
Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Rev. 3.0

1

Errata for the Compute Express
Link Specification Revision 3.0

 December 13, 2023

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 2

LEGAL NOTICE FOR THIS SPECIFICATION FROM COMPUTE EXPRESS LINK CONSORTIUM, INC.

© 2023 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.

This CXL Errata for the Compute Express Link Specification (this “CXL Specification” or this
“document”) is owned by and is proprietary to Compute Express Link Consortium, Inc., a Delaware
nonprofit corporation (sometimes referred to as “CXL” or the “CXL Consortium” or the “Company”)
and/or its successors and assigns.

NOTICE TO USERS WHO ARE MEMBERS OF THE CXL CONSORTIUM:

Members of the CXL Consortium (sometimes referred to as a “CXL Member”) must be and remain in
compliance with all of the following CXL Consortium documents, policies and/or procedures
(collectively, the “CXL Governing Documents”) in order for such CXL Member’s use and/or
implementation of this CXL Specification to receive and enjoy all of the rights, benefits, privileges and
protections of CXL Consortium membership: (i) CXL Consortium’s Intellectual Property Policy; (ii) CXL
Consortium’s Bylaws; (iii) any and all other CXL Consortium policies and procedures; and (iv) the CXL
Member’s Participation Agreement.

NOTICE TO NON-MEMBERS OF THE CXL CONSORTIUM, INC.:

If you are not a CXL Member and you have obtained a copy of this CXL Specification, you only have a
right to review this document or make reference to or cite this document. Any references or citations
to this document must acknowledge the Compute Express Link Consortium, Inc’s sole and exclusive
copyright ownership of this CXL Specification. The proper copyright citation or reference is as follows:
“© 2023 COMPUTE EXPRESS LINK CONSORTIUM, INC. ALL RIGHTS RESERVED.” When making any
such citation or reference to this document you are not permitted to revise, alter, modify, make any
derivatives of, or otherwise amend the referenced portion of this document in any way without the
prior express written permission of the Compute Express Link Consortium, Inc.

Nothing contained in this CXL Specification shall be deemed as granting (either expressly or impliedly)
to any party that is not a CXL Member: (ii) any kind of license to implement or use this CXL
Specification or any portion or content described or contained therein, or any kind of license in or to
any other intellectual property owned or controlled by the CXL Consortium, including without limitation
any trademarks of the CXL Consortium; or (ii) any of the rights, benefits, privileges or protections
given to a CXL Member under any CXL Governing Documents. For clarity, and without limiting the
foregoing notice in any way, if you are not a CXL Member but still elect to implement this CXL
Specification or any portion described herein, you are hereby given notice that your election to do so
does not give you any of the rights, benefits, and/or protections of the CXL Members, including
without limitation any of the rights, benefits, privileges or protections given to a CXL Member under
the CXL Consortium’s Intellectual Property Policy.

LEGAL DISCLAIMERS FOR, AND ADDITIONAL NOTICE TO, ALL PARTIES:

THIS DOCUMENT AND ALL SPECIFICATIONS AND/OR OTHER CONTENT PROVIDED HEREIN ARE
PROVIDED ON AN “AS IS” BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
COMPUTE EXPRESS LINK CONSORTIUM, INC (ALONG WITH THE CONTRIBUTORS TO THIS
DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, WARRANTIES AND/OR COVENANTS, EITHER
EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LAW, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE,
VALIDITY, AND/OR NON-INFRINGEMENT. In the event this CXL Specification makes any references
(including without limitation any incorporation by reference) to another standard’s setting
organization’s or any other party’s (“Third Party”) content or work, including without limitation any
specifications or standards of any such Third Party (“Third Party Specification”), you are hereby
notified that your use or implementation of any Third Party Specification: (i) is not governed by any of
the CXL Governing Documents; (ii) may require your use of a Third Party’s patents, copyrights or
other intellectual property rights, which in turn may require you to independently obtain a license or
other consent from that Third Party in order to have full rights to implement or use that Third Party
Specification; and/or (iii) may be governed by the intellectual property policy or other policies or
procedures of the Third Party which owns the Third Party Specification. Any trademarks or service
marks of any Third Party which may be referenced in this CXL Specification is owned by the respective
owner of such marks. The COMPUTE EXPRESS LINK®, CXL® and CXL LOGO trademarks (the “CXL

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 3

Trademarks”) are all owned by the Company and are registered trademarks in the United States and
in other jurisdictions. All rights are reserved in all of the CXL Trademarks.

NOTICE TO ALL PARTIES REGARDING THE PCI-SIG UNIQUE VALUE PROVIDED IN THIS
SPECIFICATION DOCUMENT:

NOTICE TO USERS: THE UNIQUE VALUE THAT IS PROVIDED IN THIS SPECIFICATION FOR USE IN
VENDOR DEFINED MESSAGE FIELDS, DESIGNATED VENDOR SPECIFIC EXTENDED CAPABILITIES,
AND ALTERNATE PROTOCOL NEGOTIATION ONLY AND MAY NOT BE USED IN ANY OTHER MANNER,
AND A USER OF THE UNIQUE VALUE MAY NOT USE THE UNIQUE VALUE IN A MANNER THAT (A)
ALTERS, MODIFIES, HARMS OR DAMAGES THE TECHNICAL FUNCTIONING, SAFETY OR SECURITY OF
THE PCI-SIG* ECOSYSTEM OR ANY PORTION THEREOF, OR (B) COULD OR WOULD REASONABLY BE
DETERMINED TO ALTER, MODIFY, HARM OR DAMAGE THE TECHNICAL FUNCTIONING, SAFETY OR
SECURITY OF THE PCI-SIG ECOSYSTEM OR ANY PORTION THEREOF (FOR PURPOSES OF THIS
NOTICE, “PCI-SIG ECOSYSTEM” MEANS THE PCI-SIG SPECIFICATIONS, MEMBERS OF PCI-SIG AND
THEIR ASSOCIATED PRODUCTS AND SERVICES THAT INCORPORATE ALL OR A PORTION OF A PCI-
SIG SPECIFICATION AND EXTENDS TO THOSE PRODUCTS AND SERVICES INTERFACING WITH PCI-
SIG MEMBER PRODUCTS AND SERVICES).

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 4

Contents

G1 Section 3.3.7 and Section 4.3, BIRsp PBR message requires SPID field 6

G2 Latency-Optimized Empty Flits Allocate to Tx Retry Buffer 8

G3 Latency-Optimized Flit Processing When Even CRC Fails on Replayed Flit 10

G4 Table 4-19 IDE.TMAC and IDE.MAC messages ... 14

G5 Figure 4-70 and Figure 4-71 Late Viral injection in 256B Flits (Standard and LatOpt)
.. 15

G6 CXL Link Capability Version .. 16

G7 Deprecate the Trust_Level field in the Cache ID Decoder 17

G8 Correct the TLP Type field in PM VDM Header - Flit Mode 19

G9 Disambiguate between Message Tag fields .. 19

G10 Correct Offsets in Identify Output Payload data structure 20

G11 Sync Header Bypass Enable Not Applicable at 64 GT/s and Ordered Set Insertion
Interval ... 20

G12 Empty Flits Allocate to Tx Retry Buffer .. 22

G13 CXL.cachemem Retry in 68B Flit mode corrections 24

G14 Clarifications from PCIe L0p errata ... 28

G15 CXL Viral Handling .. 29

G16 H2D Req Targeting Local Memory of Type 2 Devices 29

G17 Buried State on Memory Protocol (replaced by G24) 30

G18 Clarify Uncorrectable Error Severity Control ... 31

G19 Clarify HDM Decoder Functionality .. 31

G20 IDE and LOpt Interactions ... 33

G21 ARB/MUX Error Mark Register attributes and defaults 34

G22 Miscellaneous DCD Clarifications .. 35

G23 Scan Media Clarifications ... 40

G24 CXL.io Throttling Typo in Flit Type .. 41

G25 Unexpected Flit Type Error in 256B Flit Mode ... 41

G26 Buried State on Memory Protocol ... 42

G27 Responses for Requests Targeting NXM .. 43

G28 Reserved Bit field forwarding ... 44

G29 S2M Opcodes for 256B Flit only .. 45

G30 Chapter 7 Errata .. 46

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 5

Revision History

Revision Description Date

1.0 First Release: G1-G2 August 30, 2022

2.0 Second Release: G3-G23; G2 no longer valid, replaced by G12 April 13, 2023

3.0 Third Release: G24-G30; G17 no longer valid, replaced by G26 December 13,
2023

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 6

G1 Section 3.3.7 and Section 4.3, BIRsp PBR message
requires SPID field

The specification is missing the SPID in the PBR-format version of the BIRsp message, and this field is
required to make FAM device memory isolation secure. For G-FAM, the GFD uses the SPID to associate
the BIRsp with its outstanding BISnp. For an LD-FAM MLD connected via a PBR Edge Port, the Edge
Port uses the SPID to determine the appropriate LD-ID to use in an HBR-format BIRsp message going
to the MLD, which may pass through one or more HBR switches below the PBR switch. The security
model will be covered in later specification updates.

