver registers in Device driver

UC errors that device

can recover from, Device specific flow
Uncorrected with minimal or no Device specific in driver (e.g.,

discard results of
suspect computation)

Equivalent to PCle
UCNF, contained by

MSI to Device Driver

Device specific
registers

Device specific (e.g.,
reset affected device)
flow in driver. Driver

parity error, pUnit
ROM error)

AER + Viral

Uncorrected the device (e.g., can escalate through
NonFatal write failed, memory SW.
error that affects
many computations) PCle AER Internal Device specific System FW/SW AER
Error registers + PCle AER | flow, ends in reset.
Equivalent to PCle PCle AER Internal System FW/SW AER
UCF, poses error) o flow, ends in reset.
Uncorrected containment risk Device specific
Fatal (e.g., command/ registers + PCle AER

System FW/SW Viral
flow

In keeping with the standard error logging requirements, all error logs

across warm reset.

CXL.mem and CXL.cache Errors

must be sticky

If demand accesses to memory result in an uncorrected data error, the CXL device
must return data with poison. The requester (processor core or a peer device) is
responsible for dealing with the poison indication. The CXL device should not signal an
uncorrected error along with the poison. If the processor core consumes the poison,
the error will be logged and signaled by the Host.

Compute Express Link Specification

196

EVALUATION COPY

Reliability, Availability and Serviceability

11.2.2.2

June 2019
Revision 1.1

It is recommended that the CXL device keep track of any poison data it receives while it
stores the data in its local storage including memory. It can optionally notify the device
driver of such an event. If the CXL device cannot keep track of poison, Device logic

shall ensure containment by signaling an uncorrected non-fatal error (AER_NONFATAL).

Any non-demand uncorrected errors (e.g., memory scrub logic in CXL device memory
controller) will be signaled to the device driver via device MSI. Any corrected memory
errors will be signaled to the device driver via device MSI. The driver may choose to
deallocate memory pages with repeated errors. Neither the platform firmware nor the
OS directly deal with these errors.

CXL Device Error Handling Flows

Device errors maybe sourced from a Root Port (RP) or Endpoint (RCIiEP). For the
purpose of differentiation RCIiEP sourced errors shall use tag value of zero whereas RP
sourced errors shall use tag of non-zero value. Errors detected by the CXL device shall
be communicated to the host via PCle Error messages across the CXL.io link.

Errors that are not related to any specific Function within the device (Non-Function
errors) are reported to the Host via PCle error messages where they can be escalated
to the platform. Non-Function errors are logged in the Upstream Port RCRB in the PCle
AER Registers. In addition, the UP reports non-function errors to all RCiEPs where they
are logged. Each RCIiEP reports the non-function specific errors to the host via error
messages. At most one error message of a given severity is generated for a multi-
function device. The error message must include the Requester ID of a function that is
enabled to send the error message. Error messages with the same Requester ID may
be merged for different errors with the same severity. No error message is sent if no
function is enabled to do so. If different functions are enabled to send error messages
of different severity, at most one error of each severity level is sent. If a Root
Complex Error Collector is implemented, errors may optionally be sent to the
corresponding RCEC. Each RCIEP must be associated with no more than one RCEC.

Compute Express Link Specification
197

EVALUATION COPY

Reliability, Availability and Serviceability

11.3

11.4

June 2019
Revision 1.1

CXL Link Down Handling

There is no expectation of a graceful Link Down. A Link Down condition will most likely
result in a timeout in the Host since it is quite possible that there are transactions
headed to or from the CXL device that will end up not making progress.

CXL Viral Handling

CXL link and CXL devices are expected to be Viral compliant. Viral is an error
containment mechanism. A platform must choose to enable Viral at boot time. The Host
implementation of Viral allows the platform to opt-in by writing into a register that
enables the Viral feature. Similarly, a BIOS accessible control register on the device will
be required to enable Viral behavior (both receiving and sending) on the device. Viral
support capability and control for enabling are reflected in DVSEC.

When enabled, a Viral indication is generated whenever an Uncorrected_Fatal error is
detected. Viral is not a replacement for existing error reporting mechanisms. Instead,
its purpose is an additional error containment mechanism. The detector of the error is
responsible for reporting the error through AER and generating a Viral indication. Any
entity that is capable of reporting Uncorrected_Fatal errors must also be capable of
generating a Viral indication.

CXL.mem and CXL.cache come enabled with the Viral concept. Viral needs to be
communicated in both directions. When Viral is enabled and the Host runs into a Viral
condition, it will communicate Viral across CXL.mem and/or CXL.cache. The Viral
indication must beat any data that may have been affected by the error (general Viral
requirement).

The device’s reaction to Viral is going to be device specific but the device is expected to
take error containment actions consistent with Viral requirements. Chiefly, it must
prevent bad data from being committed to permanent storage. Meaning, if the device is
connected to any permanent storage or an external interface that may be connected to
permanent storage, then the device is required to self-isolate in order to be Viral
compliant. This means that the device has to take containment actions without
depending on help from the Host.

The self-isolation actions taken by the device must not prevent the Host from making
forward progress. This is important for diagnostic purposes as well as error pollution
(e.g., withholding data for read transactions to device memory may cause cascading
timeouts in the Hosts). Therefore, on Viral detection, in addition to the containment
requirements, the device must:

« Drop writes to permanent storage on the device or connected to the device.
* Keep responding to snoops
= Complete pending writes to Host memory

= Complete all reads and writes to Device volatile memory.

When the device itself runs into a Viral condition and Viral is enabled, it must:
* Set the Viral Status bit to indicate that a Viral condition has occurred

- Self-lIsolate — i.e., take steps to contain the error within the device as per Viral
requirements (i.e., ensure that Viral signaling beats any data affected by the error)

< Communicate the Viral condition back up CXL.{Mem,Cache} towards the Host.
— In reaction to this the CXL Downstream Port will trigger Viral on the host.
« Report the error as UIE via AER.

Compute Express Link Specification
198

EVALUATION COPY

Reliability, Availability and Serviceability

11.5

June 2019
Revision 1.1

Viral Control and Status bits are defined in DVSEC (please refer to Section 7.0, “Control
and Status Registers” on page 145 for details).

When a CXL.AL device goes into Viral, the upstream CXL.io shall perform the following:

Master Abort Upstream Requests
Completer Abort Upstream Completions
Signal Failed Response for Downstream Completions

CXL Error Injection

The major aim of error injection mechanisms is to allow system validation and system
FW/SW development ...etc. the means to create error scenarios and error handling
flows. To this end, CXL UP and DP are recommended to implement the following error
injection hooks to a specified address (where applicable):

One type of CXL.io UC error (optional - similar to PCle).

— CXL.io is always present in any CXL connection

One type of CXL.mem UC error (if applicable)

One type of CXL.cache UC error (if applicable)

Link Correctable errors

— Transient mode and

— Persistent mode

Returning Poison on a read to a specified address (CXL.mem only)

CXL devices themselves might need error injection mechanisms for developing device
driver flows. But error injection into CXL devices is device specific and out of the scope
of this document.

Compute Express Link Specification
199

EVALUATION COPY

Platform Architecture

12.0 Platform Architecture

12.1 Flex Bus connector definition

12.1.1 Connector Type
The current direction for x16 Flex Bus connector is to be the same as the standard x16
PCle gen5 connector as specified in PClI_Express_CEM_r5.0 specification. This
connector is expected to scale up to 32GTs transfer rate being supported on the Flex
Bus interface.

12.1.2 Pin Count
The x16 Flex Bus connector will have the same pin count and pin assignment as the
standard x16 PCle gen4 connector as in PCl_Express_CEM_r5.0 specification. The
expectation is that all supported Flex Bus cards will not require additional signals (main
band, sideband, power, etc.) beyond what is provided by the standard x16 PCle gen5
connector.

Note: The standard x16 PCle gen4 connector does have 5 "RSVD" pins, but customers might
have used these pins for some unique implementations on their platform and Flex Bus
cards should not plan to use these "RSVD" pins.

The figure below shows the standard x16 PCle connector pin list for reference purpose.
Compute Express Link Specification
June 2019 200

Revision 1.1

EVALUATION COPY

Platform Architecture

Figure 115. Standard x16 PCle Connector Pin List - For Reference Purpose Only

PRSNT1#

+12 V power

Hot-Plug presence detect

+12 V power

+12 V power

+12 V power

+12 V power

Ground

Ground

SMBus (System ManagementBus) clock

TCK (Test Clock), clock input forJ TAG interfas

SMBus (System ManagementBus) data ITAG3

TDI (Test Data Input)

Ground ITAGA

TDO (Test Data Output)

+3.3 V power

TMS (Test Mode Select)

TRST# (Test Reset) resets thelTAG interface

+3.3 V power

+3.2 V auxiliary power

+3.3 V power

B
Blle|e|N|@|n|s w|N]R

Fundamental reset

Ground

REFCLK+

Reference clock (differential pair)

Ground

REFCLK-
PERpO

Receiver differential pair, Lane O

PERNO
18 Ground

Ground

End of x1 conn

Transmitter differential pairLane 1

Ground

Ground

Receiver differential pair, Lane 1

Ground

Ground

Transmitter differential pairLane 2

Ground

Ground

Receiver differential pair, Lane 2

Ground

Ground

Ground

Receiver differential pair, Lane 3

31 PRSNT2# |Hot-Plug presence detect Ground

32 Ground Reserved

33 [PETPa [Transmitter differential pair,Lane 4 Reserved

34 PETNn4 Ground

35 Ground Receiver differential pair, Lane 4
36 Ground

37 PETRS Transmitter differential pairLane 5 Ground

38 Ground

39 Ground Receiver differential pair, Lane 5
40 Ground

41 Transmitter differential pairLane 6 Ground

42 Ground

43 Ground Receiver differential pair, Lane 6
44 Ground

25 Transmitter differential pairLane 7 Ground

406 Ground

47 Ground Receiver differential pair, Lane 7
PRSNT2# |Hot-Plug presence detect
Ground Ground

Transmitter differential pairLane 8

er differential pair, Lane 8

Ground

Ground

Transmitter differential pair,Lane 9

Ground

Ground

Receiver differential pair, Lane 9

Ground

Ground

Transmitter differential pair,Lane 10

Ground

Receiver differential pair, Lane 10

Ground

Ground

Transmitter differential pairLane 11

Ground

Receiver differential pair, Lane 11

Ground

Ground

Ground

Receiver differential pair, Lane 12

Ground

Ground

Receiver differential pair, Lane 13

Transmitter differential pairLane 14

Ground

Ground

Ground

Receiver differential pair, Lane 14

Ground

Ground

Ground

PERp15 _|Receiver differential pair, Lane 15
81 PRSNT2# |Hot-Plug presence detect PERN1S
82 _ |RSVD |Reserved Ground

End of x16 conn

June 2019
Revision 1.1

Compute Express Link Specification

201

EVALUATION COPY

Platform Architecture

12.2

Note:

12.3

12.4

12.5

12.6

June 2019
Revision 1.1

Topologies

Since Flex Bus utilizes PCle Gen4/5 electrical interface and PCle gen5 connector, its
topologies will closely follow those of PCle gen4/5 as well. Similar PCle gen4/5 platform
enablers (lower loss PCB material, re-timer, etc.) are also applicable for Flex Bus in
order to achieve more challenging platform topologies (longer length, multiple
connectors).

Flex Bus re-timer is essentially the same as PCle gen4/5 retimer with the exception
that it requires a much lower latency on the retimer. Refer to Section 6.7, “Retimers
and Low Latency Mode” on page 143 and Section 1.4.2, “Flex Bus” on page 16 for more
details on Flex Bus re-timer support and requirements.

Protocol Detection

Since Flex Bus or PCle card can be installed in the same PCle slot, platform will need to
be able to detect which card type is being installed in order to configure the link to the
correct protocol. Current direction on protocol detection (Flex Bus vs. PCle) is "in-band"
methodology during link training. Refer to section Section 6.3.1, “PCle vs Flex Bus.CXL
mode selection” on page 138 for more detail on detection mechanism during booting

up.

AlIC Form Factor

Flex Bus card form factor will follow the standard PCI_Express_CEM_r5.0 specification.

AIC Power Envelope

Flex bus card power envelope will follow the standard PCI_Express_CEM_r4.0
specification, which supports up to 300W.

The x16 PCle conn only supports up to 75W card. Auxiliary power connector will be
required to support >75W Flex Bus card (per CEM spec).

Flexbus Slot Auxiliary Power

For system with S3 power state support (e.g. Workstation platform), Flexbus slot is
required to support up to 375mA on the “+3.3Aux” pin. This is to accommodate CXL
cards with HDM. If a CXL card requires more than 375mA in S3 state, platform will
needs to supply additional aux power to the Add-card (platform implementation
dependent).

8§88

Compute Express Link Specification
202

EVALUATION COPY

Performance Considerations

13.0

Performance Considerations

Note:

Note:

June 2019
Revision 1.1

Compute Express Link (CXL) provides a low-latency, high-bandwidth path for an
accelerator to access the system. Performance on CXL is dependent on a variety of
factors. The following table captures the key performance attributes of CXL.

Characteristic

Compute Express
Link
via Flex Bus (if
Gen 4)

Compute Express Link
via Flex Bus (if Gen 5)

Width

16 Lanes

16 Lanes

Link Speed

16 GT/s

32 GT/s

Total BW per link*

32 GB/s

64 GB/s

1. Achieved bandwidth depends on protocol and payload size. Expect
60-90% efficiency on CXL.cache and CXL.mem. Efficiency similar to
PCle on CXL.io.

In general, it is expected that the downstream-facing port and the upstream-facing
ports are rate-matched. However, if the implementations are not rate-matched, it
would require the faster of the implementations to limit the rate of its protocol traffic to
match the slower (including bursts), whenever there is no explicit flow-control loop.

CXL allows accelerators/devices to coherently access host memory and allows memory
attached to an accelerator/device to be mapped into the system address map and
accessed directly by the host as writeback memory. In order to support this, it supports
a Bias-based Coherency model as described in section Section 2.2.1. There are specific
performance considerations to take into account for selecting the method for mode
management. This is addressed in section Section 2.2.1.3.