3.3.7 M2S Back-Invalidate Response (BIRsp)

The Back-Invalidate Response (BIRsp) message class contains response messages from the Master to
the Subordinate as a result of Back-Invalidate Snoops. This message class is not supported in 68B Flit
mode.

Table 3-37 M2S BIRsp Fields

Field

Width (Bits)

Description
68B
Flit

256B
Flit

PBR
Flit

Valid

N/A

1 The valid signal indicates that this is a valid response

Opcode 4 Response type with encodings in Table 3-38

BI-ID 12 0
BI-ID of the device that is the destination of the message. See
Section 9.14 for details on how this field is assigned to devices.
Not applicable in PBR messages where DPID infers this field.

BITag 12 Tracking ID from the device

LowAddr 2

The lower 2 bits of Cacheline address (Address[7:6]). This is
needed to differentiate snoop responses when a Block Snoop is
sent and receives snoop response for each cacheline.
For block response (opcode names *Blk), this field is Reserved.

DPID 0 12 Destination Port ID

SPID 0 12 Source Port ID

RSVD 9

Total 40 5240

4.3 CXL.cachemem Link Layer 256B Flit Mode
<Below are various tables and slot formats that need to need to reflect the larger PBR message size>

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 7

Table 4-14. 256B G-Slot Formats

Format SlotFmt
Encoding

HBR PBR

Messages Downstrea
m Upstream

Length
in Bits
(Max
124)

Messages
Length
in Bits

(Max 124)

G0 0000b H2D REQ + H2D RSP X 112 H2D Req 92

G1 0001b 3 H2D RSP X 120 2 H2D RSP 96

G2 0010b D2H Req + 2 D2H RSP X 124 D2H REQ 96

G3 0011b 4 D2H RSP X 96 3 D2H RSP 108

G4 0100b M2S REQ X 100 M2S Req 120

G5 0101b 3 M2S BIRsp X 120 23 M2S BIRsp 10420

G6 0110b S2M BISnp + S2M NDR X 124 S2M BISnp 96

G7 0111b 3 S2M NDR X 120 2 S2M NDR 96

G8 1000b

RSVD RSVD
G9 1001b

G10 1010b

G11 1011b

G12 1100b 4 H2D DH X 112 3 H2D DH 108

G13 1101b 4 D2H DH X 96 3 D2H DH 108

G14 1110b M2S RwD X 104 M2S RwD 124

G15 1111b 3 S2M DRS X 120 2 S2M DRS 96

Table 4-15. 256B H-Slot Formats

Format SlotFmt
Encoding

HBR PBR

Messages Downstream Upstream

Length
in Bits
(Max
108)

Messages
Length
in Bits

(Max 108)

H0 0000b H2D REQ X 72 H2D Req 92

H1 0001b 2 H2D RSP X 80 2 H2D RSP 96

H2 0010b D2H Req + 1 D2H RSP X 100 D2H REQ 96

H3 0011b 4 D2H RSP X 96 3 D2H RSP 108

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 8

H4 0100b M2S REQ X 100 M2S Req
(Zero Extended) 108 (120)

H5 0101b 2 M2S BIRsp X 80 2 M2S BIRsp 80104

H6 0110b S2M BISnp X 84 S2M BISnp 96

H7 0111b 2 S2M NDR X 80 2 S2M NDR 96

H8 1000b LLCTRL LLCTRL

H9 1001b

RSVD

RSVD

H10 1010b

H11 1011b

H12 1100b 3 H2D DH X 84 3 H2D DH 108

H13 1101b 4 D2H DH X 96 3 D2H DH 108

H14 1110b M2S RwD X 104 M2S RwD
(Zero Extended) 108 (124)

H15 1111b 2 S2M DRS X 80 2 S2M DRS 96

<Figure below replaces the CXL3 figure>

Figure 4-57. 256B Packing: G5/H5 PBR Messages

G2 Latency-Optimized Empty Flits Allocate to Tx Retry Buffer
This errata is no longer valid and has been replaced with errata G12.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 9

Currently, CXL.cachemem Empty flits are not allocated to the Tx Retry Buffer. This errata makes a
change to allocate Latency-Optimized Empty Flits to the Tx Retry Buffer. Note, Standard Empty Flits
are not impacted by this errata.

In Section 6.2.3.11, make the following update:

The 2 bytes of Flit Header as defined in Table 6-5 are transmitted as the first two bytes
of the flit. The 2-bit Flit Type field indicates whether the flit carries CXL.io traffic,
CXL.cachemem traffic, ALMPs, IDLE flits, Empty flits, or NOP flits. Please refer to
Section 6.2.3.1.1.1 for more details. The Prior Flit Type definition is as defined in PCIe
Base Specification; it enables the receiver to know that the prior flit was an non-retryable Empty flit,
NOP flit, or IDLE flit, and thus does not require replay (i.e., can be discarded) if it has a
CRC error. The Type of DLLP Payload definition is as defined in PCIe Base Specification
for CXL.io flits; otherwise, this bit is reserved. The Replay Command[1:0] and Flit
Sequence Number[9:0] definitions are as defined in PCIe Base Specification.

In Table 6-5, make the following update:

Table 6-5. 256B Flit Header

Flit Header Field Flit Header
Bit Location Description

Flit Type[1:0] [7:6]

• 00b = Physical Layer IDLE flit or Physical
Layer NOP flit or CXL.io NOP flit
• 01b = CXL.io Payload flit
• 10b = CXL.cachemem Payload flit or
CXL.cachemem generated Empty flit
• 11b = ALMP
Please refer to Table 6-6 for more details.

Prior Flit Type [5]

• 0 = Prior flit was an non-retryable Empty,
NOP, or IDLE flit (not allocated into Replay
buffer)
• 1 = Prior flit was a Payload flit or retryable
Empty flit (allocated into Replay buffer)

Type of DLLP Payload [4]

• If (Flit Type = (CXL.io Payload or CXL.io
NOP): Use as defined in PCIe Base
Specification
• If (Flit Type != (CXL.io Payload or CXL.io
NOP)): Reserved

Replay Command[1:0] [3:2] Same as defined in PCIe Base Specification.

Flit Sequence
Number[9:0] {[1:0], [15:8]} 10-bit Sequence Number as defined in PCIe

Base Specification

In section 6.2.3.1.1.1, make the following update:

A Flit Type encoding of 10b indicates either a flit with valid CXL.cachemem Payload flit
or a CXL.cachemem Empty flit; this enables CXL.cachemem to minimize idle to valid
traffic transitions by arbitrating for use of the ARB/MUX transmit data path even while it
does not have valid traffic to send so that it can potentially fill later slots in the flit with
late arriving traffic, instead of requiring CXL.cachemem to wait until the next 256-byte

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 10

flit boundary to begin transmitting valid traffic. CXL.cachemem Empty flits associated with standard
256B flits are non-retryable and must not be allocated into the transmit retry buffer or receive retry
buffer. On the other hand, CXL.cachemem Empty flits associated with latency-optimized 256B flits are
retryable and must be allocated into the transmit retry buffer.

Table 6-5. Flit Type[1:0]

Encoding Flit Payload Source Description
Allocated
to Retry
Buffer?

00b

Physical Layer
NOP

Physical
Layer

Physical Layer generated (and sunk) flit with
no valid payload; inserted in the data stream
when its Tx retry buffer is full and it is
backpressuring the upper layer or when no
other flits from upper
layers are available to transmit.

No

IDLE

Physical Layer generated (and consumed) all
0s payload flit used to facilitate LTSSM
transitions as described in PCIe Base
Specification

No

CXL.io NOP CXL.io
Link Layer

Valid CXL.io DLLP payload (no TLP payload);
periodically inserted by the CXL.io link layer
to satisfy the PCIe Base Specification
requirement for a credit update interval if no
other CXL.io flits are available to transmit.

No

01b CXL.io Payload Valid CXL.io TLP and valid DLLP payload Yes

10b

CXL.cachemem
Payload

CXL.cache
mem Link
Layer

Valid CXL.cachemem slot and/or
CXL.cachemem credit payload Yes

CXL.cachemem
Empty

No valid CXL.cachemem payload; generated
when CXL.cachemem link layer speculatively
arbitrates to transfer a flit to reduce idle to
valid transition time but no valid
CXL.cachemem payload arrives in time to
use any slots in the flit.

If non-
retryable:
No

If
retryable:
Allocate
to Tx
Retry
Buffer
only

11b ALMP ARB/MUX ARB/MUX Link Management Packet Yes

G3 Latency-Optimized Flit Processing When Even CRC Fails on
Replayed Flit

This errata corrects Table 6-7 to specify that if the even half of the flit fails CRC checking on the
retransmitted flit that an FEC decode and correct operation must be performed. Currently, the
specification incorrectly states that if the even half had been previously consumed, that the odd half is
permitted to be consumed if it passes CRC. The sequence number resides in the even half and must

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 11

be checked in the retransmitted flit, thus the even half of the flit must pass CRC as a prerequisite for
consuming any part of the flit.

In Table 6-7, make the following updates:

Original Flit Post-FEC Corrected Flit Retransmitted Flit

Ev
en
CR
C

O
dd
CR
C

Action

Ev
en
CR
C

Od
d

CR
C

Subsequent
Action

Ev
en
CR
C

Od
d

CR
C

Subsequent Action

Pass
Pas
s

Consume Flit N/A N/A N/A N/A N/A N/A

Pass Fail

Permitted to
consume
even flit
half;
perform FEC
decode and
correct

Pass Pass

Consume even
flit half if not
previously
consumed (must
drop even flit
half if previously
consumed);
Consume odd flit
half

N/A N/A N/A

Pass Fail

Permitted to
consume even
flit half if not
previously
consumed;
Request Retry

Pass Pass
Consume even flit half if not previously
consumed (must drop even flit half if
previously consumed); Consume odd flit half

Pass Fail

Permitted to consume even flit half if not
previously consumed (must drop even flit half
if previously consumed); perform FEC decode
and correct

Fail
Pass
/Fail

Perform FEC decode and correct and evaluate
next steps

Fail
Pass
/Fail

Request Retry;
Log error for
even flit half if

Pass Pass
Consume even flit half if not previously
consumed (must drop even flit half if
previously consumed); Consume odd flit half

Pass Fail

Permitted to consume even flit half if not
previously consumed (must drop even flit half
if previously consumed); perform FEC decode
and correct

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 12

previously
consumed1

Fail Pass
Consume odd flit half if even flit half was
previously consumed; otherwise, pPerform FEC
decode and correct and evaluate next steps

Fail Fail
Perform FEC decode and correct and evaluate
next steps

Fail
Pas
s

Perform FEC
decode and
correct

Pass Pass Consume flit N/A N/A N/A

Pass Fail

Permitted to
consume even
flit half; Request
Retry

Pass Pass
Consume even flit half if not previously
consumed (must drop even flit half if
previously consumed); Consume odd flit half

Pass Fail
Permitted to consume even flit half if not
previously consumed; Perform FEC decode and
correct and evaluate next steps

Fail Pass
Consume odd flit half if even flit half was
previously consumed; otherwise, pPerform FEC
decode and correct and evaluate next steps

Fail Fail Perform FEC decode and correct and evaluate
next steps

Fail Pass
/Fail Request Retry

Pass Pass Consume flit

Pass Fail
Permitted to consume even flit half; Perform
FEC decode and correct and evaluate next
steps

1The receiver must not consume the FEC-corrected odd flit half that passes CRC because the FEC correction operation is
potentially suspect in this particular scenario.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 13

Fail Pass
/Fail

Perform FEC decode and correct and evaluate
next steps

Fail Fail
Perform FEC
decode and
correct

Pass Pass Consume flit N/A N/A N/A

Pass Fail

Permitted to
consume even
flit half; Request
Retry

Pass Pass
Consume even flit half if not previously
consumed (must drop even flit half if
previously consumed); Consume odd flit half

Pass Fail
Permitted to consume even flit half if not
previously consumed; Perform FEC decode and
correct and evaluate next steps

Fail Pass
Consume odd flit half if even half was
previously consumed; otherwise, pPerform FEC
decode and correct and evaluate next steps

Fail Fail Perform FEC decode and correct and evaluate
next steps

Fail Pass
/Fail Request Retry

Pass Pass Consume flit

Pass Fail
Permitted to consume even flit half; Perform
FEC decode and correct and evaluate next
steps

Fail Pass
/Fail

Perform FEC decode and correct and evaluate
next steps

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 14

G4 Table 4-19 IDE.TMAC and IDE.MAC messages
Table 4-19 indicates incorrectly that IDE.MAC message requires remaining slots to be Reserved, but
the intent is that these message should allow for protocol slots to be sent after in the same flit. These
messages are injected during normal high bandwidth traffic and are expected to occur in a flit mixed
with other protocol traffic. The description in the Security chapter reflects this expectation.

Table 4-19 also indicates incorrectly that IDE.TMAC messages can have protocol slots after the control
messages. This is not allowed as the IDE.TMAC is used to truncate a epoch when there is nothing left
to send as described in the Security Chapter.

For clarification the last column will be changed to say “Remaining Slots and CRD field are Reserved?”.
This aligns with how things were done in 68B control flit/messages and was the intent that was not
explicitly stated.

<Including only the portion of Table 4-19 showing IDE message with the fix required. The changes are
only the final column in the table inverting the Yes/No in the two rows.>

Table 4‑19. 256B Flit Mode Control Message Details

Flit
Type LLCTRL SubType SubType

Description Payload Payload Description

Remaining
Slots and
CRD field

are
Reserved?2

IDE3 0010b

0000b IDE.Idle 95:0

Payload RSVD
Message sent as part of IDE flows
to pad sequences with idle flits.
Refer to Chapter 11.0 for details
on the use of this message. Yes

0001b IDE.Start 95:0
Payload RSVD
Message sent to begin flit
encryption.

0010b IDE.TMAC 95:0

MAC Field uses all 96 bits of
payload.
Truncated MAC Message sent to
complete a MAC epoch early.
Used only when no protocol
messages exist to send.

 NoYes

0011b IDE.MAC 95:0

MAC Field uses all 96 bits of
payload.
This encoding is the standard MAC
used at the natural end of the
MAC epoch and is sent with other
protocol slots encoded within the
flit.

No

2If yes, all the slots in the current flit after this message are reserved, If no, the slots after this may carry protocol messages (header

or data).
3Supported only in H-slot.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 15

0011b IDE.MAC 95:0

MAC Field uses all 96 bits of
payload.
This encoding is the standard MAC
used at the natural end of the
MAC epoch and is sent with other
protocol slots encoded within the
flit.

Yes

0100b IDE.Stop 95:0

Payload RSVD.
Message used to disable IDE.
Refer to Chapter 11.0 for details
on the use of this message.

Others RSVD 95:0 RSVD

G5 Figure 4-70 and Figure 4-71 Late Viral injection in 256B
Flits (Standard and LatOpt)

Both Figures 4-70 and Figures 4-71 should show two back-to-back flits as being corrupted. This is
required to ensure that a full retry occurs at the receiver which is described in the text. The diagrams
should be corrected to reflect that two flits are corrupted.

Also, Figure 4-71 is incorrectly showing “FlitA-0” and “FlitA-1” re-injected in after Viral, but it should
show “FlitB*” to match the description.

<Original Diagrams below>

<Corrected diagram below>

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 16

Figure 4-70. Viral Error Message Injection Standard 256B Flit

Figure 4-71. Viral Error Message Injection LOpt 256B Flit

G6 CXL Link Capability Version
In Table 8-22 in section 8.2.4, make the following change

Capability ID Highest
Version Mandatory Not

Permitted Optional

..

CXL Link Capability

..
4 23

In section 8.2.4.4, make the following change

X2 Flit Clock

LogPhy LLRB WrPtr

LogPhy to Electrical Half Flit

Tx Link to LogPhy Half Flit

Tx Link to LogPhy Corrupt

x1 x2 x3 x4 x5 x6 x7 x8 x9

X2 Flit Clock

LogPhy LLRB WrPtr

LogPhy to Electrical Half Flit

Tx Link to LogPhy Half Flit

Tx Link to LogPhy Corrupt

x1 x2 x3 x4 x5 x6 x7 x8 x9

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 17

Bit Location Attributes Description

15:0

19:16 RO

CXL_Capability_Version: This defines the version
number of the CXL_Capability structure present.
Version 23h represents the structure as defined
in this specification.