On CXL.cache, in order to ensure system performance is not negatively impacted, it is
recommended that the maximum latency for a snoop-miss is 50ns from H2D snoop
request seen on the CXL pins to a D2H snoop-response back at the CXL pins. Similarly,
the maximum latency for a H2D Wr_Pull response to D2H Data response is 40ns.

On CXL.mem, in order to ensure system performance is not negatively impacted, it is
recommended that the maximum latency for a memory read is 80ns from M2S Req
seen on the CXL pins to a S2M DRS back at the CXL pins. Similarly, the maximum
latency for a M2S RwD to S2M NDR is 40ns. The latency budgets mentioned here are
for HBM or DDR type memory technologies. If a slower memory technology is used,
and the above targets cannot be met, the device and Host may need to provision for
special QoS in order to ensure that the rest of the system is not negatively affected.
These QoS mechanisms are outside the scope of this specification.

88

Compute Express Link Specification
203

EVALUATION COPY

CXL Compliance Testing

14.0

CXL Compliance Testing

14.1

14.2

Figure 116.

June 2019
Revision 1.1

Applicable Devices Under Test (DUTs)

The tests outlined in this chapter are applicable to all devices that support alternate
protocol negotiation and are capable of CXL only or CXL and PCle protocols. The tests
are broken into the different categories corresponding to the different chapters of CXL
specification, starting with Chapter 3.0.

Starting Configuration/Topology (Common for All Tests)

In most tests, the initial conditions assumed are as follows (deviations from these
conditions are pointed out in specific tests, if applicable):

System is powered on, running in test environment OS, device specific drivers have
loaded on device, and link has trained to supported CXL modes. All error status
registers should be clear on the device under test.

Some tests make assumptions about only one CXL device present in the system — this
is called out in relevant tests. If nothing is mentioned, there is no limit on the number
of CXL devices present in the system, however, the number of DUTs is limited to what
the test software can support.

Certain tests may also require the presence of a protocol analyzer to monitor flits on
the physical link for determining Pass or Fail results.

Example Test Topology

Haost Platfom CiL Drevice

Logic/Protoco| Analyzer
[if applicable)

Each category of tests has certain device capability requirements in order to exercise
the test patterns. The associated registers and programming is defined in this chapter
as well.

Refer to Section 14.11, “Device Capability and Test Configuration Control” on page 239
for registers applicable to tests in the following sections.

Compute Express Link Specification
204

EVALUATION COPY

CXL Compliance Testing

14.3

14.3.1

Figure 117.

14.3.2

14.3.3

June 2019
Revision 1.1

CXL.cache and CXL.io Application Layer/Transaction Layer
Testing

General Testing Overview

Standard practices of testing coherency rely on “false sharing” of cache lines. Different
agents in the system (cores, 1/0 etc.) are assigned one or more fixed byte locations
within a shared set of cache lines. Each agent continuously executes an assigned
Algorithm independently. Since multiple agents are sharing the same cache line,
stressful conflict scenarios can be exercised. Figure 117 illustrates the concept of false
sharing. This can be used for CXL.io (Load/Store semantics) or CXL.cache (caching
semantics) or (CXL.cache + CXL.mem) devices (Type 2 devices).

Representation of False Sharing Between Cores (on Host) and CXL Devices

Cored Corel Core2

==

Up t 648 in 1cache 1 -

Cache Line N

Cache Line 1

Cache Linz 0

A

CHLcache
CHLIO CXLcache +
CXL.mem

This document outlines three Algorithms that enable stressing the system with false
sharing tests. In addition, this document specifies the required device capabilities to
execute, verify and debug runs for the Algorithms. All of the Algorithms are applicable
for CXL.io and CXL.cache (protocols that originate requests to the host). Devices are
permitted to be self-checking. Self-checking devices must have a way to disable the
checking Algorithm independent of executing the Algorithm. All devices must support
the non-self-checking flow in the Algorithms outlined below.

Algorithms

Algorithm 1a: Multiple Write Streaming

In this Algorithm, the device is setup to stream an incrementing pattern of writes to
different sets of cache lines. Each set of cache line is defined by a base address “X”, and
an increment address “Y”. Increments are in multiples of 64B. The number of
increments “N” dictates the size of the set beginning from base address X. The base
address includes the byte offset within the cache line. A pattern P (of variable length in
bytes) determines the starting pattern to be written. Subsequent writes in the same set
increment P. A device is required to provide a byte mask configuration capability that
can be programmed to replicate pattern P in different parts of the cache line. The
programmed byte masks must be consistent with the base address.

Different sets of cache lines are defined by different base addresses (so a device may
support a set like “X4q, X5, X3”). “X1” is programmed by software in the base address
register, X, is obtained by adding a fixed offset to X; (offset is programmed by software
in a different register).Xs is obtained by adding the same offset to X, and so on.
Minimum support of 2 sets is required by the device. Figure 118 illustrates the flow of

Compute Express Link Specification
205

EVALUATION COPY

CXL Compliance Testing

Figure 118.

14.3.4

June 2019
Revision 1.1

this Algorithm as implemented on the device. Address Z is the write back address
where system software can poll to verify the expected pattern associated with this
device, in cases where self-checking on the device is disabled. There is 1:1
correspondence between X and Z. It is the responsibility of the device to ensure that
the writes in the execute phase are globally observable before beginning the verify
phase. Depending on the write semantics used, this may imply additional fencing
mechanism on the device to make sure the writes are visible globally before the verify
phase can begin. When beginning a new set iteration, devices must also give an option
to use “P” again for the new set, or continue incrementing “P” for the next set. The
select is programmed by software in “PatternParameter” field described in the register
section.

Flow Chart of Algorithm 1a

Write Pattern P to Address X

Write Pattern (P+1) to Address X+ Y
Write Pattern (P+2) to Address X + 2*Y

Execute Phase

Write Pattern (P+N) to Address X + N*Y Repest Loop for @ next X, Z

X_next = X_cumrent + SetOffset}
Z_next=Z_cument + SetOffset
If PattemParameter==1, P = P+N41

self-checking?

Read and check Address X Read Address X and writeback to Address Z
Read and check Address X +Y Verify Phase Read Address X+Y and writeback to Address Z+Y
Read and check Address X + 2*Y Read Address X+2*Y and writeback to Address Z+2*Y
Read and check Address X + N*Y Read Address X+N*Y and writeback to Address Z+N*Y
L ;

Algorithm 1b: Multiple Write Streaming with Bogus Writes

This Algorithm is a variation on Algorithm l1a, except that before writing the expected
pattern to an address, the device does “J” iterations of writing a bogus pattern “B” to
that address. Figure 119 illustrates this Algorithm. In this case, if ever a pattern “B” is
seen in the cache line during the Verify phase, it is a Fail condition. The bogus writes
help give a longer duration of conflicts in the system. It is the responsibility of the
device to ensure that the writes in the execute phase are globally observable before
beginning the verify phase. Depending on the write semantics used, this may imply
additional fencing mechanism on the device to make sure the writes are visible globally
before the verify phase can begin. When beginning a new set iteration, devices must
also give an option to use “P” again for the new set, or continue incrementing “P” for
the next set. The select is programmed by software in “PatternParameter” field
described in the register section.

Compute Express Link Specification
206

EVALUATION COPY

CXL Compliance Testing

Figure 119. Flow Chart of Algorithm 1b

14.3.5

June 2019
Revision 1.1

-

< J iterations of write Bto X >
Write Pattern P to Address X
< Jiterations of write Bto X +Y >
Execute Phase Write Pattern (P+1) to Address X+ Y

) H

<] iterations of write B to X + N*Y > H
Write Pattern (P+N) to Address X + N*Y Repeat Loop for a next X, Z

X_next=X_cumrent + SetQOffset

Z_next=Z_current + SetOffset

If PattemParmmeter==1, P = P+N41

self-checking?

Read and check Address X Read Address X and writeback to Address Z
Read and check Address X +Y Verify Phase Read Address X+Y and writeback to Address Z+Y
Read and check Address X + 2*Y Read Address X+2*Y and writeback to Address Z+2*Y
Read and check Address X + N*Y Read Address X+N*Y and writeback to Address Z+N*Y E

H H
' '
.

m—

Algorithm 2: Producer Consumer Test

This Algorithm aims to test the scenario where a Device is a producer and the CPU is a
consumer. Device simply executes a pre-determined Algorithm of writing known
patterns to a data location followed by a flag update write. Threads on the CPU poll the
flag followed by reading the data patterns, followed by polling the flag again. This is a
simple way of making sure the required ordering rules of producer consumer workloads
are being followed through the stack. Device only participates in the execute phase of
this Algorithm. Figure 120 illustrates the device execute phase. The Verify phase is run
on the CPU, software reads addresses in the following order [F, X, (X+Y)...(X+N*Y), F].
Knowing the value of the flag at two ends, the checker knows the range in which [X,
(X+Y)...(X+N*Y)] have to be in. For example, if P=0, the first read of F returns a value
of 3 and the next read of F returns a value of 4, then checker knows that all
intermediate values have to be either 3 or 4. Moreover, if the device is using strongly
ordered semantics, then the checker should never see a transition of values from 3 to 4
(implying monotonically decreasing values for the non-flag addresses). If using
CXL.cache protocol, device must ensure global observability of previous “data” writes
before updating the flag. When using strongly ordered semantics, each update must be
globally visible before the next one. Depending on the flow used for dirty evicts, this
can be implementation specific. It is the responsibility of the device to ensure that the
writes in the execute phase are globally observable before updating the flag “F”. The
“PatternParameter” field is not relevant for this Algorithm.

Compute Express Link Specification
207

CXL Compliance Testing

>_
al
O
O
<C
D
—
<C
>
LLI

Revision 1.1

Figure 120. Execute Phase for Algorithm 2

Write Pattern (P + i) to Address X
Write Pattern (P+i) to Address X+Y
Write Pattern (P+i) to Address X+2*Y fiepedt Loop for NextX, |

i_next=i_curent +1
Execute Phase . X_hext = X_current + SetOffset

Write Pattern (P+i) to Address X+N*Y
Write i to Address F (flag)

Test Descriptions

Application Layer/Transaction Layer Tests

The Transaction Layer Tests implicitly give coverage for Link Layer functionality. Specific
error injection cases for the Link Layer are covered in the RAS section.

CXL.io Load/Store Test

For CXL.io, this test and associated capabilities are optional but strongly recommended.
This test sets up the device to execute Algorithm 1a, 1b and 2 in succession in order to
stress data path for CXL.io transactions. Configuration details are determined by the
host platform testing the device. Refer to Section 14.11 for the configuration registers
and device capabilities. Each run includes execute/verify phases as described in section
Section 14.3.1.

Test Steps:
1. Host software will setup Device for Algorithm 1a: Multiple Write Streaming
2. If the device supports self-checking, enable it

3. Host software decides test run time and runs test for that period of time (The
software details of this are host platform specific, but will be compliant with the
flows mentioned in Section 14.3.1 and follow configurations outlined in
Section 14.11).

Setup Device for Algorithm 1b: Multiple Write Streaming with Bogus writes
If the device supports self-checking, enable it
Host software decides test run time and runs test for that period of time

No ok

Setup Device for Algorithm 2: Producer Consumer Test
8. Host software decides test run time and runs test for that period of time
Required Device Capability:
Hardware and configuration support for Algorithms 1a, 1b and 2 described in
Section 14.3.1 and Section 14.11. If a device supports self-checking, it must escalate fatal

Compute Express Link Specification
208

EVALUATION COPY

CXL Compliance Testing

14.3.6.1.2

14.3.6.1.3

June 2019
Revision 1.1

system error if Verify phase fails. Refer to Section 11.2 for specific error escalation
mechanisms. Device is permitted to log failing address, iteration number and/or
expected vs received data.

Pass Criteria:
No data corruptions or system errors reported

Fail Criteria:
Data corruptions or system errors reported

CXL.cache Coherency Test

This test sets up the device to execute Algorithm 1a, 1b and 2 in succession in order to
stress data path for CXL.cache transactions. This test should only be run if the device
supports CXL.cache or CXL.cache + CXL.mem protocols. Configuration details are
determined by the host platform testing the device. Refer to Section 14.11 for the
configuration registers and device capabilities. Each run includes execute/verify phases
as described in section Section 14.3.1. ATS capabilities of the device can also be
exercised in this test (see “AddresslsVirtual” field in Table 87).

Test Steps:
1. Host software will setup Device for Algorithm l1a: Multiple Write Streaming
2. If the device supports self-checking, enable it

3. Host software decides test run time and runs test for that period of time (The
software details of this are host platform specific, but will be compliant with the
flows mentioned in Section 14.3.1 and follow configurations outlined in
Section 14.11)

Setup Device for Algorithm 1b: Multiple Write Streaming with Bogus writes
If the device supports self-checking, enable it
Host software decides test run time and runs test for that period of time.

No gk

Setup Device for Algorithm 2: Producer Consumer Test

8. Host software decides test run time and runs test for that period of time
Required Device Capability:
Hardware and configuration support for Algorithms 1a, 1b and 2 described in
Section 14.3.1 and Section 14.11. If a device supports self-checking, it must escalate fatal
system error if Verify phase fails. Refer to Section 11.2 for specific error escalation
mechanisms. Device is permitted to log failing address, iteration number and/or
expected vs received data.

Pass Criteria:
No data corruptions or system errors reported

Fail Criteria:
Data corruptions or system errors reported

CXL Test for Receiving Go_ERR

This test is only applicable for devices that support CXL.cache protocols. This test sets
up the device to execute Algorithm 1a, while mapping one of the sets of the address to
a memory range not accessible by the device. Test system software and configuration
details are determined by the host platform and are system specific.

Compute Express Link Specification
209

EVALUATION COPY

CXL Compliance Testing

14.3.6.1.4

14.4

14.4.1

June 2019
Revision 1.1

Test Steps:

1. Configure device for Algorithm 1a, and setup one of the base addresses to be an
address not accessible by the device under test

2. Disable self-checking in the device under test

3. Host software decides test run time and runs test for that period of time

Required Device Capability:

Support for Algorithm la
Pass Criteria:

1. No data corruptions or system errors reported

2. No fatal device errors on receiving Go-ERR

3. Inaccessible memory range has not been modified by the device
Fail Criteria:

1. Data corruptions or system errors reported

2. Fatal device errors on receiving Go-ERR

3. Inaccessible memory range modified by the device (Host Error)

CXL.mem Test

This test sets up the Host to execute Algorithm 1a, 1b and 2 in succession in order to
stress data path for CXL.mem transactions. Test system software and configuration
details are determined by the host platform and are system specific.