31:20

G7 Deprecate the Trust_Level field in the Cache ID Decoder
In section 8.2.4.28.2 CXL Cache ID Decoder Control (Offset 04h), make the following changes:

19:16 RW

Local Cache ID: If Assign Cache ID Enable=1, the Port
assigns this Cache ID to the directly connected CXL.cache
device regardless of whether it is using HDM-D flows or
HDM-DB flows.
The reset default is 0h.

23:20 RsvdP Reserved

25:24 RW

Trust Level: Trust Level assigned to the directly connected
Device when Assign Cache ID=1.

00b = See Table 8-26.

01b = Reserved

10b = See Table 8-26.

11b = Reserved

The reset default is 10b.

31:2026 RsvdP Reserved

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 18

In section 9.15.2, make the following changes to Table 9-16. Downstream Port Handling of D2H
Request Messages:

Assign
Cache ID
Value

Forward
Cache ID
Value

Behavior

0 0 Discard

0 1
Forward upstream. If the message was received over a link
operating in 68B Flit Mode, the request is processed as if
CacheID field is 0.

1 0

If Trust Policy=2, discard the request.

If Trust Policy=0, sSet CacheID=Local Cache ID and forward
upstream.

Note that Trust Policy=1 is an invalid setting for a Downstream
Port.

The link between the device and the Downstream Port may be
operating in 68B Flit mode, in which case the D2H request
message received by the Downstream Port does not contain the
CacheID field.

1 1 Discard (Invalid setting)

In the Implementation Note on page 630, make the following updates
..

3. Configure the DSP of Switch S that is directly connected to Device D to assign
Cache ID=c to Device D:
 a. Forward Cache ID=0.
 b. Local Cache ID=c.
 c. Trust Level=0.
 dc. Assign Cache ID=1.

4. ..

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 19

G8 Correct the TLP Type field in PM VDM Header - Flit Mode
In Figure 3-3. CXL Power Management Messages Packet Format - Flit Mode, replace the Type field
(Byte 0 in the header) encoding to 0111_0100b from 0111_0110b as shown below

Length
00_0000_0100b

TS
000

Vendor Defined
Reserved for future

use by CXL, Sent as 0

7

+0

6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

+1 +2 +3

Type 0111_01100
(Message w Data, Local
terminate at Receiver)

TC
000

Reserved

Requester ID
Message Code

Vendor Defined Type 0=
0111_1110

PCIe
VDM

Type 0
Header Vendor ID

 CXL = 1E98h

CXL VDM Code = CXL PM
Message = 68hReserved

OHC
00000

Attr
000

E
P

Same as Non-flit Mode

4
DWORDs
of Data
Payload

G9 Disambiguate between Message Tag fields
In Section 8.2.9.2.8 Event Notification (Opcode 0106h), make the following changes

..

The FM acknowledges a notification by returning a response. The component shall
retransmit the notification every 1 ms using the same Message Tag value in the CCI Message (Figure
7-19) transport header until the FM has returned a response with the ‘Success’ return code,
up to a maximum of 10 retries. No additional Event Notifications shall be sent until the
component has received a response from the FM.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 20

G10 Correct Offsets in Identify Output Payload data structure
In Section 8.2.9.1.1 Identify (Opcode 0001h), make the following changes to Table 8-37

Byte Offset Length
in Bytes Description

..

08h 8
Device Serial Number: Unique identifier for this device, as defined
in the Device Serial Number Extended Capability in PCIe Base
Specification

106h 1

Maximum Supported Message Size: The maximum supported size
of the full message body (as defined in Figure 7-19) in bytes for
any requests sent to this component, expressed as 2^n. The
minimum supported size is 256 bytes (n=8) and the maximum
supported size is 1 MB (n=20). This field is used by the caller to
limit the Message Payload size such that the size of the Message
Body does not exceed the capabilities of the component. The
component shall discard any received messages that exceed the
maximum size advertised in this field in a manner that prevents any
internal receiver hardware errors. The component shall return a
response message with the ‘Invalid Payload Length’ return code for
all received request messages that exceed the maximum size
advertised in this field. The CXL specification guarantees that the
size of the Identify Output Payload shall never exceed 244 Bytes
(256 – 12 Bytes, the combined size of the fields preceding Message
Payload).

117h 1

Component Type: Indicates the type of component.

00h – Switch.

03h – Type 3 Device.

All other encodings are reserved.

G11 Sync Header Bypass Enable Not Applicable at 64 GT/s and
Ordered Set Insertion Interval

The Sync Header Bypass optimization is applicable at 8 GT/s, 16 GT/s, and 32 GT/s. The current
specification incorrectly states in some places that it is applicable only for 68B Flit mode or not
applicable to 256B Flit mode; this errata corrects those inconsistent statements. Additionally, the
Ordered Set insertion interval is correctly specified in Table 6-15; however the text in the body of the

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 21

spec was inconsistent with the table, so this errata corrects that text. It also updates the compliance
chapter to be consistent with this change.

In section 6.4.1 make the following updates:

Upon exit from LTSSM Detect, a Flex Bus link begins training and completes link width
negotiation and speed negotiation according to the PCIe LTSSM rules. During link
training, the Downstream Port initiates Flex Bus mode negotiation via the PCIe
alternate protocol negotiation mechanism. Flex Bus mode negotiation is completed
before entering L0 at 2.5 GT/s. If Sync Header bypass is negotiated (applicable only to 8 GT/s, 16
GT/s and 32 GT/s link speeds68B Flit mode), Sync Headers are bypassed as soon as the link has

In table 6-11, make the following updates:

Bit[10]: Sync Header
Bypass Capable/Enable

The Downstream Port, Upstream Port, and any retimers advertise
their capability in Phase 1; the Downstream Port and Upstream Port
advertisethe value as set in the DVSEC Flex Bus Port Control
register2. The Downstream Port communicates the results of the
negotiation in Phase 2.

Note: The Retimer must pass this bit unmodified from its Upstream
Pseudo Port to its Downstream Pseudo Port. The retimer clears this
bit if the retimer does not support this feature when passing from its
Downstream Pseudo Port to its Upstream Pseudo Port, but it must
never set this bit (only an Upstream Port can set this bit in that
direction). If the retimer(s) do not advertise that they are CXL
aware, the Downstream Port assumes that this feature is not
supported by the Retimer(s) regardless of how this bit is set.

Note: This bit is not applicable when 256B Flit mode is negotiated
and must therefore be ignored in that case. This bit is only
applicable at 8 GT/s, 16 GT/s, and 32 GT/s link speeds.

In Section 6.8, make the following updates:

The Sync Header Bypass optimization applies only at 8 GT/s, 16 GT/s, and 32 GT/s link
speeds. At 64 GT/s link speeds, 1b/1b encoding is used as specified in PCIe Base Specification; thus,
the Sync Header Bypass optimization is not applicable. If PCIe Flit Mode is not enabled and the Sync
Header Bypass optimization is enabled, then the CXL specification dictates insertion of Ordered Sets at
a fixed interval. If PCIe Flit Mode is enabled or Sync Header Bypass is not enabled, the Ordered Set
insertion rate follows the PCIe Base Specification.

In Section 8.2.1.3.2, make the following update to the Flex Bus Port Control register:

3 HwInit CXL_Sync_Hdr_Bypass_Enable: When set, enables bypass of the 2-
bit sync header by the Flex Bus physical layer when operating in Flex
Bus.CXL mode. This is a performance optimization. This bit is reserved
for 256B Flit mode.

In Section 8.2.1.3.3, make the following update to the Flex Bus Port Status register:

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 22

3 RO CXL_Sync_Hdr_Bypass_Enabled: When set, indicates that bypass of
the 2-bit sync header by the Flex Bus physical layer has been enabled
when operating in Flex Bus.CXL mode as a result of PCIe alternate
protocol negotiation for Flex Bus. This bit is reserved for 256B Flit mode.

In Chapter 14 “CXL Compliance Testing”, move 14.6.1.9 to 14.6.13.

G12 Empty Flits Allocate to Tx Retry Buffer
This errata replaces Errata G2. Errata G2 introduced changes to allocate CXL.cachemem Latency-
Optimized Empty Flits to the Tx Retry Buffer. This errata allocates all CXL.cachemem Empty Flits to
the Tx Retry Buffer.