Test Steps:
1. Map device attached memory to a test memory range accessible by the Host

2. Run equivalent of Algorithm 1a, 1b and 2 on the Host targeting device attached
memory

Required Device Capability:

Support for CXL.mem protocol

Pass Criteria:

No data corruptions or system errors reported

Fail Criteria:

Data corruptions or system errors reported

ARB/MUX

Reset to Active Transition

The initial conditions for this test do not assume that the CXL link is up and device
drivers have been loaded.

Test Steps:
1. With the link in Reset state, Link layer sends a Request to enter Active
2. ARB/MUX waits to receive indication of Active from Physical Layer

Compute Express Link Specification
210

CXL Compliance Testing

>
al
O
O 14.4.2
Z
O
I_
<C
-
<C
=
LL]

Revision 1.1

Pass criteria:

= ALMP Status sync exchange completes before ALMP Request{Active} sent by Local
ARB/MUX

Local ARB/MUX sends ALMP Request{Active} to the remote ARB/MUX

Local ARB/MUX waits for ALMP Status{Active} and ALMP Request{Active} from
remote ARB/MUX

Local ARB/MUX sends ALMP Status{Active} in response to Request.

Once ALMP handshake is complete, link transitions to Active

* Link successfully enters Active state with no errors
Fail criteria:

* Link hangs and does not enter Active state

= Any error occurs before transition to Active

ARB/MUX Multiplexing (Requires Protocol Analyzer)

Test Requirements:

Host generated traffic or device generated traffic and support for Algorithm 1a, 1b or 2
Test Steps:

1. Bring the link up into multi-protocol mode with CXL.io and CXL.cache and/or
CXL.mem enabled

2. Ensure the arbitration weight is a non-zero value for both interfaces

3. Send continuous traffic on both CXL.io and CXL.cache and/or CXL.mem using
Algorithm 1a, 1b or 2

4. Allow time for traffic transmission while snooping the bus
Pass criteria:

e Data from both CXL.io and CXL.cache and/or CXL.mem are sent across the link by
the ARB/MUX

Fail criteria:

- Data on the link is only CXL.io

e Data on the link is only CXL.cache or CXL.mem (cache and mem share a single
protocol ID, see Table 51)

Active to L1.x Transition (If Applicable)

Test Requirements:

Support for ASPM L1
Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for L1.x
state

Pass criteria:

< UP ARB/MUX sends ALMP Request{L1.x}
< DP ARB/MUX sends ALMP Status{L1.x} in response

Compute Express Link Specification
211

EVALUATION COPY

CXL Compliance Testing

14.4.4

14.4.5

June 2019
Revision 1.1

= Once ALMP Status is received by local ARB/MUX, L1.x is entered
- State transition doesn’t occur until ALMP handshake is completed

« LogPHY enters L1 ONLY after both protocol enter L1 (applies to multi-protocol mode
only)

Fail criteria:
e Error in ALMP handshake

« Protocol layer packets sent after ALMP L1.x handshake is complete (Requires
Protocol Analyzer)

= State transition occurs before ALMP handshake completed
L1.x State Resolution (If Applicable)

Test Requirements:

Support for ASPM L1
Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for
different L1.x states.

Pass criteria:

< UP ARB/MUX sends ALMP Request{L1.x} according to what the link layer requested

< DP ARB/MUX sends ALMP Status{L1.x} response. The state in the Status ALMP is
the more shallow L1.x state.

= Once ALMP Status is received by local ARB/MUX, L1.x is entered
= State transition doesn’t occur until ALMP handshake is completed

< LogPHY enters L1 ONLY after both protocol enter L1 (applies to multi-protocol mode
only)

Fail criteria:
e Error in ALMP handshake

« Protocol layer packets sent after ALMP L1.x handshake is complete (Requires
Protocol Analyzer)

= State transition occurs before ALMP handshake completed
Active to L2 Transition

Test Steps:

1. Force the remote and local link layer to send a request to the ARB/MUX for L2 state
Pass criteria:

< UP ARB/MUX sends ALMP Request{L2} to the remote vLSM

= DP ARB/MUX waits for ALMP Status{L2} from the remote vLSM

= Once ALMP Status is received by local ARB/MUX, L2 is entered

= If there are multiple link layers, repeat steps 1-4 for all link layers

* Physical link enters L2

Compute Express Link Specification
212

EVALUATION COPY

CXL Compliance Testing

14.4.6

14.4.7

14.4.8

June 2019
Revision 1.1

= VLSM and physical link state transitions don’t occur until ALMP handshake is
completed

Fail criteria:

e Error in ALMP handshake

« Protocol layer packets sent after ALMP L1.x handshake is complete (Requires
Protocol Analyzer)

e State transition occurs before ALMP handshake completed
L1 to Active Transition (If Applicable)

Test Requirements:

Support for ASPM L1
Test Steps:

1. Bring the link into L1 State
2. Force the link layer to send a request to the ARB/MUX to exit L1

Pass criteria:
= Local ARB/MUX sends Retrain notification to the Physical Layer
e Link exits L1
= Link enters LO correctly
e Status synchronization handshake completes before request to enter LO

Fail criteria:

e State transition does not occur
Reset Entry

Test Steps:

1. Initiate warm reset flow
Pass criteria:

« Link sees hot reset and transitions to Detect state
Fail criteria:

< Link does not enter Detect
Entry into LO Synchronization (Requires Protocol Analyzer)

Test Steps:
1. Put the link into Retrain state

2. After exit from Retrain, check Status ALMPs to synchronize interfaces across the
link

Pass criteria:

e State contained in the Status ALMP is the same state the link was in before entry to
retrain

Compute Express Link Specification
213

EVALUATION COPY

CXL Compliance Testing

14.4.9

14.4.9.1

14.4.9.2

14.4.9.3

June 2019
Revision 1.1

Fail criteria:
 No Status ALMPs sent after exit from Retrain

e State in Status ALMPs different from the state that the link was in before the link
went into Retrain

e Other communication occurred on the link after Retrain before the Status ALMP
handshake for synchronization completed

ARB/MUX Tests Requiring Injection Capabilities

The tests in this section are optional but strongly recommended. The test configuration
control registers for the tests in this section are implementation specific.

ARB/MUX Bypass (Requires Protocol Analyzer)

Test Requirements:

Device capability to force a request ALMP for any state
Test Steps:
1. Put the Link into PCle mode or single protocol mode

2. Trigger entry to Retrain State
3. Snoop the bus and check for ALMPs

Pass criteria:
= No ALMPs generated by the ARB/MUX
Fail criteria:

» ALMP seen on the bus when checked

Repeated ALMP Request

Test Requirements:

Device capability to force a request ALMP for any state

Test Steps:

1. Wait for the Device ARB/MUX to transition to a state other than Active and send a
Status ALMP indicating the state

2. Force the Device ARB/MUX to send a Request ALMP for the same state that it is
currently in

Pass criteria:

e Error occurs and link enters retrain
Fail criteria:

« No Error, regular operation continues.

PM State Request Rejection (Requires Protocol Analyzer)

Test Requirements:

Host capability to put the host into a state where it will reject any PM request ALMP

Compute Express Link Specification
214

EVALUATION COPY

CXL Compliance Testing

14.4.9.4

14.4.9.5

June 2019
Revision 1.1

Test Steps:

1. Device sends PM state Request ALMP

2. Wait for an ALMP Request for entry to a PM State

3. Host rejects the request by not responding to the Request ALMP
Pass criteria:

< Device continues operation despite no Status received and initiates an Active
Request

Fail criteria:

= Any system error

Unexpected Status ALMP

Test Requirements:

Device Capability to force the ARB/MUX to send a Status ALMP at any time

Test Steps:

1. While link is in Active, force the ARB/MUX to send a Status ALMP without first
receiving a Request ALMP

Pass criteria:
e Link enters Retrain without any errors reported
Fail criteria:

* No error on the link and normal operation continues OR
- System errors are observed

ALMP Error

Test Requirements:

Device capability that allows the device to inject errors into a flit

Test Steps:
1. Inject a single bit error into the lower 16 bytes of a 528-bit flit
2. Send data across the link
3. ARB/MUX detects error and enters Retrain
4. Repeat Steps 1-3 with a double bit error
Pass criteria:
= Error is logged
* Link enters retrain
Fail criteria:

< No error detected

Compute Express Link Specification

215

EVALUATION COPY

CXL Compliance Testing

14.4.9.6

14.5

14.5.1

14.5.2

June 2019
Revision 1.1

Recovery Re-entry

Test Requirements:

Device capability that allows the device to ignore ALMP State Requests

Test Steps:
1. Place the link into Active state
Request link to go to Retrain State
Prevent the Local ARB/MUX from entering Retrain
Remote ARB/MUX enters Retrain state

Remote ARB/MUX exits Retrain state and sends ALMP Status{Active} to
synchronize

o pr wN

6. Local ARB/MUX receives Status ALMP for synchronization but does not send
7. Local ARB/MUX triggers re-entry to Retrain
Pass criteria:
« Link successfully enters Retrain on re-entry attempt
Fail criteria:

« Link continues operation without proper synchronization
Physical Layer
Protocol ID Checks (Requires Protocol Analyzer)

Test Steps:
1. Bring the link up to the Active state
2. Send one or more flits from the CXL.io interface, check for correct Protocol ID

3. If applicable, send one or more flits from the CXL.cache and/or CXL.mem interface,
check for correct Protocol ID

4. Send one or more flits from the ARB/MUX, check for correct Protocol ID
Pass criteria:

= All Protocol IDs are correct
Fail criteria:

e Errors during test
e No communication

NULL Flit (Requires Protocol Analyzer)

Test Steps:
1. Bring the link up to the Active state
2. Delay flits from the Link Layer
3. Check for NULL flits from the Physical Layer
4. Check that NULL flits have correct Protocol ID

Compute Express Link Specification
216

EVALUATION COPY

CXL Compliance Testing

Pass criteria:
« NULL flits seen on the bus when Link Layer delayed
= NULL flits have correct Protocol ID
* NULL flits contain all zero data
Fail criteria:
< No NULL flits sent from Physical Layer
= Errors logged during tests

14.5.3 EDS Token (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state

2. Send a flit with an implied EDS token, check the following:
Pass criteria:

- EDS token is the last flit in the data block
EDS token does not cross the data block boundary

Next block after EDS token is an ordered set

EDS token is the last flit in the data block and does not cross block boundary
OS block follows EDS token

Fail criteria:
e Errors logged during test

14.5.4 Correctable Framing Error

This test is optional but strongly recommended.

Test Requirements:

Protocol ID error perception in the Device Log PHY (Device can forcibly react as though
there was an error even if the protocol ID is correct)

Test Steps:
1. Bring the link up to the Active state

2. Create a correctable framing error by injecting an error into one 8-bit encoding
group of the Protocol ID

3. Check that an error was logged and normal processing continues
Pass criteria:

= Error correctly logged

= Correct 8-bit encoding group used for normal operation
Fail criteria:

« No error logged

< Flit with error dropped

- Error causes retrain

Compute Express Link Specification
June 2019 217
Revision 1.1

CXL Compliance Testing

= Normal operation does not resume after error

14.5.5 Uncorrectable Framing Error

This test is optional but strongly recommended.

Test Requirements:

Protocol ID error perception in the Device Log PHY (Device can forcibly react as though
there was an error even if the protocol ID is correct)

Test Steps:
1. Bring the link up to the Active state

2. Create a uncorrectable framing error by injecting an error into both 8-bit encoding
groups of the Protocol ID

3. Check that an error was logged and flit is dropped
4. Link goes into Retrain
Pass criteria:
= Error correctly logged
« Link enters Retrain
Fail criteria:

« No error log
e Error corrected

14.5.6 Unexpected Protocol ID

This test is optional but strongly recommended.

Test Requirements:

Protocol ID error perception in the Device Log PHY (Device can forcibly react as though
there was an error even if the protocol ID is correct)

Test Steps:

1. Bring the link up to the Active state

2. Send a flit with an invalid protocol ID

3. Check that an error is logged and the flit is dropped
Pass criteria:

= Error logged

« Flit is dropped
Fail criteria:

« No Error logged

= Flit is processed normally

EVALUATION COPY

Compute Express Link Specification
June 2019 218
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

14.5.7 Sync Header Bypass (Requires Protocol Analyzer) (If
Applicable)

Test Requirements:

Support for Sync Header Bypass
Test Steps:

1. Negotiate for sync header bypass during PCle alternate mode negotiation
2. Link trains to 2.5GT/s speed

3. Transition to 8GT/s speed

4. Check for Sync Headers
Pass criteria:

« No Sync Headers observed after 8GT/s transition
Fail criteria:

< Link training not complete

e Sync headers at 8GT/s speed

14.5.8 Link Speed Advertisement (Requires Protocol Analyzer)

Test Steps:

1. Enter CXL link training at 2.5GT/s

2. Check speed advertisement before multi-protocol negotiations have completed
Pass criteria:

e CXL speed advertisement contains 32, 16 and 8GT/s speeds regardless of
capabilities

Fail criteria:

e Speed advertisement does not contain all 3 speeds
14.5.9 Idle Transition to LO (Requires Protocol Analyzer)

Test Steps:
1. Bring the link up in CXL mode to the Config.ldle or Recovery.ldle state
2. Wait for NULL flit to be received by DUT
3. Check that DUT sends NULL flits after receiving NULL flits

Pass criteria:

e LTSSM transitions to LO after 8 NULL flits are sent and at least 4 NULL flits are
received

Fail criteria:

e LTSSM stays in IDLE
* LTSSM transitions before the exchange of NULL flits is completed

Compute Express Link Specification
June 2019 219
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

14.5.10

14.5.11

14.5.12

June 2019
Revision 1.1

Drift Buffer (1f Applicable)

Test Requirements:

Support Drift Buffer
Test Steps:
1. Enable the Drift buffer
Pass criteria:
= Drift buffer is logged in the Flex Bus DVSEC
Fail criteria:
« No log in the Flex Bus DVSEC

SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If
Applicable)

Test Requirements:

Support Sync Header Bypass
Test Steps:

1. Bring the link up in CXL mode with sync header bypass enabled
2. Check for SKP OS

Pass criteria:
« Physical Layer schedules SKP OS every 340 data blocks

= Control SKP OS and regular SKP OS alternate at 16GT/s or higher speed
 Regular SKP OS used only at 8GT/s

Fail criteria:

e No SKP OS observed
e SKP OS observed at interval other than 340 data blocks

SKP OS Exiting the Data Stream (Requires Protocol Analyzer)
(If Applicable)

Test Requirements:

Support Sync Header Bypass
Test Steps:

1. Bring the link up in CXL mode with sync header bypass enabled
2. Exit Active mode

Pass criteria:

« Physical Layer replaces SKP OS with EIOS or EIEOS
Fail criteria:

= SKP OS not replaced by Physical Layer

Compute Express Link Specification
220

EVALUATION COPY

CXL Compliance Testing

14.5.13

14.5.14

14.5.15

14.5.15.1

June 2019
Revision 1.1

Link Speed Degradation - CXL Mode

Test Steps:

1. Train the CXL link up to the highest speed possible (At least 8GT/s)

2. Degrade the link down to a lower CXL mode speed
Pass criteria:

« Link degrades to slower speed without going through mode negotiation
Fail criteria:

* Link leaves CXL mode
Link Speed Degradation Below 8GT/s

Test Steps:
1. Train the CXL link up to the highest speed possible (At least 8GT/s)
2. Degrade the link down to a speed below CXL mode operation
3. Link goes to detect state
Pass criteria:
« Link degrades to slower speed
« Link enter Detect
Fail criteria:
* Link stays in CXL mode
e Link does not change speed

Tests Requiring Injection Capabilities

The tests in this section are optional but strongly recommended. The test configuration
control registers for the tests in this section are implementation specific.