In Section 6.2.3.1. 1, make the following update:

The 2 bytes of Flit Header as defined in Table 6-5 are transmitted as the first two bytes
of the flit. The 2-bit Flit Type field indicates whether the flit carries CXL.io traffic,
CXL.cachemem traffic, ALMPs, IDLE flits, Empty flits, or NOP flits. Please refer to
Section 6.2.3.1.1.1 for more details. The Prior Flit Type definition is as defined in PCIe
Base Specification; it enables the receiver to know that the prior flit was an Empty flit,
a NOP flit, or IDLE flit, and thus does not require replay (i.e., can be discarded) if it has a
CRC error. The Type of DLLP Payload definition is as defined in PCIe Base Specification
for CXL.io flits; otherwise, this bit is reserved. The Replay Command[1:0] and Flit
Sequence Number[9:0] definitions are as defined in PCIe Base Specification.

In Table 6-5, make the following update:

Table 6-5. 256B Flit Header

Flit Header Field Flit Header
Bit Location Description

Flit Type[1:0] [7:6]

• 00b = Physical Layer IDLE flit or Physical
Layer NOP flit or CXL.io NOP flit
• 01b = CXL.io Payload flit
• 10b = CXL.cachemem Payload flit or
CXL.cachemem generated Empty flit
• 11b = ALMP
Please refer to Table 6-6 for more details.

Prior Flit Type [5]
• 0 = Prior flit was an Empty, NOP, or IDLE
flit (not allocated into Replay buffer)
• 1 = Prior flit was a Payload flit or Empty flit
(allocated into Replay buffer)

Type of DLLP Payload [4]

• If (Flit Type = (CXL.io Payload or CXL.io
NOP): Use as defined in PCIe Base
Specification
• If (Flit Type != (CXL.io Payload or CXL.io
NOP)): Reserved

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 23

Replay Command[1:0] [3:2] Same as defined in PCIe Base Specification.

Flit Sequence
Number[9:0] {[1:0], [15:8]} 10-bit Sequence Number as defined in PCIe

Base Specification

In section 6.2.3.1.1.1, make the following update:

A Flit Type encoding of 10b indicates either a flit with valid CXL.cachemem Payload flit
or a CXL.cachemem Empty flit; this enables CXL.cachemem to minimize idle to valid
traffic transitions by arbitrating for use of the ARB/MUX transmit data path even while it
does not have valid traffic to send so that it can potentially fill later slots in the flit with
late arriving traffic, instead of requiring CXL.cachemem to wait until the next 256-byte
flit boundary to begin transmitting valid traffic. CXL.cachemem Empty flits are non-retryable and must
not be allocated into the transmit retry buffer or receive retry buffer. CXL.cachemem Empty flits are
retryable and must be allocated into the transmit retry buffer.

Table 6-5. Flit Type[1:0]

Encoding Flit Payload Source Description
Allocated
to Retry
Buffer?

00b

Physical Layer
NOP

Physical
Layer

Physical Layer generated (and sunk) flit with
no valid payload; inserted in the data stream
when its Tx retry buffer is full and it is
backpressuring the upper layer or when no
other flits from upper
layers are available to transmit.

No

IDLE

Physical Layer generated (and consumed) all
0s payload flit used to facilitate LTSSM
transitions as described in PCIe Base
Specification

No

CXL.io NOP CXL.io
Link Layer

Valid CXL.io DLLP payload (no TLP payload);
periodically inserted by the CXL.io link layer
to satisfy the PCIe Base Specification
requirement for a credit update interval if no
other CXL.io flits are available to transmit.

No

01b CXL.io Payload Valid CXL.io TLP and valid DLLP payload Yes

10b

CXL.cachemem
Payload

CXL.cache
mem Link
Layer

Valid CXL.cachemem slot and/or
CXL.cachemem credit payload Yes

CXL.cachemem
Empty

No valid CXL.cachemem payload; generated
when CXL.cachemem link layer speculatively
arbitrates to transfer a flit to reduce idle to
valid transition time but no valid
CXL.cachemem payload arrives in time to
use any slots in the flit.

No

Yes,
allocate
to Tx
Retry
Buffer
only

11b ALMP ARB/MUX ARB/MUX Link Management Packet Yes

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 24

G13 CXL.cachemem Retry in 68B Flit mode corrections
In Section 4.2.8.5.1, make the following updates:

4.2.8.5.1 Local Retry State Machine (LRSM)

This state machine is activated at the entity that detects an error on a received flit. The possible
states for this state machine are:

 • RETRY_LOCAL_NORMAL: This is the initial or default state indicating normal operation (no CRC
error has been detected).

 • RETRY_LLRREQ: This state indicates that the receiver has detected an error on a received flit and
a RETRY.Req sequence must be sent to the remote entity.

 • RETRY_LOCAL_IDLE: This state indicates that the receiver is waiting for a RETRY.Ack sequence
from the remote entity in response to its RETRY.Req sequence. The implementation may require
substates of RETRY_LOCAL_IDLE to capture, for example, the case where the last flit received is a
Frame flit and the next flit expected is a RETRY.Ack.

 • RETRY_PHY_REINIT: The state machine remains in this state for the duration of a the virtual Link
State Machine (vLSM) being in physical layer retrain.

 • RETRY_ABORT: This state indicates that the retry attempt has failed and the link cannot recover.
Error logging and reporting in this case is device specific. This is a terminal state.

The local retry state machine also has the three counters described below. The counters and
thresholds described below are implementation specific.

 • TIMEOUT: This counter is enabled whenever a RETRY.Req request is sent from an entity
and the LRSM state becomes RETRY_LOCAL_IDLE. The TIMEOUT counter is disabled
and the counting stops when the LRSM state changes to some state other than
RETRY_LOCAL_IDLE. The TIMEOUT counter is reset to 0 at link layer initialization and
whenever the LRSM state changes from RETRY_LOCAL_IDLE to
RETRY_LOCAL_NORMAL or RETRY_LLRREQ. The TIMEOUT counter is also reset
when the vLSM transitions from Retrain to Active Physical layer returns from re-initialization (the
LRSM transition through RETRY_PHY_REINIT to RETRY_LLRREQ). If the counter has
reached its threshold without receiving a RETRY.Ack sequence, then the RETRY.Req
request is sent again to retry the same flit. See Section 4.2.8.5.2 for a description of when
TIMEOUT increments.

Note: It is suggested that the value of TIMEOUT should be no less than 4096 transfers.
 • NUM_RETRY: This counter is used to count the number of RETRY.Req requests sent to

retry the same flit. The counter remains enabled during the whole retry sequence (state is not
RETRY_LOCAL_NORMAL). It is reset to 0 at initialization. It is also reset to 0 when a
RETRY.Ack sequence is received with the Empty bit set or whenever the LRSM state is
RETRY_LOCAL_NORMAL and an error-free retryable flit is received. The counter is
incremented whenever the LRSM state changes from RETRY_LLRREQ to
RETRY_LOCAL_IDLE. If the counter reaches a threshold (called MAX_NUM_RETRY),
then the local retry state machine transitions to the RETRY_PHY_REINIT. The
NUM_RETRY counter is also reset when the vLSM transitions from Retrain to Active Physical
layer exits from LTSSM recovery state (the LRSM transition through RETRY_PHY_REINIT to
RETRY_LLRREQ).

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 25

Note: It is suggested that the value of MAX_NUM_RETRY should be no less than Ah.

 • NUM_PHY_REINIT: This counter is used to count the number of transitions to
RETRY_PHY_REINITphysical layer re-initializations generated during an LLR sequence due to the
number of retries exceeding MAX_NUM_RETRY. The counter remains enabled during the whole
retry sequence (state is not RETRY_LOCAL_NORMAL). It is reset to 0 at initialization and after
successful completion of the retry sequence. The counter is incremented whenever the LRSM
changes from RETRY_LLRREQ to RETRY_PHY_REINIT due to the number of retries exceeding
MAX_NUM_RETRY. If the counter reaches a threshold (called MAX_NUM_PHY_REINIT) instead of
transitioning from RETRY_LLRREQ to RETRY_PHY_REINIT, the LRSM will transition to
RETRY_ABORT. The NUM_PHY_REINIT counter is also reset whenever a RETRY.Ack sequence is
received with the Empty bit set.

Note: It is suggested that the value of MAX_NUM_PHY_REINIT should be no less than Ah.

Note that the condition of TIMEOUT reaching its threshold is not mutually exclusive with other
conditions that cause the LRSM state transitions. RETRY.Ack sequences can be assumed to never
arrive at the time that the retry requesting device times out and sends a new RETRY.Req sequence
(by appropriately setting the value of TIMEOUT – see <Link>Section 0.0.0.0.1). If this case occurs, no
guarantees are made regarding the behavior of the device (behavior is “undefined” from a Spec
perspective and is not validated from an implementation perspective). Consequently, the LLR Timeout
value should not be reduced unless it can be certain this case will not occur. If an error is detected at
the same time as TIMEOUT reaches its threshold, then the error on the received flit is ignored,
TIMEOUT is taken, and a repeat RETRY.Req sequence is sent to the remote entity.

Table 4-12 Local Retry State Transitions

Current Local Retry
State Condition Next Local Retry State Actions

RETRY_LOCAL_NORMAL An error free retryable flit is
received. RETRY_LOCAL_NORMAL

Increment NumFreeBuf using the
amount specified in the ACK or
Full_Ack fields.
Increment NumAck by 1.
Increment Eseq by 1.
NUM_RETRY is reset to 0.
NUM_PHY_REINIT is reset to 0.
Received flit is processed
normally by the link layer.

RETRY_LOCAL_NORMAL
Error free non-retryable flit
(other than RETRY.Req
sequence) is received.

RETRY_LOCAL_NORMAL Received flit is processed.

RETRY_LOCAL_NORMAL Error free RETRY.Req sequence
is received. RETRY_LOCAL_NORMAL RRSM is updated.

RETRY_LOCAL_NORMAL Error is detected on a received
flit. RETRY_LLRREQ Received flit is discarded.

RETRY_LOCAL_NORMAL PHY_RESET1 / PHY_REINIT2 is
detected. RETRY_PHY_REINIT None.

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT ==
MAX_NUM_PHY_REINIT

RETRY_ABORT Indicate link failure.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 26

RETRY_LLRREQ

NUM_RETRY ==
MAX_NUM_RETRY and
NUM_PHY_REINIT <
MAX_NUM_PHY_REINIT

RETRY_PHY_REINIT

If an error-free RETRY.Req or
RETRY.Ack sequence is received,
process the flit.
Any other flit is discarded.
RetrainRequest is sent to physical
layer. Increment
NUM_PHY_REINIT.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
RETRY.Req sequence has not
been sent.

RETRY_LLRREQ

If an error-free RETRY.Req or
RETRY.Ack sequence is received,
process the flit.
Any other flit is discarded.

RETRY_LLRREQ

NUM_RETRY <
MAX_NUM_RETRY and a
RETRY.Req sequence has been
sent.

RETRY_LOCAL_IDLE

If an error free RETRY.Req or
RETRY.Ack sequence is received,
process the flit.
Any other flit is discarded.
Increment NUM_RETRY.

RETRY_LLRREQ PHY_RESET1 / PHY_REINIT2 is
detected. RETRY_PHY_REINIT None.

RETRY_LLRREQ Error is detected on a received
flit RETRY_LLRREQ Received flit is discarded.

RETRY_PHY_REINIT Physical layer is still in reinit. RETRY_PHY_REINIT None.

RETRY_PHY_REINIT Physical layer returns from
Reinit. RETRY_LLRREQ

Received flit is discarded.
NUM_RETRY is reset to 0.

RETRY_LOCAL_IDLE

RETRY.Ack sequence is
received and NUM_RETRY from
RETRY.Ack matches the value
of the last RETRY.Req sent by
the local entity.

RETRY_LOCAL_NORMAL

TIMEOUT is reset to 0.
If RETRY.Ack sequence is
received with Empty bit set,
NUM_RETRY is reset to 0 and
NUM_PHY_REINIT is reset to 0.

RETRY_LOCAL_IDLE

RETRY.Ack sequence is
received and NUM_RETRY from
RETRY.Ack does NOT match the
value of the last RETRY.Req
sent by the local entity.

RETRY_LOCAL_IDLE Any received retryable flit is
discarded.

RETRY_LOCAL_IDLE TIMEOUT has reached its
threshold. RETRY_LLRREQ TIMEOUT is reset to 0.

RETRY_LOCAL_IDLE Error is detected on a received
flit. RETRY_LOCAL_IDLE Any received retryable flit is

discarded.

RETRY_LOCAL_IDLE
A flit other than
RETRY.Ack/RETRY.Req
sequence is received.

RETRY_LOCAL_IDLE Any received retryable flit is
discarded.

RETRY_LOCAL_IDLE A RETRY.Req sequence is
received. RETRY_LOCAL_IDLE RRSM is updated.

RETRY_LOCAL_IDLE PHY_RESET1 /
PHY_REINIT2 is detected.

RETRY_PHY_REI
NIT None.

RETRY_ABORT A flit is received. RETRY_ABORT All received flits are
discarded.

1. PHY_RESET is the condition of vLSMPhysical Layer telling the Link Layer it needs to initiate a Link Layer Retry due to exit from RetrainLTSSM Recovery
state.

2. PHY_REINIT is the condition of the Link Layer instructing the Phy to retrain

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 27

In Section 4.2.8.5.3:

4.2.8.5.3 Remote Retry State Machine (RRSM)

The remote retry state machine is activated at an entity if a flit sent from that entity is received in
error by the local receiver, resulting in a link layer retry request (RETRY.Req sequence) from the
remote entity. The possible states for this state machine are:

 • RETRY_REMOTE_NORMAL: This is the initial or default state indicating normal operation.

 • RETRY_LLRACK: This state indicates that a link layer retry request (RETRY.Req sequence) has
been received from the remote entity and a RETRY.Ack sequence followed by flits from the retry
queue must be (re)sent.

The remote retry state machine transitions are described in the table below.

Table 4-13 Remote Retry State Transition

Current Remote Retry State Condition Next Remote Retry State

RETRY_REMOTE_NORMAL Any flit, other than error free RETRY.Req sequence, is
received. RETRY_REMOTE_NORMAL

RETRY_REMOTE_NORMAL Error free RETRY.Req sequence is received. RETRY_LLRACK

RETRY_LLRACK RETRY.Ack sequence is not sent. RETRY_LLRACK

RETRY_LLRACK RETRY.Ack sequence is sent. RETRY_REMOTE_NORMAL

RETRY_LLRACK vLSM in Retrain statePhysical Layer Reinitialization. RETRY_REMOTE_NORMAL

In Section 4.2.8.6:

4.2.8.6 Interaction with vLSM Retrain StatePhysical Layer Reinitialization

On detection of a physical layer LTSSM Recovery detection by the Link Layer of the vLSM transition
from Active to Retrain state, the receiver side of the link layer must force a link layer retry on the next
flit. Forcing an error will either initiate LLR or cause a current LLR to follow the correct error path. The
LLR will ensure that no retryable flits are dropped during the physical layer reinit. Without initiating an
LLR it is possible that packets/flits in flight on the physical wires could be lost or the sequence
numbers could get mismatched.

Upon detection of a vLSM transition to Retrainphysical layer LTSSM Recovery, the LLR RRSM needs to
be reset to its initial state and any instance of RETRY.Ack sequence needs to be cleared in the link
layer and physical layer. The device needs to ensure that it receives a RETRY.Req sequence before it
transmits a RETRY.Ack sequence.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 28

G14 Clarifications from PCIe L0p errata
PCIe introduced errata for L0p section adding some rules for DLLP handling and “abandoning” the
request. This errata covers clarifications to avoid ambiguity between which rules are applicable and
which are not in CXL L0p negotiation.

In Section 5.1.2.5:

5.1.2.5 L0p Support

256B Flit mode supports L0p as defined in PCIe Base Specification; however, instead of using Link
Management DLLPs, the ARB/MUX ALMPs are used to negotiate the L0p width with the Link partner.
PCIe rules related to DLLP transmission, corruption and consequent abandonment of L0p handshakes
do not apply to CXL. This section defines the additional rules that are required when ALMPs are used
for negotiation of L0p width.

When L0p is enabled, the ARB/MUX must aggregate the requested link width indications from the
CXL.io and CXL.cachemem Link Layers to determine the L0p width for the physical link. The Link
Layers must also indicate to the ARB/MUX whether the L0p request is a priority request (e.g., such as
in the case of thermal throttling). The aggregated width must be greater than or equal to the larger
link width that is requested by the Link Layers if it is not a priority request. The aggregated width can
be greater if the ARB/MUX decides that the two protocol layers combined require a larger width than
the width requested by each protocol layer. For example, if CXL.io is requesting a width of x2, and
CXL.cachemem is requesting a width of x2, the ARB/MUX is permitted to request and negotiate x4
with the remote Link partner. The specific algorithm for aggregation is implementation specific.

In the case of a priority request from either Link Layer, the aggregated width is the lowest link width
that is priority requested by the Link Layers. The ARB/MUX uses L0p ALMP handshakes to negotiate
the L0p link width changes with its Link partner.

The following sequence is followed for L0p width changes:

 1. Each Link Layer indicates its minimum required link width to the ARB/MUX. It also indicates
whether the request is a priority request.