TLP Ends On Flit Boundary (Requires Protocol Analyzer)

Test Steps:

1. Bring the link up to the Active state

2. CXL.io sends a TLP that ends on a flit boundary

3. Check that next flit sent by link layer contains IDLE tokens, EDB or more data
Pass criteria:

« TLP that ends on flit boundary not processed until subsequent flit is transmitted

- IDLE tokens, EDB or more data observed after TLP that ends on flit boundary
Fail criteria:

e Errors logged
e No IDLE, EDB or data observed after TLP flit

Compute Express Link Specification
221

EVALUATION COPY

CXL Compliance Testing

14.5.15.2 Failed CXL Mode Link Up

14.6

14.6.1

14.6.2

June 2019
Revision 1.1

Test Steps:
1. Negotiate for CXL during PCle alternate mode negotiation
2. Hold the link at 2.5GT/s
3. Link transitions back to detect
Pass Criteria:
« Link transitions back to detect after not able to reach 8GT/s speed
= Link training does not complete
Fail criteria:

« Link does not transition to detect

Configuration Register Tests

Configuration space register cover the registers defined in Chapter 7.0, “Control and
Status Registers”. These tests are run on the device under test, and require no
additional hardware to complete. Tests must be run with Root/Administrator privileges.
Test makes the assumption that there is one and only one CXL device in the system,
and it is the DUT. This test Section has granularity down to the CXL Device.

Device Presence.

Test Steps:
1. Read the PCI Device hierarchy and filter for RCIiEP devices.
2. Locate RCIiEP Device with VID of 8086 and type of 0.

3. Save this RCIEP Device location for subsequent tests. This will be referred to in
subsequent tests as DUT

Pass criteria:
e One RCIEP device found.
Fail criteria:

« NO RCIEP Devices found
e More than 1 RCIiEP Device Found

Flex Bus Device DVSEC Capability Header

Test Steps:

1. Read the Configuration space for DUT. Offset 0x04, Length 4 bytes.
2. Decode this into:
Bits Variable

15:0 VID

19:16 REV

31:20 LEN
3. Verify:

Compute Express Link Specification
222

EVALUATION COPY

CXL Compliance Testing

Variable Value Condition
VID = 0x8086 Always
REV = 0 Always
LEN = 0x38 Always

4. Read the Configuration space for DUT, Offset 0x08, Length 2 bytes,
5. Decode this into:

Bits Variable
15:0 ID
6. Verify:
Variable Value Condition
ID = 0 Always

Pass criteria:

e Test 14.6.1 Passed
< Verify Conditions met

Fail criteria:

< Verify Conditions Failed

14.6.3 DVSEC Capability Structure

Test Steps:

1. Read the Configuration space for DUT, Offset Ox0A, Length 2.
2. Decode this into:

Bits Variable
0:0 Cache_Capable
1:1 I0_Capable
2:2 Mem_Capable
3:3 Mem_HW/_Init_Mode
5:4 HDM_Count
14:14 Viral Capable

3. Verify:
Variable Value Condition
I0_Capable = bl Always
HDM_Count I= b1l Always
HDM_Count 1= b00 Mem_Capable =1
HDM_Count = b00 Mem_Capable =0

Pass criteria:

e Test 14.6.2 Passed
« Verify Conditions Met

June 2019
Revision 1.1

Compute Express Link Specification
223

EVALUATION COPY

CXL Compliance Testing

Fail criteria:
= Verify Conditions Failed

14.6.4 DVSEC Control Structure

Test Steps:

1. Read the Configuration space for DUT, Offset Ox0C, Length 2.

2. Decode this into:
Bits Variable
0:0 Cache_Enable
1:1 I0_Enable
2:2 Mem_Enable
7:3 Cache_SF_Coverage
10:8 Cache_SF_Granularity
11:11 Cache_Clean_Eviction
14:14 Viral_Enable

3. Verify:
Variable Value Condition
Cache_SF_Granularity 1= b111l Always

Pass criteria:

* Test 14.6.2 Passed

« Verify Conditions Met
Fail criteria:

= Verify Conditions Failed

14.6.5 DVSEC Control Lock

Test Steps:
1. Read Configuration Space for DUT, Offset 0x14, length 2
2. Decode this into:
Bits Variable
0:0 CONFIG_LOCK
Read Configuration Space for DUT, Offset OxOC, Length 2
Store this into Variable R1
Invert R1 and store in W1 masking RSVD Fields 13:12 and 15:15 from inversion
Write Configurations Space for DUT, Offset Ox0C, length 2 with variable W1
Read Configurations Space for DUT, Offset 0x0C, Length 2
Store this into Variable R2

® No kW

Compute Express Link Specification
June 2019 224
Revision 1.1

CXL Compliance Testing

>_
al
O
QO -
O
—
<C
D
—
<C
=
LL]

Revision 1.1

9. Verify:
Variable Value
R1 = R2
R1 I= R2

Pass criteria:

e Test 14.6.2 Passed

« Verify Conditions Met
Fail criteria:

= Verify Conditions Failed

Memory Device Tests

Condition
CONFIG_LOCK =1
CONFIG_LOCK=0

This section covers tests applicable to devices supporting CXL.mem protocol

Flex Bus Range 1

Necessary Conditions:
« Device is CXL.mem capable

Inputs:
Type Volatile or Non-Volatile
Class Memory or Storage
Test Steps:

1. Read Configuration Space for DUT, Offset Ox1C Length 4

2. Decode this into:
Bits Variable
0:0 Memory_Info_Valid
1:1 Memory_Active
4:2 Media_Type
7:5 Memory_Class
10:8 Desired_Interleave

31:20 Memory_Size_Low

3. Verify:
Variable Value Condition
Media_Type = b000 or b001
Media_Type = b000 Type = Volatile
Media_Type = b001 Type = Non-Volatile
Memory_Class = b000 or b001
Memory_Class = b000 Class = Memory
Memory_Class = b001 Class = Storage

Compute Express Link Specification
225

EVALUATION COPY

CXL Compliance Testing

Desired_Interleave

Pass criteria:

e Test 14.6.2 Passed

= Verify Conditions Met
Fail criteria:

< Verify Conditions Failed

14.7.2 Flex Bus Range 2

Necessary Conditions:

Device is CXL.mem capable

HDM_Count = b10

Inputs:

Type Volatile or Non-Volatile

Class Memory or Storage

Test Steps:

b00 or b0O1 or b10

1. Read Configuration Space for DUT, Offset Ox2C Length 4

2. Decode this into:
Bits Variable

0:0 Memory_Info_Valid
1:1 Memory_Active

4:2 Media_Type
7:5 Memory_Class

10:8 Desired_Interleave
31:20 Memory_Size_Low

3. Verify:
Variable
Media_Type
Media_Type
Media_Type
Memory_Class
Memory_Class
Memory_Class
Desired_Interleave

Pass criteria:

e Test 14.6.2 Passed
« Verify Conditions Met

June 2019
Revision 1.1

Value Condition

b000 or b001

b000 Type = Volatile
b001 Type = Non-Volatile
b000 or b001

b000 Class = Memory
b001 Class = Storage

b00 or b01 or b10

Compute Express Link Specification
226

EVALUATION COPY

CXL Compliance Testing

14.8

14.8.1

14.9

14.9.1

14.9.2

June 2019
Revision 1.1

Fail criteria:
= Verify Conditions Failed

Memory Mapped Registers

RCRB MEMBARO location

Test Steps:
Read Downstream port MEMBARO address Store in MBOD

1.
2
3.
4. Verify:

. Read Upstream port MEMBARO address store in MBOU

Determine end of RCRB Upstream region and store in RCRB

— MBOD and RCRB memory regions do not overlap
— MBOU and RCRB memory regions do not overlap

— MBOU and MBOD form a continuous 8k memory region
— MBOU and MBOD set to valid address in MMIO region

Pass criteria:
= Verify Conditions Met

Fail criteria:
< Verify Conditions Failed

Reset and Initialization Tests

Warm Reset Test

DUT must be in D3 state with context flushed

Test Steps:

1. Host issues CXL PM VDM, Reset Prep (ResetType= Warm Reset; PrepType=General

Prep)

2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck

Pass criteria:
« DUT responds with an ACK

Fail criteria:
= DUT fails to respond to ACK

Cold Reset Test

DUT must be in D3 state with context flushed

Test Steps:

1. Host issues CXL PM VDM, Reset Prep (ResetType= Warm Reset; PrepType=General

Prep)

2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck

Compute Express Link Specification
227

EVALUATION COPY

CXL Compliance Testing

14.9.3

14.9.4

June 2019

Revision 1.1

Pass criteria:

« DUT responds with an ACK
Fail criteria:

e DUT fails to respond to ACK

Sleep State Test

DUT must be in D3 state with context flushed

Test Steps:
1. Host issues CXL PM VDM, Reset Prep (ResetType= S3; PrepType=General Prep)
2. Host waits for CXL device to respond with CXL PM VDM ResetPrepAck
Pass criteria:
 DUT responds with an ACK
Fail criteria:
* DUT fails to respond to ACK

Function Level Reset Test

Necessary Conditions:
« Device supports Function Level Reset.
Function Level Reset has the requirement that the CXL device maintain Cache

Coherency. This test is accomplished by running the Application Layer tests as
described in Section 14.3.6.1, and issuing a Function level reset in the middle of it.

Required Device Capability

Hardware configuration support for Algorithm l1a described in Section 14.3.1. If the
device supports self-checking it must escalate a fatal system error. Device is permitted
to log failing information.

Test Steps:
1. Determine test run time T based on the amount of time available or allocated for
this testing.
2. Host software sets up Cache Coherency test for Algorithm la: Multiple Write
Streaming

3. If the devices supports self-checking, enable it.

4. At a time between 1/3 and 2/3 of T and with at least 200 ms of test time
remaining, Host initiates Host initiates FLR by writing to the Initiate Function Level
Reset bit.

Pass criteria:
= System does not elevate a fatal system error, and no errors are logged
Fail Criteria:

- System error reported, Logged failures exist.

Compute Express Link Specification
228

EVALUATION COPY

CXL Compliance Testing

14.9.5 Flex Bus Range Setup Time

Necessary Conditions:
= Device is CXL.mem capable
e Ability to monitor the device reset
Test Steps:
1. Reset the system, Monitor Reset until clear
2. Wait for 1 second
3. Read Configuration Space for DUT, Offset Ox1C Length 4
4. Decode this into:
Bits Variable
0:0 Memory_Info_Valid
1:1 Memory_Active

5. Verify:
Variable Value Condition
Memory_Info_Valid = 1
Memory_Active = 1 Mem_HW_Init_Mode =1

Pass criteria:

e Test 14.6.2 Passed

« Verify Conditions Met
Fail criteria:

= Verify Conditions Failed

14.9.6 FLR Memory
This test ensures that FLR does not affect data in device attached memory.
Necessary Conditions:
= Device is CXL.mem capable
Test Steps:
1. Write a known pattern to a known location within HDM
2. Host performs a FLR as defined in steps of Section 14.9.4.

3. Host Reads HDM memory location
4. Verify: that read data matches previously written data.

Pass criteria:
< HDM retains information following FLR
Fail criteria:

< HDM memory is reset.

Compute Express Link Specification
June 2019 229
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

14.10

Table 72.

Reliability, Availability, and Serviceability

RAS Testing is dependent on being able to inject and correctly detect the injected
errors. For this testing in is required that the host and device support error injection
capabilities.

Certain Device/Host capabilities of error injection are required to enable the RAS tests.
First, the required capabilities and configurations are provided. Then, the actual test
procedures are laid out. Since these capabilities may only be firmware accessible,
currently these are implementation specific. However, future revisions of this
specification may define these under an additional capability structure.

The following register describes the required functionalities.

Register 1: CXL.cache/CXL.mem LinkLayerErrorlnjection

Bit

Attribute Description

RWL

CachePoisonlnjectionStart: Software writes Ox1 to this bit to trigger a single poison injection on a
CXL.cache message in the Tx direction. Hardware must override the poison field in the data header slot of
the corresponding message (D2H if device, H2D if Host). This bit is required only if CXL.cache protocol is
supported.

RO-V

CachePoisonlnjectionBusy: Hardware loads 1'b1 to this bit when the Start bit is written. Hardware
must clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll
on this bit to find out when hardware has finished poison injection. This bit is required only if CXL.cache
protocol is supported.