 2. If the ARB/MUX determines that the aggregated L0p width is different from the current width of
the physical link, the ARB/MUX must initiate an L0p width change request to the remote ARB/MUX
using the L0p request ALMP. It also indicates whether the request is a priority request in the
ALMP.

 3. The ARB/MUX must ensure that there is only one outstanding L0p request at a time to the remote
Link partner.

 4. The ARB/MUX must respond with an L0p ACK or an L0p NAK to any outstanding L0p request ALMP
within 1 microsecond. (The time is counted only during the L0 state of the physical LTSSM. Time is
measured from the receipt of the request ALMP from the Physical Layer to the scheduling of the
response ALMP from the ARB/MUX to the Physical Layer. The time does not include the time spent
by the ALMPs in the RX or TX Retry buffers.)

 5. Whether to send an L0p ACK or an L0p NAK response must be determined using the L0p
resolution rules from PCIe Base Specification.

 6. If PMTimeout (see Section 8.2.5.1) is enabled and a response is not received for an L0p Request
ALMP within the programmed time window, the ARB/MUX must treat this as an uncorrectable
internal error and escalate accordingly.

 7. Once the L0p ALMP handshake is complete, the ARB/MUX must direct the Physical Layer to take
the necessary steps for downsizing or upsizing the link, as follows:

 a. Downsizing: If the ARB/MUX receives an L0p ACK in response to its L0p request to downsize,
the ARB/MUX notifies the Physical Layer to start the flow for transitioning to the corresponding
L0p width at the earliest opportunity. If the ARB/MUX sends an L0p ACK in response to an L0p

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 29

request, the ARB/MUX notifies the Physical Layer to participate in the flow for transitioning to
the corresponding L0p width once it has been initiated by the remote partner. After a
successful L0p width change, the corresponding width must be reflected back to the Link
Layers.

 b. Upsizing: If the ARB/MUX receives an L0p ACK in response to its L0p request to upsize, the
ARB/MUX notifies the Physical Layer to immediately begin the upsizing process. If the
ARB/MUX sends an L0p ACK in response to an L0p request, the ARB/MUX notifies the Physical
Layer of the new width and an indication to wait for upsizing process from the remote Link
partner. After a successful L0p width change, the corresponding width must be reflected back
to the Link Layers.

If the Link has not reached the negotiated L0p width 24ms after the L0p ACK was sent or
received, the ARB/MUX must trigger the Physical Layer to transition the LTSSM to Recovery.

The L0p ALMP handshakes can happen concurrently with vLSM ALMP handshakes. L0p width changes
do not affect vLSM states.

In 256B Flit mode, the PCIe-defined PM and Link Management DLLPs are not applicable for CXL.io and
must not be used.

Similar to PCIe, the Physical Layer’s entry to Recovery or link down conditions restores the link to its
maximum configured width and any Physical Layer states related to L0p are reset as if no width
change request was made. The ARB/MUX must finish any outstanding L0p handshakes before
requesting the Physical Layer to enter a PM state. If the ARB/MUX is waiting for an L0p ACK or NAK
from the remote ARB/MUX when the link enters Recovery, after exit from Recovery, the ARB/MUX
must continue to wait for the L0p response, discard that response, and then, if desired, reinitiate the
L0p handshake.

G15 CXL Viral Handling
Update section 12.4 to remove timing relationship between reporting an error through AER and
generating a Viral indication.

12.4 CXL Viral Handling

CXL links and CXL devices are expected to be Viral compliant. Viral is an errorcontainment
mechanism. A platform must choose to enable Viral at boot. The Host implementation of Viral allows
the platform to enable the Viral feature by writing into a register. Similarly, a BIOS-accessible control
register on the device is written to enable Viral behavior (both receiving and sending) on the device.
Viral support capability and control for enabling are reflected in the DVSEC.

When enabled, a Viral indication is generated whenever an Uncorrected_Fatal error is detected. Viral is
not a replacement for existing error-reporting mechanisms. Instead, its purpose is an additional error-
containment mechanism. The detector of the error is responsible for reporting the error through AER
and then generating a Viral indication. Any entity that is capable of reporting Uncorrected_Fatal
errors must also be capable of generating a Viral indication.

G16 H2D Req Targeting Local Memory of Type 2 Devices
Section 3 is missing the description of the case where a Type 2 device receives a CXL.cache H2D Req
message on an address which belongs to its local memory, and the associated requirements for proper

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 30

behavior when this situation happens. This issue affects both HDM-D and HDM-DB Type 2 devices, i.e.
also affects CXL1.1 and CXL2.

Adding a new subsection 3.2.5.16 dedicated to this situation, with a brief description and associated
requirements.

3.2.5.16 H2D Req targeting Device-attached Memory

H2D Req messages are sent by a host to a device because the host believes that the device may own a
cacheline that the device previously got through this same host. The very principle of a Type 2 device
is to provide direct access to Device-attached Memory, i.e. without going through its host. Host
coherence for this region is managed using M2S Req channel. These statements combined could lead a
Type 2 device to assume that H2D Req messages can never target addresses belonging to the Device-
attached memory by design.

However, a host may decide to snoop more cache peers than strictly required, without any other
consideration than the cache peer being visible to the host. This type of behavior is allowed by the CXL
protocol and can happen for multiple reasons, including coarse tracking and proprietary RAS features.
In that context, a host may generate H2D Req to a Type 2 device on addresses that belong to the
Device-attached Memory. H2D Req from the host targeting Device-attached memory can cause
coherency issues if the device were to respond with data and, more generally speaking, protocol corner
cases.

To avoid these issues, both HDM-D and HDM-DB Type 2 devices are required to :

- Detect H2D Req targeting Device-attached Memory.

- When detected, respond with RspIHitI unconditionally, disregarding all internal states and
without changing any internal state (e.g. don’t touch the cache).

G17 Buried State on Memory Protocol (replaced by G24)
This errata is no longer valid as it is replaced by G26. The original text of the errata is preserved
below but highlighted in dark grey.

The buried cache rules added in CXL3.0 were found to be overly restrictive and need to be relaxed to
allow for hosts to resolve conflicts and without creating a very sub-optimial caching in a host for HDM-
D/DB. The updated rules in section 3.3.11.1 are captured in this errata. Example flows will be added
into future specifications to show problematic cases that drove the changes.

3.3.11.1 Buried Cache State Rules for HDM-D/HDM-DB

Buried Cache state for CXL.mem protocol refers to the state of the cacheline registered by the host’s
Home Agent logic (HA) for a cacheline address when a new Req or RwD message is being sent. This
cache state could be a cache that is controlled by the host, but does not cover the cache in the device
that is the owner of the HDM-D/HDM-DB memory. These rules are applicable to only HDM-D/HDM-DB
memory where the device is managing coherence.

Buried Cache state rules for host-issued CXL.mem Req/RwD messages:

 • Must not issue a MemRd (MetaValue=I)/MemRdData if the cacheline is buried in Modified,
Exclusive, or Shared state.

 • May not issue a MemRd (MetaValue=S) or MemRdData if the cacheline is buried in Modified or
Exclusive, but is allowed to issue when the host has Shared or Invalid.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 31

 • May issue a MemRd (MetaValue = A) from any state.

 • May issue a MemRd (MetaField = NoOp) from any state. Note that the final host cache state may
result in a downgraded state such as Invalid when initial buried state exists and conflicting BISnp
result in the buried state being downgraded.

 • Must not issue MemInv/MemInvNT if the cacheline is buried in Modified or Exclusive state. The
Device may request ownership in Exclusive state as an upgrade request from Shared state.

 • May issue MemClnEvct from Shared or Exclusive state.

 • May issue MemWr with SnpType=SnpInv only from I-state. This use of this encoding is not allow
for HDM-DB memory regions where coherence extends to multiple hosts (e.g. Coherent Shared
FAM as described in Section 2.4.4).

 • MemWr with SnpType=NoOp may only be issued from Modified state.

Error! Reference source not found.Table 3-47 summarizes the Req message and RwD message
allowance for Buried Cache state. MemRdFwd/MemWrFwd/BIConflict are excluded from this table
because they are response messages.

G18 Clarify Uncorrectable Error Severity Control
Update section 8.2.4.16.3 Uncorrectable Error Severity Register as follows

The Uncorrectable Error Severity register controls whether an individual error is reportedconsidered as
a Non-fatal or Fatal error. An error is reportedconsidered as fatal uncorrectable when the
corresponding error bit in the severity register is Set. If an error is considered fatal and viral is
enabled, a Viral indication shall be generated (see Section 12.4). If the bit is Cleared, the
corresponding error is reportedconsidered as non-fatal uncorrectable error and shall not trigger Viral
indication. This register does not control whether an error is signaled as ERR_FATAL or
ERR_NONFATAL over CXL.io.