RWL

MemPoisonlnjectionStart: Software writes Ox1 to this bit to trigger a single poison injection on a
CXL.mem message in the Tx direction. Hardware must override the poison field in the data header slot of
the corresponding. This bit is required only if CXL.mem protocol is supported.

MemPoisonlnjectionBusy: Hardware loads 1'b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection. This bit is required only if CXL.mem
protocol is supported.

RWL

IOPoisonlInjectionStart: Software writes Ox1 to this bit to trigger a single poison injection on a CXL.io
message in the Tx direction. Hardware must override the poison field in the data header slot of the
corresponding message.

IOPoisonlInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection.

June 2019

Revision 1.1

Compute Express Link Specification
230

EVALUATION COPY

CXL Compliance Testing

Table 72. Register 1: CXL.cache/CXL.mem LinkLayerErrorinjection

CacheMemCRCInjection: Software writes to these bits to trigger CRC error injections. The number of
CRC bits flipped is given as follows:

2’b00 — Disable. No CRC errors are injected

2’b01 — Single bit flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRClInjectionCount.

7:6 RWL 2’b10 — 2 bits flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRClInjectionCount.

2’b11 — 3 bits flipped in the CRC field for “n” subsequent Tx flits, where n is the value in
CacheMemCRClInjectionCount.

The specific bit positions that are flipped are implementation specific.
This field is required if any of CXL.cache or CXL.mem protocols are supported.

CacheMemCRCInjectionCount: Software writes to these bits to program the number of CRC injections.
This field must be programmed by software before OR at the same time as CacheMemCRClInjection field.
The number of flits where CRC bits are flipped is given as follows:

2’b00 — Disable. No CRC errors are injected
2’b01 — CRC injection is only for 1 flit. CacheMemCRClInjectionBusy bit is cleared after 1 injection.

9:8 RWL L Lo : o .
2’b10 — CRC injection is for 2 flits in succession. CacheMemCRClInjectionBusy bit is cleared after 2
injections.
2’b11 — CRC injection is for 3 flits in succession. CacheMemCRClInjectionBusy bit is cleared after 3
injections.
This field is required if any of CXL.cache or CXL.mem protocols are supported.
CacheMemCRCInjectionBusy: Hardware loads 1'b1 to this bit when the Start bit is written. Hardware
10 RO-V must clear this bit to indicate that it has indeed finished CRC injections. Software is permitted to poll on

this bit to find out when hardware has finished CRC injection. This bit is required if any of CXL.cache or
CXL.mem protocols are supported.

Compute Express Link Specification
June 2019 231
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Table 73. Register 2: CXL.io LinkLayer Error injection
Bit Attribute Description
IOPoisonlInjectionStart: Software writes Ox1 to this bit to trigger a single poison injection on a CXL.io
(o] RWL message in the Tx direction. Hardware must override the poison field in the data header slot of the
corresponding message.
IOPoisonlInjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware must
1 RO-V clear this bit to indicate that it has indeed finished poisoning a packet. Software is permitted to poll on
this bit to find out when hardware has finished poison injection.
2 RWL FlowControErrorinjection: Software writes Ox1 to this bit to trigger a Flow Control error on CXL.io only.
Hardware must override the Flow Control DLLP.
FlowControllnjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written. Hardware
3 RO-V must clear this bit to indicate that it has indeed finished Flow Control error injections. Software is
permitted to poll on this bit to find out when hardware has finished Flow Control error injection.
Table 74. Register 3: Flex Bus LogPHY Error injections
Bit Attribute Description
CorrectableProtocollDErrorInjection: Software writes Ox1 to this bit to trigger a correctable protocol
0 RWL ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID field in the
flit.
UncorrectableProtocolIDErrorinjection: Software writes Ox1 to this bit to trigger an uncorrectable
1 RWL protocol ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID
field in the flit.
UnexpectedProtocolIDErrorinjection: Software writes 0x1 to this bit to trigger an unexpected
2 RWL protocol ID error on any CXL flit issued by the FlexBus LogPHY. Hardware must override the Protocol ID
field in the flit.
ProtocollDInjectionBusy: Hardware loads 1’b1l to this bit when the Start bit is written. Hardware must
clear this bit to indicate that it has indeed finished Protocol ID error injections. Software is permitted to
3 RO-V poll on this bit to find out when hardware has finished Protocol ID error injection. Software should only
program one of the bits between correctable, uncorrectable and unexpected protocol ID error injection
bits.
14.10.1 RAS Configuration
14.10.1.1 AER Support
CXL spec calls out for errors to be reported via PClI AER mechanism. AER is listed as an
optional Extended Capability.
Test Steps:
1. Read through each Extended Capability (EC) Structure for the RCiRP, and locate EC
structure for type.
Pass criteria:
= AER Extended Capability Structure exists.
Fail criteria:
= AER Extended Capability Structure does not exist.
14.10.1.2 CXL.io Poison Injection from Device to Host
Test Steps:
1. Write a pre-determined pattern to Cache line aligned Address Al (example pattern
— all 1s — {64{8'hFF}}).
Compute Express Link Specification
June 2019 232

Revision 1.1

EVALUATION COPY

CXL Compliance Testing

14.10.1.3

June 2019
Revision 1.1

2. Setup CXL.io device for Algorithm 1a (multiple write streaming) with the following
parameters

a. StartAddressl::StartAddressl = Al

b. WriteBackAddressl::WriteBackAddressl = A2 (separate location from Al)

c. Addressincrement::Addressincrement = 0x0

d. Patternl::Patternl = OxXAA [this can be any pattern that is different from the
values programmed in step 1]

e. ByteMask::ByteMask = OxFFFFFFFFFFFFFFFF (write to all bytes)

f. ByteMask::PatternSize = 0x1 (use only 1 byte of Patternl)

g. AlgorithmConfiguration::SelfChecking = 0x0

h. AlgorithmConfiguration: :NumberOfAddrincrements = 0x0

i. AlgorithmConfiguration::NumberOfSets = 0x0
AlgorithmConfiguration: :NumberOfLoops = 0x1

—

k. AlgorithmConfiguration::AddresslsVirtual = 0x0 (use physical address for this
test)

. AlgorithmConfiguration::Protocol = Ox1
3. Setup Poison Injection from CXL.io device
a. LinkLayerErrorinjection::10OPoisonlnjectionStart = Ox1
4. Start the Algorithm. AlgorithmConfiguration::Algorithm = Ox1

Required Device Capabilities:

e The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities for CXL.io.

Pass Criteria:
« Receiver logs poisoned received error.
= Test software is permitted to read address Al to observe written pattern.

Fail Criteria:

= Receiver does not log poison received error.

CXL.cache Poison Injection

Device to Host Poison Injection

Test Steps:

1. Write a pre-determined pattern to Cache line aligned Address Al (example pattern
—all 1s — {64{8’hFF}}). Al should belong to Host attached memory.

2. Setup CXL.cache device for Algorithm l1a (multiple write streaming) with the
following parameters

StartAddressl::StartAddressl = Al

b. WriteBackAddressl::WriteBackAddressl = A2 (separate location from Al)

c. Addressincrement::Addressincrement = 0x0

d. Patternl::Patternl = OxAA [this can be any pattern that is different from the
values programmed in step 1]

e. ByteMask::ByteMask = OxFFFFFFFFFFFFFFFF (write to all bytes)

f. ByteMask::PatternSize = Ox1 (use only 1 byte of Patternl)

Compute Express Link Specification
233

EVALUATION COPY

CXL Compliance Testing

June 2019
Revision 1.1

m.

n.

AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:

test)

AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:

:SelfChecking = 0x0

:NumberOfAddrincrements = 0x0

:NumberOfSets = 0x0

:NumberOfLoops = 0x1

:AddresslsVirtual = 0x0 (use physical address for this

:WriteSemanticsCache = 0x7
:ExecuteReadSemanticsCache = 0x4
:Protocol = 0x1

3. Setup Poison Injection from CXL.cache device

a.

LinkLayerErrorlnjection::CachePoisonlnjectionStart = Ox1

4. Start the Algorithm. AlgorithmConfiguration::Algorithm = Ox1

Required Device Capabilities:

= The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities for CXL.Cache

Pass Criteria:

= Receiver (Host) logs poisoned received error.

- Test software is permitted to read address Al to observe written pattern

Fail Criteria:

= Receiver does not log poison received error.

Host to Device Poison Injection

This test aims to ensure that if a CXL.cache device receives poison for data received
from the Host, it returns the poison indication in the write-back phase. Receiver on the
CXL device must also log and escalate poison received error.

Test Steps:

1. Write a pre-determined pattern to Cache line aligned Address Al (example pattern
— all 1s — {64{8’hFF}}). Al should belong to Host attached memory.

Setup CXL.Cache device for Algorithm l1la with the following parameters
StartAddressl::StartAddressl = Al [Al should map to host attached memory]
WriteBackAddressl::WriteBackAddress1l = A2 (separate location from Al)
Addressincrement: :Addressincrement = 0x0

2.

a.

oo o

Ta =~ o

—

Patternl::Patternl = OxAA [this can be any pattern that is different from the
values programmed in step 1]

ByteMask: :ByteMask = Ox1 (write to single byte, so that device has to read)

ByteMask: :PatternSize = 0x1 (use only 1 byte of Patternl)

AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:
AlgorithmConfiguration:

:SelfChecking = 0x0
:NumberOfAddrincrements = 0x0
:NumberOfSets = 0x0
:NumberOfLoops = 0x1

Compute Express Link Specification
234

EVALUATION COPY

CXL Compliance Testing

k. AlgorithmConfiguration::AddresslsVirtual = 0x0 (use physical address for this
test)

. AlgorithmConfiguration: :WriteSemanticsCache = 0x2 (use DirtyEvict)

m. AlgorithmConfiguration: :ExecuteReadSemanticsCache = 0x0 (use RdOwn, so
device reads from host)

n. AlgorithmConfiguration::Protocol = 0x1

3. Setup Poison injection on the Host CXL.cache Link Layer (through Link Layer Error
Injection register)

4. AlgorithmConfiguration::Algorithm = Ox1 (start the test)
5. Read Address Al from the Host and check if it matches the pattern {64{8’hFF}} or
{63{8’hFF},8’'hAA}
Required Device Capabilities:
e The CXL device must support Algorithm 1a with DirtyEvict and RdOwn semantics

Pass Criteria:
= Receiver (Device) logs poisoned received error.
« Test software is permitted to read address Al to observe written pattern

Fail Criteria:
= Receiver does not log poison received error.

14.10.1.4 CXL.cache CRC Injection (Protocol Analyzer Required)

Device to Host CRC injection

Test Steps:
1. Setup is same as Test 14.3.6.1.2.

2. While test is running, software will periodically perform the following steps to
Device registers

a. Write LinkLayerErrorlnjection::CacheMemCRClInjectionCount = 0x3
b. Write LinkLayerErrorinjection::CacheMemCRClnjection = 0x2

c. Poll on LinkLayerErrorlnjection::CacheMemCRClInjectionBusy

— If 0, Write LinkLayerErrorinjection::CacheMemCRCInjection = 0x0
— Write LinkLayerErrorlnjection::CacheMemCRClInjection = 0x2

— Return to (¢) to Poll

Required Device Capabilities:

= The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities for CXL.Cache

Pass Criteria:
e Same as Test 14.3.6.1.2
« Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and
that Retries are triggered as a result.
Fail Criteria:
e Same as Test 14.3.6.1.2

Compute Express Link Specification
June 2019 235
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Host to Device CRC injection

Test Steps:
1. Setup is same as Test 14.3.6.1.2.

2. While test is running, software will periodically perform the following steps to Host
registers

a. Write LinkLayerErrorlnjection::CacheMemCRClInjectionCount = 0x3
b. Write LinkLayerErrorinjection::CacheMemCRClInjection = 0x2

c. Poll on LinkLayerErrorlnjection::CacheMemCRClInjectionBusy

— If 0, Write LinkLayerErrorinjection::CacheMemCRCInjection = 0x0
— Write LinkLayerErrorinjection::CacheMemCRClInjection = 0x2

— Return to (¢)

Required Device Capabilities:
= The CXL device must support Algorithm 1a

Pass Criteria:
e Same as Test 14.3.6.1.2

= Monitor and Verify that CRC errors are injected (using the Protocol Analyzer), and
that Retries are triggered as a result.

Fail Criteria:
e Same as Test 14.3.6.1.2

14.10.1.5 CXL.mem Poison Injection
This test is only applicable if a device supports CXL.mem
Host to Device Poison Injection

Test Steps:

1. Write {64{8’hFF}} to address B1 from Host. B1 must belong to Device Attached
memory.

2. Setup Host Link Layer for poison injection
a. LinkLayerErrorinjection::MemPoisonlnjectionStart = Ox1
3. Write {64{8’hAA}} to address B1 from Host

Required Device Capabilities:
e Device should be CXL.mem capable

Pass Criteria:
= Receiver (Device) logs poisoned received error.

« Test software is permitted to read address B1 to observe written pattern
Fail Criteria:
= Receiver does not log poison received error.
14.10.1.6 CXL.mem CRC Injection (Protocol Analyzer Required)

Host to Device CRC injection

Compute Express Link Specification
June 2019 236
Revision 1.1

EVALUATION COPY

CXL Compliance Testing

14.10.1.7

June 2019

Revision 1.1

Test Steps:

1. Write {64{8’hFF}} to address B1 from Host (B1 must belong to Device Attached
memory)

2. Setup Host Link Layer for CRC injection
a. Write LinkLayerErrorlnjection::CacheMemCRClInjectionCount = Ox1
b. Write LinkLayerErrorlnjection::CacheMemCRCInjection = 0x2

3. Write {64{8’hAA}} to address B1 from Host

4. Read address B1 from Host, and compare to {64{8'hAA}}

Required Device Capabilities:

« Device should support CXL.mem

Pass Criteria:
« Read data == {64{8'hAA}}

= CRC error and Retry observed on Link (Protocol Analyzer used for observation)

Fail Criteria:
e Read data != {64{8'hAA}}

Flow Control Injection

This is an optional but strongly recommended test only applicable for CXL.io

Device to Host Flow Control injection

Test Steps:
1. Setup is same as Test 14.3.6.1.1.

2. While test is running, software will periodically perform the following steps to
Device registers

a. Write LinkLayerErrorlnjection::FlowControllnjection = Ox1

b. Poll on LinkLayerErrorinjection::FlowControllnjectionBusy

— If 0, Write LinkLayerErrorlnjection::FlowControllnjection = 0x0
— Write LinkLayerErrorinjection::FlowControllnjection = 0x2

— Return to (c) to Poll

Required Device Capabilities:

e The CXL device must support Algorithm 1a, and Link Layer Error Injection
capabilities

Pass Criteria:
e Same as Test 14.3.6.1.1

Fail Criteria:
e Same as Test 14.3.6.1.1

Host to Device Flow Control injection

Test Steps:

Compute Express Link Specification
237

EVALUATION COPY

CXL Compliance Testing

14.10.1.8

14.10.1.9

June 2019
Revision 1.1

1. Setup is same as Test 14.3.6.1.1.

2. While test is running, software will periodically perform the following steps to Host
registers

a. Write LinkLayerErrorinjection::FlowControllnjection = Ox1

b. Poll on LinkLayerErrorinjection::FlowControllnjectionBusy

— If 0, Write LinkLayerErrorinjection::FlowControllnjection = 0x0
— Write LinkLayerErrorinjection::FlowControllnjection = 0x2

— Return to (c) to Poll

Required Device Capabilities:
e The CXL device must support Algorithm 1a

Pass Criteria:
e Same as Test 14.3.6.1.1

Fail Criteria:
e Same as Test 14.3.6.1.1

Unexpected Completion Injection

This is an optional but strongly recommended test that is only applicable for CXL.io

Device to Host Unexpected Completion injection

Test Steps:
1. Setup is same as Test 14.3.6.1.1, except that Self-checking should be disabled.

2. While test is running, software will periodically perform the following steps to
Device registers

a. Write DeviceErrorlnjection::UnexpectedCompletionlnjection = 0x1

Required Device Capabilities:
 The CXL device must support Algorithm 1a, and Device Error Injection capabilities

Pass Criteria:

* Unexpected completion error logged

Fail Criteria:
< No errors logged

Completion Timeout

This is an optional but strongly recommended test. It is only applicable for CXL.io

Device to Host Completion Timeout

Test Steps:
1. Setup is same as Test 14.3.6.1.1.

Compute Express Link Specification
238

EVALUATION COPY

CXL Compliance Testing

2. While test is running, perform the following to Device registers

a. Write DeviceErrorlnjection::CompleterTimeoutlnjection = 0x1

Required Device Capabilities:

e The CXL device must support Algorithm 1a, and Device Error Injection capabilities

Pass Criteria:

= Completion timeout logged and escalated to error manager

Fail Criteria:

« No errors logged and data corruption seen

14.11 Device Capability and Test Configuration Control

14.11.1 CXL Device Test Capability Advertisement

Figure 121. PCle DVSEC for Test Capability:

31

1615

PCl Express Extended Capability Header

Designated Vendor-specific Header 1

DVSEC CXL Test Lock

Designated Vendor-specific Header 2

DVSEC CXL Test Capability 1

Reserved

DVSEC CXL Test Capability 2

DVSEC CXL Test Configuration Base Low

DVSEC CXLTest Configuration Base High

To advertise Test capabilities, the standard DVSEC register fields should be set as

below:

Table 75. DVSEC Registers (Sheet 1 of 2)

00h

04h

08h

0Ch

10h

14h

18h

Register

Bit Location

Field

Value

Designated Vendor-Specific Header 1 (offset 04h)

15:0

DVSEC Vendor ID

0x8086

June 2019
Revision 1.1

Compute Express Link Specification

239

EVALUATION COPY

CXL Compliance Testing

Table 75. DVSEC Registers (Sheet 2 of 2)

Designated Vendor-Specific Header 1 (offset 04h) 19:16 DVSEC Revision 0x0

Designated Vendor-Specific Header 1 (offset 04h) 31:20 DVSEC Length 0x22

Designated Vendor-Specific Header 2 (offset 08h) 15:0 DVSEC ID Ox0A
Table 76. DVSEC CXL Test Lock (offset OAh)

Bit Attribute Description

0 RWO TestLock: Software writes 1'b1 to lock the relevant test configuration registers

15:1 N/A Reserved
Table 77. DVSEC CXL Test Capabilityl (offset OCh)

Bit Attribute Description

0 RO SelfChecking: Set to 1 if Device supports Self Checking

1 RO Algorithmla: Set to 1 if Device supports hardware for test Algorithm la

2 RO Algorithmlb: Set to 1 if Device supports hardware for test Algorithm 1b

3 RO Algorithm2: Set to 1 if Device supports hardware for test Algorithm 2

4 RO RdCurr: Set to 1 if Device supports CXL.cache and RdCurr opcodes as requester.

5 RO RdOwn: Set to 1 if Device supports CXL.cache and RdOwn opcodes as requester.

6 RO RdShared: Set to 1 if Device supports CXL.cache and RdShared opcodes as requester.

7 RO RdANy: Set to 1 if Device supports CXL.cache and RdAny opcodes as requester.

8 RO RdOwnNoData: Set to 1 if Device supports CXL.cache and RdOwnNoData opcodes as requester.

9 RO ItoMWr: Set to 1 if Device supports CXL.cache and ItoMWr opcodes as requester.

10 RO MemWr: Set to 1 if Device supports CXL.cache and MemWr opcodes as requester.

11 RO CLFlush: Set to 1 if Device supports CXL.cache and CLFlush opcodes as requester.

12 RO CleanEvict: Set to 1 if Device supports CXL.cache and CleanEvict opcodes as requester.

13 RO DirtyEvict: Set to 1 if Device supports CXL.cache and DirtyEvict opcodes as requester.

14 RO CleanEvictNoData: Set to 1 if Device supports CXL.cache and CleanEvictNoData opcodes as requester.

15 RO WOWTrlInv: Set to 1 if Device supports CXL.cache and WOWrInv opcodes as requester.

16 RO WOWTrInvF: Set to 1 if Device supports CXL.cache and WOWTrInvF opcodes as requester.

17 RO Wrlnv: Set to 1 if Device supports CXL.cache and WrInv opcodes as requester.

18 RO CacheFlushed: Set to 1 if Device supports CXL.cache and CacheFlushed opcodes as requester.

19 RO UnexpectedCompletion: Device supports sending an unexpected completion on CXL.io

20 RO CompletionTimeoutlnjection: Device supports dropping a read in the completion timeout scenario

23:21 N/A Reserved

31:24 RO ConfigurationSize: Size in Bytes of Test configuration control registers.

Compute Express Link Specification

June 2019 240

Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Table 78. Device CXL Test Capability2 (Offset 10h)
Bit Attribute Description
13:0 RO CachesSize: Cache size supported by the device.
CachesSizeUnits: Units of advertised cache size in CacheSize field
2’b00 : Bytes
15:14 RO 2’b01 : KiloBytes (KB)
2’b10 : MegaBytes (MB)
Reserved.
Table 79. DVSEC CXL Test Configuration Base Low (Offset 14h)
Bit Attribute Description
MemorySpacelndicator: The test configuration registers are in memory space. Device must hardwire
(0] RO : f
this to 1'b0
Type:
2’b00 — Base register is 32 bit wide and can be mapped anywhere in the 32 bit address space.
2:1 RO 2’b01 — Reserved
2’b10 — Base register is 64 bit wide and can be mapped anywhere in the 64 bit address space.
2’b11 — Reserved
3 RO Reserved: Device must hardwire this bit to 1'b0
31:4 RW BaselLow: bits [31:4] of the base address where the test configuration registers exist.
Table 80. DVSEC CXL Test Configuration Base High (Offset 18h)
Bit Attribute Description
31:0 RW BaseHigh: Bits [63:32] of the base address where the test configuration registers exist.
14.11.2 Device Capabilities to Support the Test Algorithms
This section lays out the configuration registers required in the application layer of the
device that enable execute/verify/debug of the above Algorithms. These registers are
memory mapped and the base is given by the capability structure defined in previous
sections. Default value of all register bits must be 0.
Table 81. Register 1: StartAddressl (Offset 00h)
Bit Attribute Description
StartAddress1: Indicates the start address “X1” of the corresponding set in Algorithms 1a,1b, and 2. This
63:0 RW could be Host attached memory, device attached memory (if applicable), or an invalid address to test Go-
Err support.
Table 82. Register 2: WriteBackAddressl (Offset 08h)
Bit Attribute Description
WriteBackAddress1: Indicates the start address “Z1” of the corresponding set in Algorithms 1a and 1b.
63:0 RW This register is only used if device is NOT self-checking, or if self-checking is disabled on the device. This
address should map to Host attached memory.
Compute Express Link Specification
June 2019 241

Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Table 83. Register 3: Increment (Offset 10h)
Bit Attribute Description
AddressIncrement: Indicates the increment for address “Y” in Algorithms 1a,1b and 2. The value in this
31:0 RW register should be left shifted by 6 bits before using as address increment. Example, a value of 1'b1
implies increment granularity of 7’b1000000 (cache line increments)
SetOffset: Indicates the set offset increment for address “X” and “Z” in Algorithms 1a,1b and 2. The
63:32 RW value in this register should be left shifted by 6 bits before using as address increment. Example, a value
of 1’b1 implies increment granularity of 7’b1000000 (cache line increments)
Table 84. Register 4: Pattern (Offset 18h)
Bit Attribute Description
31:0 RW Patternl: Indicates the pattern “P” as defined in Algorithms 1a,1b, and 2.
63:32 RW Pattern2: Indicates the pattern “B” as defined in Algorithm 1b.
Table 85. Register 5: ByteMask (Offset 20h)
Bit Attribute Description
63:0 RW ByteMask: 1 bit per byte of the cache line to indicate which bytes of the cache line are modified by the
) device in Algorithms 1a, 1b and 2. This will be programmed consistently with the StartAddress1 register.
Table 86. Register 6: PatternConfiguration (Offset 28h)
Bit Attribute Description
PatternSize: Defines what size (in bytes) of “P” or “B” to use starting from least significant byte. As an
2:0 RW example, if this is programmed to 3'b011, only the lower 3 bytes of “P” and “B” registers will be used as
. the pattern. This will be programmed consistently with the ByteMask field, for example, in the given
example, the ByteMask would always be in sets of three consecutive bytes.
PatternParameter: If this field is programmed to 1’b1, device hardware must continue to use the
3 RW incremented value of patterns (P+N+1) as the base pattern of the next set iteration. If this field is
programmed to 1'b0, device hardware must use the original pattern “P” for every new set iteration.
63:4 N/A Reserved
Compute Express Link Specification
June 2019 242

Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Table 87. Register 7: AlgorithmConfiguration (Offset 30h) (Sheet 1 of 2)
Bit Attribute Description
Algorithm:
3’b000 — Disabled — serves as a way to stop test.
3’'b001 — Algorithm l1a: Multiple Write Streaming
3’b010 — Algorithm 1b: Multiple Write Streaming with Bogus writes
3'b100 — Algorithm 2: Producer Consumer Test
Rest are reserved.
Implementation Notes:
2:0 RWL Software will setup all of the other registers (address, patterns, byte-masks etc.) before it writes to this
field to start the test. A value of 3'b001, 3’'b010, 3'b100 in this field starts the corresponding Algorithm on
the device from iteration 0, set O.
No action must be taken by device hardware if a reserved value is programmed.
While a test is running, software can write to this field to stop the test. If this happens, device must
gracefully complete the current execute and verification loop and then stop the hardware from issuing any
more requests to the Host. If software subsequently programs it to any of the other valid values, device
hardware must execute the corresponding Algorithm from a fresh loop (iteration O on set 0).
SelfChecking:
3 RW 1’b0 — device is not going to perform self-checking.
1’bl — Device is going to perform self-checking in the Verify phase for Algorithms 1 and 2.
7:4 RW Reserved
B NumberOfAddrincrements: Sets the value of “N” for all 3 Algorithms. A value of O implies only the first
15:8 RW
write (base address) is going to be issued by device.
NumberOfSets: A value of O implies that only the first write is going to be issued by the device. If both
NumberOfAddIncrements and NumberOfSets is zero, only a single transaction (to the base address)
should be issued by the device [NumberOfLoops should be set to 1 for this case].
For Algorithm 1a and 1b:
23:16 RW Bits 19:16 gives the number of sets.
Bits 23:20 give the number of bogus writes “J” in Algorithm 1b.
For Algorithm 2:
Bits 23:16 gives the number of iterations “i”
31:24 RW NumberOfLoops: If set to 0, device continues looping across address and set increments indefinitely.
) Otherwise, it indicates the number of loops to run through for address and set increments.
32 RW AddresslsVirtual: If set to 1, indicates that all programmed addresses are virtual and need to be
translated by the device (via ATS). Useful for testing virtualization/device TLBs
Protocol:
3’b000 - PCle mode
35:33 RW 3’b001 - CXL.io only
3’'b010 - CXL.cache only
3’b100 - CXL.cache and CXL.io [support is optional and device is free to interleave writes at iteration or
set granularity]
WriteSemanticsCache: Only applicable when Protocol==3'b010 or 3'b100. In the encodings below,
dirty writes can mean evictions or flush depending on device behavior.
4’b0000 - Dirty Writes use I1toMWr, Clean Writes use CleanEvict [Clean writes will occur if PatternSize==0]
4’b0001 - Dirty Writes use MemWr, Clean Writes use CleanEvictNoData
4’b0010 - Dirty Writes use DirtyEvict
4’b0011 - Dirty Writes use WOWrInv
. 4’b0100 - Dirty Writes use WOWTrInvF [only programmed by test software if Device is expected to own/
39:36 RW : :
modify the full cache line]
4’b0101 - Dirty Writes use Wrinv
4’b0110 - Dirty Writes use ClFlush
4’b0111 - Dirty Writes/Clean Writes can use any of CXL.cache supported opcodes. Device implementation
specific.
All other encodings are reserved; and device hardware should not take any actions if this has been
programmed to a reserved value.
Compute Express Link Specification
June 2019 243

Revision 1.1

CXL Compliance Testing

Table 87. Register 7: AlgorithmConfiguration (Offset 30h) (Sheet 2 of 2)
FlushCache:
Test software can program this value at runtime to trigger a cache flush from Device and issue CacheFlush
40 RWL opcode. Execute/Verify loops must stop after completing the current loop and CacheFlushed has been
issued, until software changes this value back to 1’'b0 — after which, device hardware should resume
execute/verify loops from the next iteration/set [it must remember the iteration and set value where
execution stopped].
ExecuteReadSemanticsCache: Only applicable when Protocol==3’b010 or 3’b100.
3’b000 : Ownership reads use RdOwn
3’b001 : Ownership reads use RdAny
43:41 RW 3’b010 : Ownership reads use RdOwnNoData [only programmed by test software if device is expected to
modify the entire cache line]
3’b100 : Device can use any of the CXL.cache supported opcodes
All other encodings are reserved, and should not start execute/verify loops if programmed.
VerifyReadSemanticsCache: Read opcodes used when device is in Verify phase.
3’b000 : RdCurr
46:-44 RW 3’b001 : RdShared
3'b010 : RdOwn
3’b100 : RdAny
All other encodings are reserved, and should not start execute/verify loops if programmed.
Z 63:47 N/A Reserved
Table 88. Register 8: DeviceErrorlnjection (Offset 38h)
Bit Attribute Description
UnexpectedCompletionlnjection:
0 RWL Software writes Ox1 to this bit to trigger a completion injection on a message in the Tx direction.
[Hardware must inject an unexpected completion by sending the same completion twice.
UnexpectedCompletionlnjectionBusy: Hardware loads 1’b1 to this bit when the Start bit is written.
1 RO-V Hardware must clear this bit to indicate that it has indeed finished error injections. Software is permitted
to poll on this bit to find out when hardware has finished error injection.
> CompleterTimeout Software writes Ox1 to this bit to trigger a completer timeout injection on a message
RWL X . . 9 .
in the Tx direction. Hardware must suppress the transmission of completion packet.
CompleterTimeoutlnjectionBusy: Hardware loads 1’b1l to this bit when the Start bit is written.
3 RO-V Hardware must clear this bit to indicate that it has indeed finished error injections. Software is permitted
to poll on this bit to find out when hardware has finished error injection.
31:4 N/A Reserved
’ 14.11.3 Debug Capabilities in Device
14.11.3.1 Error Logging
The following capabilities in a device are strongly recommended to support ease of
verification and compliance testing.
A device that supports self-checking must include an error status and header log
register with the following fields:
Table 89. Register 9: ErrorLogl (Offset 40h)
Bit Attribute Description
31:0 RW ExpectedPattern: Expected data pattern as per device hardware.
I I I 63:32 RW ObservedPattern: Observed data pattern as per device hardware.

June 2019

Revision 1.1

Compute Express Link Specification
244

EVALUATION COPY

CXL Compliance Testing

Table 90. Register 10: ErrorLog2 (Offset 48h)
Bit Attribute Description
31:0 RW ExpectedPattern: Expected data pattern as per device hardware.
63:32 RW ObservedPattern: Observed data pattern as per device hardware.
Table 91. Register 11: ErrorLog3 (Offset 50h)
Bit Attribute Description
7:0 RW ByteOffset: First byte offset within the cache line where the data mismatch was observed.
15:8 RW LoopNum: Loop number where data mismatch was observed.
16 RW1C ErrorStatus: Set to 1 by device if data miscompare was observed
14.11.3.2 Event Monitors
It is strongly recommended that a device advertise at least 2 event monitors, which
can be used to count device-defined events. An event monitor consists of two 64 bit
registers:
a. An event controller: EventCtrl
b. An event counter: EventCount
The usage model is for software to program EventCtrl to count an event of interest, and
then read the EventCount to determine how many times the event has occurred. At a
minimum, a device must implement the ClockTicks event. When the ClockTicks event is
selected via the event controller, the event counter will increment every clock cycle,
based on the application layer’s clock. Further suggested events may be published in the
future. Examples of other events that a device may choose to implement are:
a. Number of times a particular opcode is sent or received
b. Number of retries or CRC errors
c. Number of credit returns sent or received
d. Device-specific events that may help visibility on the platform or with statistical
computation of performance
Below are the formats of the EventCtrl and EventCount registers.
Table 92. Register 12: EventCtrl (Offset 60h)
Bit Attribute Description
7:0 RW EventSelect: Field to select which of the available events should be counted in the paired EventCount
} register.
SubEventSelect: Field to select which sub-conditions of an event should be counted in the paired
EventCount register. This field is a bit-mask, where each bit represents a different condition. The
15:8 RW EventCount should increment if any of the selected sub-conditions occurs.
For example, an event might be “transactions received”, with three sub-conditions of “read”, “write”,
and “completion”.
16 N/A Reserved
Compute Express Link Specification
June 2019 245

Revision 1.1

EVALUATION COPY

CXL Compliance Testing

Table 92. Register 12: EventCtrl (Offset 60h)
17 RW Reset: When set to 1, the paired EventCount register will be cleared to 0. Writing a O to this bit has no
effect.
18 RW EdgeDetect: When this bit is 0, the counter will increment in each cycle that the event has occurred.
When set to 1, the counter will increment when a 0O to 1 transition (i.e., rising edge) is detect.
63:19 N/A Reserved
Table 93. Register 13: EventCount (Offset 68h)
Bit Attribute Description
EventCount: Hardware load register which is updated with a running count of the occurrences of the
63:0 RO event programmed in the EventCtrl register. It is monotonically increasing, unless software explicitly
writes it to a lower value or writes to the “Reset” field of the paired EventCtrl register.
Compute Express Link Specification
June 2019 246

Revision 1.1

Taxonomy

& Appendix A Taxonomy
O A.l Accelerator Usage Taxonomy
Table 94. Accelerator Usage Taxonomy (Sheet 1 of 2)
Accelerator Type Description ggsgretr:fr]ﬁfii CXL Support
Work on data streams or
Producer-Consumer N
, large contiguous data fici K L
Qigihi;a?gr:i:;?t don't | opjects. Eﬁ!cfen: worh SmeIfSSIOI'; Basic PCle + AiA
; ; ; ; icient exchange of meta-)
w/o special needs model works well. 9
Producer-Consumer Plus | Same as above, but... Device Coh b CXL.cache on CXL w/
, i , evice Lonherency can be baseline snoop filter
Accelerators that don’t P/C ordering model doesn’t : - P
execute against work well used to implement varled. support
« " . i ordering models and special .
Memory Need special data operations | gata operations CXL.io
w/ special needs such as atomics CXL.cache
I Host SW should be able to
interact directly with
. Local memory is often accelerator memory (SVM,
SW Assisted SVM needed for BW or latency Google) CXL Bi del with
Memory . .))) ias model wit
predictability Reduce copies, replication, | sw managed bias
Accelerators that f ; : : inni 9 :
; Little interaction with the pinning i
execute against S CXL.io
« " host Optimizing coherency
Memory” w/ software . ; £ . CXL.cache
supportable data Data management easily impact on performance is a CXL
mana implemented in SW, e.g., challenge -mem
gement - .
few and simple data buffers | SW can provide best
optimization of coherency
impact
Compute Express Link Specification
June 2019 247

Revision 1.1

EVALUATION COPY

Taxonomy

Table 94.

A.2

June 2019
Revision 1.1

Accelerator Usage Taxonomy (Sheet 2 of 2)

Accelerator Type

Description

Challenges &
Opportunities

CXL Support

Autonomous SVM
Memory

Accelerators that
execute against
“Memory” where
software supported data
management is

Local memory often needed
for BW or latency
predictability

Interaction with the host is
common

Data movement very
difficult to manage in SW,
e.g., sparse data structures,

Host SW should be able to
interact directly with
accelerator memory (SVM,
Google)

Reduce copies, replication,
pinning

Optimizing coherency
impact on performance is a
challenge

CXL Bias model with
HW managed bias.

CXL.io
CXL.cache
CXL.mem

Accelerators that
execute against
“Memory”

where local memory and
caching is required.

local memory

Interaction with the host is
common

Data must be cycled through
accelerator memory in small
blocks

Data movement very
difficult to manage in SW

impractical pointer based data
structures, etc. C_annot count on SW for
bias management
Local memory needed for
BW or latency predictability
Giant Cache Data footprint is larger than | Accelerator memory needs CXL.cache on CXL w/

to work like a cache (not
SVM/system memory)
Ideally cache misses
detected in HW, but cache
replacements can be
managed in SW

“Enhanced
Directory” snoop
filter support
CXL.io
CXL.cache

Disaggregated Memory
Controller

Typically for memory
controllers with remote
persistent memory,
which may be in 2LM or
App Direct mode

PCle semantics needed for
device enumeration, driver
support and device
management

Most operational flows rely
on being able to
communicate directly with a
Home Device or Near
Memory Controller on the
Host

Device needs high BW and
low latency path from
memory controller to Home
Device in the CPU

CXL.mem on CXL
CXL.io
CXL.mem

Bias Model Flow Example — From CPU

= Start with pages in Device Bias

— Pages guaranteed not to be cached in host cache hierarchy

= Software allocates pages from device memory

— Software pushes operands to allocated pages from peer CPU core:

— Software uses, e.g., OCL API to flip operand pages to Host Bias

— No data copies or cache flushes required

— Host CPUs generate operand data in target pages — data ends up in some
arbitrary location in the host cache hierarchy.

= Device uses operands to generate results

— Software uses, e.g., OCL API to flip operand pages back to Device Bias

— API call causes work descriptor submission to device; descriptor asks the
device to flush operand pages from host cache.

— Cache flush executed using CLFLUSH on CXL CXL.cache protocol.
— When Device Bias flip is compete, software submits work to the accelerator

— Accelerator executes with no host related coherency overhead

— Accelerator dumps data to results pages.

Compute Express Link Specification

248

Taxonomy

>_
al
O A3
Z
O
—
>
—
<C
=
LL]

Revision 1.1

Software pulls results from the allocated pages:
— Software uses, e.g., OCL API to flip results pages to Host Bias.

— This action causes some bias state to be changed but does not cause any
coherency or cache flushing actions.

— Host CPUs can access, cache and share results data as needed.
Software releases the allocated pages.

CPU Support for Bias Modes

There are two envisaged models of support that the CPU would provide for Bias Modes.
These are described below.

Remote Snoop Filter

Remote socket owned lines belonging to accelerator attached memory are tracked
by a Remote SF located in the C-CHA. Remote SF does not track lines belonging to
Host memory. The above obviates the need for directory in device memory. Please
note this is only possible in host bias mode since in device bias mode, local/remote
sockets can’t cache lines belonging to device memory.

Local socket owned lines belonging to accelerator attached memory will be tracked
by local SF in the C-CHA. Please note this is only possible in host bias mode since in
device bias mode, local/remote sockets can’t cache lines belonging to device
memory.

Device owned lines belonging to accelerator attached memory (in host bias mode)
will NOT be tracked by local SF in the C-CHA. These will be tracked by the Device
Coherency Engine (DCOH) using a device specific mechanism (device SF). In
device bias mode, SF in the C-CHA does not even see the requests.

Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

Directory in Accelerator Attached Memory

Remote socket owned lines belonging to device memory are tracked by directory in
device memory. C-CHA may choose to do OSB for some cases.

Local socket owned lines belonging to device memory will be tracked by local SF in
the C-CHA. For access by device, local socket owned lines belonging to device
memory will also update directory.

Device owned lines belonging to device memory will NOT be tracked by local SF in
the C-CHA. These will be tracked by the Device Coherency Engine (DCOH) using a
device specific mechanism (device SF).

Device owned lines belonging to host memory (in either mode) WILL be tracked by
local SF in the C-CHA. This may cause the device to receive snoops through CXL
(CXL.cache) for such lines.

Bias Table is located in stolen memory in the device memory and is accessed
through the DCOH.

Giant Cache Model

For problems whose datasets exceed the size of device attached memory, the memory
attached to the accelerator really wants to be a cache, not memory:

Typically the full dataset will live in processor attached memory.

Compute Express Link Specification
249

Taxonomy

= Subsets of this larger data set are cycled through the accelerator memory as the
computation proceeds.

= For such use cases, caching is the right solution:

— Accelerator memory is not mapped into system address map — data set is built
up in host memory

— Single page table entry per page in data set — no page table manipulation as
pages are cycled through accelerator memory

— Copies of data can be created under driver and/or hardware control with no OS
intervention

Figure 122. Profile D - Giant Cache Model

Accelerator

SRAM Cache
(MBs)

Local Mem

=

Giant Cache P~
(GBs) a

2

Critical issues with a Giant Cache:
= Cache is too big for tracking in the Host on-die snoop filter
* Snoop latency for a Giant Cache is likely to be much higher than standard on-die
cache snoop latency.
CXL recommended solution:

+ Implements snoop filter in processor’s coherency directory (stored in DRAM ECC
bits) which essentially becomes a highly scalable snoop filter

= Minimizes impact to processor operations unrelated to accelerators
= Allows accelerator to access data over CXL.cache as a caching Device.

= Provides support on CXL.cache to allow an accelerator to explicitly request
directory snoop filtering for giant cache.

= Processor infrastructure differentiates between low latency and high latency
requester types

= Support for simultaneous use of a small, low latency cache, associated with the on-
die snoop filter, will come for free.

8§88

EVALUATION COPY

Compute Express Link Specification
June 2019 250
Revision 1.1

	Compute Express Link
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Audience
	1.2 Terminology / Acronyms
	1.3 Reference Documents
	1.4 Motivation and Overview
	1.4.1 Compute Express Link
	1.4.2 Flex Bus

	1.5 Flex Bus Link Features
	1.6 Flex Bus Layering Overview
	1.7 Document Scope

	2.0 Compute Express Link System Architecture
	2.1 Type 1 CXL Device
	2.2 Type 2 Device
	2.2.1 Bias Based Coherency Model
	2.2.1.1 Host Bias
	2.2.1.2 Device Bias
	2.2.1.3 Mode Management
	2.2.1.4 Software Assisted Bias Mode Management
	2.2.1.5 HW Autonomous Bias Mode Management

	2.3 Type 3

	3.0 Compute Express Link Transaction Layer
	3.1 CXL.io
	3.1.1 PCIe Root Complex Integrated Endpoint
	3.1.2 CXL Power Management VDM Format
	3.1.2.1 Credit and PM Initialization

	3.1.3 Optional PCIe Features Required for CXL
	3.1.4 Error Propagation
	3.1.5 Memory Type Indication on ATS
	3.1.6 Deferrable Writes

	3.2 CXL.cache
	3.2.1 Overview
	3.2.2 CXL.cache Channel Description
	3.2.2.1 Channel Ordering
	3.2.2.2 Channel Crediting

	3.2.3 CXL.cache Wire Description
	3.2.3.1 D2H Request
	3.2.3.2 D2H Response
	3.2.3.3 D2H Data
	3.2.3.4 H2D Request
	3.2.3.5 H2D Response
	3.2.3.6 H2D Data

	3.2.4 CXL.cache Transaction Description
	3.2.4.1 Device to Host Requests
	3.2.4.2 Device to Host Response
	3.2.4.3 Host to Device Requests
	3.2.4.4 Host to Device Response

	3.2.5 Cacheability Details and Request Restrictions
	3.2.5.1 GO-M Responses
	3.2.5.2 Device/Host Snoop-GO-Data Assumptions
	3.2.5.3 Device/Host Snoop/WritePull Assumptions
	3.2.5.4 Snoop Responses and Data Transfer on CXL.cache Evicts
	3.2.5.5 Multiple Snoops to the same address
	3.2.5.6 Multiple Reads to the same cache line
	3.2.5.7 Multiple Evicts to the same cache line
	3.2.5.8 Multiple WriteRequests to the same cache line
	3.2.5.9 Normal Global Observation (GO)
	3.2.5.10 Relaxed Global Observation (FastGO)
	3.2.5.11 Evict to Device-Attached Memory
	3.2.5.12 Memory Type on CXL.cache
	3.2.5.13 General Assumptions

	3.3 CXL.mem
	3.3.1 Introduction
	3.3.2 M2S Request (Req)
	3.3.3 M2S Request with Data (RwD)
	3.3.4 S2M No Data Response (NDR)
	3.3.5 S2M Data Response (DRS)
	3.3.6 Forward Progress & Ordering Rules

	3.4 Transaction Flows to Device-Attached Memory
	3.4.1 Flows for Type 1 and Type 2 Devices
	3.4.1.1 Notes and Assumptions
	3.4.1.2 Requests from Host
	3.4.1.3 Requests from Device in Host & Device Bias

	3.5 Flows for Type 3 Devices

	4.0 Compute Express Link Link Layers
	4.1 CXL.io Link Layer
	4.2 CXL.mem and CXL.cache Common Link Layer
	4.2.1 Introduction
	4.2.2 High-Level CXL.cache/CXL.mem Flit Overview
	4.2.3 Slot Format Definition
	4.2.3.1 RSVD Fields
	4.2.3.2 H2D & M2S Formats
	4.2.3.3 D2H & S2M Formats

	4.2.4 Link Layer Registers
	4.2.5 Flit Packing Rules
	4.2.6 Link Layer Control Flit
	4.2.7 Link Layer Initialization
	4.2.8 CXL.cache/CXL.mem Link Layer Retry
	4.2.8.1 LLR Variables
	4.2.8.2 ACK Forcing
	4.2.8.3 LLR Control Flits
	4.2.8.4 RETRY Framing Sequences
	4.2.8.5 LLR State Machines
	4.2.8.6 Interaction with Physical Layer Reset or Reinitialization
	4.2.8.7 CXL.cache/CXL.mem Flit CRC

	4.2.9 CXL.cache-Side Poison and Viral
	4.2.9.1 Viral

	5.0 Compute Express Link ARB/MUX
	5.1 Virtual LSM States
	5.1.1 Rules for Virtual LSM State Transitions Across Link
	5.1.1.1 General Rules
	5.1.1.2 Entry to Active Exchange Protocol
	5.1.1.3 Status Synchronization Protocol
	5.1.1.4 State Request ALMP
	5.1.1.5 State Status ALMP
	5.1.1.6 Unexpected ALMPs

	5.2 ARB/MUX Link Management Packets
	5.2.1 ARB/MUX Bypass Feature

	5.3 Arbitration and Data Multiplexing/Demultiplexing

	6.0 Flex Bus Physical Layer
	6.1 Overview
	6.2 Flex Bus.CXL Framing and Packet Layout
	6.2.1 Ordered Set Blocks and Data Blocks
	6.2.2 Protocol ID[15:0]
	6.2.3 x16 Packet Layout
	6.2.4 x8 Packet Layout
	6.2.5 x4 Packet Layout
	6.2.6 x2 Packet Layout
	6.2.7 x1 Packet Layout
	6.2.8 Special Case: CXL.io -- When a TLP Ends on a Flit Boundary
	6.2.9 Framing Errors

	6.3 Link Training
	6.3.1 PCIe vs Flex Bus.CXL mode selection
	6.3.1.1 Hardware Autonomous Mode Negotiation
	6.3.1.2 Flex Bus.CXL Negotiation with Maximum Supported Link Speed of 8GT/s or 16GT/s
	6.3.1.3 Link Width Degradation and Speed Downgrade

	6.4 Recovery.Idle and Config.Idle Transitions to L0
	6.5 L1 Abort Scenario
	6.6 Exit from Recovery
	6.7 Retimers and Low Latency Mode
	6.7.1 Control SKP Ordered Set Frequency and L1/Recovery Entry

	7.0 Control and Status Registers
	7.1 Configuration Space Registers
	7.1.1 PCI Express Designated Vendor-Specific Extended Capability (DVSEC) for CXL Device
	7.1.1.1 DVSEC Flex Bus Capability (Offset 0Ah)
	7.1.1.2 DVSEC Flex Bus Control (Offset 0Ch)
	7.1.1.3 DVSEC Flex Bus Status (Offset 0Eh)
	7.1.1.4 DVSEC Flex Bus Control2 (Offset 10h)
	7.1.1.5 DVSEC Flex Bus Status2 (Offset 12h)
	7.1.1.6 DVSEC Flex Bus Lock (Offset 14h)
	7.1.1.7 DVSEC Flex Bus Range registers

	7.2 Memory Mapped Registers
	7.2.1 Upstream and Downstream Port Registers
	7.2.1.1 CXL Downstream Port RCRB
	7.2.1.2 CXL Upstream Port RCRB
	7.2.1.3 Upstream and Downstream Flex Bus Port DVSEC

	7.2.2 CXL Upstream and Downstream Port Subsystem Component Registers
	7.2.2.1 CXL.cache and CXL.mem Registers
	7.2.2.2 CXL ARB/MUX Registers

	7.3 CXL RCRB Base Register

	8.0 Reset, Initialization, Configuration and Manageability
	8.1 Compute Express Link Boot and Reset Overview
	8.1.1 General
	8.1.2 Comparing CXL and PCIe behavior

	8.2 Compute Express Link Device Boot Flow
	8.3 Compute Express Link Device Warm Reset Entry Flow
	8.4 Compute Express Link Device Cold Reset Entry Flow
	8.5 Compute Express Link Device Sleep State Entry Flow
	8.6 Function Level Reset (FLR)
	8.7 Hotplug
	8.8 Software Enumeration
	8.8.1 Software Model
	8.8.2 PCIe Software View of the Hierarchy
	8.8.2.1 BIOS View
	8.8.2.2 OS View

	8.8.3 BIOS Enumeration Flow
	8.8.4 Software View of CXL.cache

	8.9 Accelerators with Multiple Flex Bus Links
	8.9.1 Single CPU Topology
	8.9.2 Multiple CPU Topology

	8.10 Software View of HDM
	8.10.1 Accelerator HMAT Fragment Table Format

	8.11 Manageability Model for CXL Devices Matches PCIe

	9.0 Power Management
	9.1 Statement of Requirements
	9.2 Policy based Runtime Control - Idle Power - Protocol Flow
	9.2.1 General
	9.2.2 Package-Level Idle (C-state) Entry and Exit Coordination
	9.2.3 PkgC Entry flows
	9.2.4 PkgC Exit Flows

	9.3 Compute Express Link Physical Layer Power Management States
	9.4 Compute Express Link Power Management
	9.4.1 Compute Express Link PM Entry Phase 1
	9.4.2 Compute Express Link PM Entry Phase 2
	9.4.3 Compute Express Link PM Entry Phase 3
	9.4.4 Compute Express Link Exit from ASPM L1

	9.5 CXL.io Link Power Management
	9.5.1 CXL.io ASPM Phase L1 Entry
	9.5.2 CXL.io ASPM Phase 2 Entry
	9.5.3 CXL.io ASPM Phase 3 Entry

	9.6 CXL.cache + CXL.mem Link Power Management

	10.0 Security
	11.0 Reliability, Availability and Serviceability
	11.1 Supported RAS Features
	11.2 CXL Error Handling
	11.2.1 Protocol and Link Layer Error Reporting
	11.2.1.1 CXL Downstream Port (DP) Detected Errors

	11.2.2 CXL Device Error Handling
	11.2.2.1 CXL.mem and CXL.cache Errors
	11.2.2.2 CXL Device Error Handling Flows

	11.3 CXL Link Down Handling
	11.4 CXL Viral Handling
	11.5 CXL Error Injection

	12.0 Platform Architecture
	12.1 Flex Bus connector definition
	12.1.1 Connector Type
	12.1.2 Pin Count

	12.2 Topologies
	12.3 Protocol Detection
	12.4 AIC Form Factor
	12.5 AIC Power Envelope
	12.6 Flexbus Slot Auxiliary Power

	13.0 Performance Considerations
	14.0 CXL Compliance Testing
	14.1 Applicable Devices Under Test (DUTs)
	14.2 Starting Configuration/Topology (Common for All Tests)
	14.3 CXL.cache and CXL.io Application Layer/Transaction Layer Testing
	14.3.1 General Testing Overview
	14.3.2 Algorithms
	14.3.3 Algorithm 1a: Multiple Write Streaming
	14.3.4 Algorithm 1b: Multiple Write Streaming with Bogus Writes
	14.3.5 Algorithm 2: Producer Consumer Test
	14.3.6 Test Descriptions
	14.3.6.1 Application Layer/Transaction Layer Tests

	14.4 ARB/MUX
	14.4.1 Reset to Active Transition
	14.4.2 ARB/MUX Multiplexing (Requires Protocol Analyzer)
	14.4.3 Active to L1.x Transition (If Applicable)
	14.4.4 L1.x State Resolution (If Applicable)
	14.4.5 Active to L2 Transition
	14.4.6 L1 to Active Transition (If Applicable)
	14.4.7 Reset Entry
	14.4.8 Entry into L0 Synchronization (Requires Protocol Analyzer)
	14.4.9 ARB/MUX Tests Requiring Injection Capabilities
	14.4.9.1 ARB/MUX Bypass (Requires Protocol Analyzer)
	14.4.9.2 Repeated ALMP Request
	14.4.9.3 PM State Request Rejection (Requires Protocol Analyzer)
	14.4.9.4 Unexpected Status ALMP
	14.4.9.5 ALMP Error
	14.4.9.6 Recovery Re-entry

	14.5 Physical Layer
	14.5.1 Protocol ID Checks (Requires Protocol Analyzer)
	14.5.2 NULL Flit (Requires Protocol Analyzer)
	14.5.3 EDS Token (Requires Protocol Analyzer)
	14.5.4 Correctable Framing Error
	14.5.5 Uncorrectable Framing Error
	14.5.6 Unexpected Protocol ID
	14.5.7 Sync Header Bypass (Requires Protocol Analyzer) (If Applicable)
	14.5.8 Link Speed Advertisement (Requires Protocol Analyzer)
	14.5.9 Idle Transition to L0 (Requires Protocol Analyzer)
	14.5.10 Drift Buffer (If Applicable)
	14.5.11 SKP OS Scheduling/Alternation (Requires Protocol Analyzer) (If Applicable)
	14.5.12 SKP OS Exiting the Data Stream (Requires Protocol Analyzer) (If Applicable)
	14.5.13 Link Speed Degradation - CXL Mode
	14.5.14 Link Speed Degradation Below 8GT/s
	14.5.15 Tests Requiring Injection Capabilities
	14.5.15.1 TLP Ends On Flit Boundary (Requires Protocol Analyzer)
	14.5.15.2 Failed CXL Mode Link Up

	14.6 Configuration Register Tests
	14.6.1 Device Presence.
	14.6.2 Flex Bus Device DVSEC Capability Header
	14.6.3 DVSEC Capability Structure
	14.6.4 DVSEC Control Structure
	14.6.5 DVSEC Control Lock

	14.7 Memory Device Tests
	14.7.1 Flex Bus Range 1
	14.7.2 Flex Bus Range 2

	14.8 Memory Mapped Registers
	14.8.1 RCRB MEMBAR0 location

	14.9 Reset and Initialization Tests
	14.9.1 Warm Reset Test
	14.9.2 Cold Reset Test
	14.9.3 Sleep State Test
	14.9.4 Function Level Reset Test
	14.9.5 Flex Bus Range Setup Time
	14.9.6 FLR Memory

	14.10 Reliability, Availability, and Serviceability
	14.10.1 RAS Configuration
	14.10.1.1 AER Support
	14.10.1.2 CXL.io Poison Injection from Device to Host
	14.10.1.3 CXL.cache Poison Injection
	14.10.1.4 CXL.cache CRC Injection (Protocol Analyzer Required)
	14.10.1.5 CXL.mem Poison Injection
	14.10.1.6 CXL.mem CRC Injection (Protocol Analyzer Required)
	14.10.1.7 Flow Control Injection
	14.10.1.8 Unexpected Completion Injection
	14.10.1.9 Completion Timeout

	14.11 Device Capability and Test Configuration Control
	14.11.1 CXL Device Test Capability Advertisement
	14.11.2 Device Capabilities to Support the Test Algorithms
	14.11.3 Debug Capabilities in Device
	14.11.3.1 Error Logging
	14.11.3.2 Event Monitors

	Appendix A Taxonomy
	A.1 Accelerator Usage Taxonomy
	A.2 Bias Model Flow Example – From CPU
	A.3 CPU Support for Bias Modes
	14.11.4 Directory in Accelerator Attached Memory

	A.4 Giant Cache Model