G19 Clarify HDM Decoder Functionality

Update section 8.2.4.19.1 CXL HDM Decoder Capability Register (Offset 00h) as follows

Bit Location Attributes Description

..

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 32

22:21 HwInit

Supported Coherency Models: Indicates the coherency
models that are supported by a CXL.mem device. This
field is reserved for all other components2.
00b - Unknown
01b - Device Coherent. The Target Range Type bit in an
HDM decoder must be 0 when the HDM decoder is
committed. Otherwise, the device behavior is undefined.
10b - Host-Only. The Target Range Type bit in an HDM
decoder must be 1 when the HDM decoder is committed.
Otherwise, the device behavior is undefined.
11b - Host-Only or Device Coherent. The Target Range
Type bit in an HDM decoder is RW and may be set to
either 0 or 1 by software before committing the HDM
decoder.

31:231 RsvdP Reserved

Update section 8.2.4.19.7 CXL HDM Decoder n Control Register (Offset 20h*n+20h) as follows

Bit Location Attributes Description

..

9 RWL

Commit - Software sets this to 1 to commit Decoder n.
The locking behavior is described in Section 8.2.4.20.13.
Default value of this bit is 0.
A 1 to 0 transition of this bit shall cause the associated
Committed bit to transition from 1 to 0.

..

12 RWL / RO

Target Range Type: Formerly known as Target Device Type.
This bit is RWL for BI-capable CXL.mem devices, CXL Host
Bridges, and Upstream Switch Ports. This bit is permitted to
be RO for devices that do not support this
reconfigurabilityother than BI-capable Type 3 devices and it
may return the value of 0 or 1 to represent the only
coherency model they support.

0: Target is a Device Coherent Address range (HDM-D or
HDM-DB)

1: Target is a Host-Only Coherent Address range (HDM-H).
The locking behavior is described in Section 8.2.4.20.13.

Default value of this bit is 0.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 33

13 RWL/ RO

BI: This bit is RWL for BI-capable components. This bit is
reserved for components that do not support BI. Devices
that require BI for managing coherency are permitted to
hardwire this bit to 1.4
0: Device is not permitted to issue BISnp requests to this
range.
1: Device is permitted to issue BISnp requests to this
range.

..

Update section 8.2.4.19.12 Committing Decoder Programming as follows

Regardless of the setting of the Lock on Commit bit, the decoder logic in a UIO-capable switch or root
port shall ensure that the number of decoders configured with UIO=1 does not exceed the number of
UIO-capable decoders encoded in the CXL HDM Decoder Capability register (see Section 8.2.4.20.1).
If software attempts to violate this restriction, the decode logic shall set ErrorOnCommit=1.

If the device requires BI for managing coherency, software must ensure that BI bit in HDM Decoder
Control Register is set before committing the HDM decoder, otherwise the device operation is
undefined. Software must ensure the device and any applicable DSPs, USPs and Root Port are
configured such that the device is able to issue BISnp request before committing any HDM decoder
with BI bit set, otherwise the device operation is undefined.

Decoder logic shall set either Committed or Error Not Committed flag within 10 ms of a write to the
Commit bit.

G20 IDE and LOpt Interactions

Update section 8.2.4.21.1 CXL IDE Capability (Offset 00h) as follows

Bit
Location Attributes Description

..

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 34

23 HwInit/
RsvdP

LOpt IDE Capable:
If set, this component supports IDE when the link is operating
in latency-optimized 256B Flit Mode (see Figure 11-13 and
Figure 11-14).

If 0, this component does not support IDE when the link is
operating in latency-optimized 256B Flit Mode. If the link is
operating in latency-optimized 256B Flit Mode, the System
Firmware or System Software must clear
CXL_Latency_Optimized_256B_Flit_Enable bit the DVSEC Flex
Bus Port Control register (see Section 8.2.1.3.2) in the
Downstream Port and then retrain the link prior to enabling
IDE. Once IDE is terminated, the System Firmware or System
Software may set CXL_Latency_Optimized_256B_Flit_Enable
bit the DVSEC Flex Bus Port Control register (see Section
8.2.1.3.2) in the Downstream Port and then retrain the link so
it can transition to latency-optimized 256B flit mode.

This bit was introduced as part of Version=2.

31:243 RsvdP Reserved

G21 ARB/MUX Error Mark Register attributes and defaults

Update section 8.2.5.3 ARB/MUX Uncorrectable Error Mask Register (Offset 08h) as follows

Bit Attributes Description

0 RW1CS

PM Timeout Error Mask:

0 = PM Timeout Error is logged as an Internal Uncorrected Error in
the associated root port, similar to CXL.cachemem errors (default)

1 = PM Timeout Error is not recorded or reported

The default value for this bit is 1.

1 RW1CS

L0p Timeout Error Mask:

0 = L0p Timeout Error is logged as an Internal Uncorrected Error in
the associated root port, similar to CXL.cachemem errors (default)

1 = L0p Timeout Error is not recorded or reported

The default value for this bit is 1.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 35

31:2 RsvdZ Reserved

G22 Miscellaneous DCD Clarifications

Update Section 7.6.7.6.5 Initiate Dynamic Capacity Add (Opcode 5604h) as follows

...

The command shall fail with Resources Exhausted when the length of the added capacity plus the
current capacity present in all extents associated with the specified region exceeds the decode length
for that region.

The command shall fail with Invalid Extent List when the Selection Policy is set to Prescriptive and the
Extent Count is invalid.

The command shall fail with Retry Required if its execution would cause the specified LD’s Dynamic
Capacity Event Log to overflow.

...

Update Table 7-62 Initiate Dynamic Capacity Add Request as follows

Byte
Offset

Length in
Bytes Description

..

03h 1

Region Number: Dynamic Capacity region to which the capacity
is being added. Valid range is from 0 to 7. This field is reserved
when the Selection Policy is set to Prescriptive or Enable Shared
Access.

..

Update Section 7.6.7.6.6 Initiate Dynamic Capacity Release (Opcode 5605h) as follows

...

The command shall fail with Invalid Input under the following conditions:

• When the command is sent with an invalid Host ID, or an invalid region number, or an
unsupported Removal Policy

• When the command is sent with a Removal Policy of Tag-based and the input Tag does not
correspond to any currently allocated capacity

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 36

• When Sanitize on Release is set but is not supported by the device

• When the command attempts to release only a portion of tagged sharable capacity

...

The command shall fail with Resources Exhausted when the length of the removed capacity exceeds
the total assigned capacity for that region or for the specified tag when the Removal Policy is set to
Tag-based.

The command shall fail with Invalid Extent List when the Removal Policy is set to Prescriptive and the
Extent Count is invalid or when the Extent List includes blocks that are not currently assigned to the
region.

The command shall fail with Retry Required if its execution would cause the specified LD’s Dynamic
Capacity Event Log to overflow, unless the Forced Removal flag is set, in which case the removal
happens regardless of whether an Event is logged.

...

Update Table 8-47 Dynamic Capacity Event Record as follows

Byte
Offset

Length
in Bytes Description

..

35 1

Flags
 • Bit[0]: More:

 — 0 = this is the last (or only) record associated with this event
 — 1 = the next Event Record is also associated with this event,

providing an additional extent. Records grouped this way shall be
continuous in the Event Log, with no unrelated records between
them, and shall contain the same Dynamic Capacity Event Type.

 • Bit[7:1]: Reserved

365h 23 Reserved

..

Update Table 8-52. Get Event Interrupt Policy Output Payload to add the missing DCD Interrupt
Message Number field

Byte
Offset

Length
in Bytes Description

..

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 37

04h 1

Dynamic Capacity Event Log Interrupt Settings: When
enabled, the device shall signal an interrupt when the Dynamic
Capacity event log transitions from having no entries to having one
or more entries.1

Bits[1:0]: Interrupt Mode

00b = No interrupts

01b = MSI/MSI-X

10b = Reserved

11b = Reserved

Bits[7:24]: Reserved

Bits[7:4]: Interrupt Message Number - see definition below.

Update Table 8-125 Get Dynamic Capacity Configuration Output Payload as follows

Byte
Offset

Length
in Bytes Description

0 1

Number of Available Regions: The device shall report the total
number of regions of Dynamic Capacity available. Each region may
be unconfigured or configured with a different block size and
capacity. This is the number of valid region configurations returned
in this payload. A DCD shall report between 1 and 8 regions. All
other values are reserved.

01h 71
Reserved Regions Returned: This is the number of region
configurations returned in this payload

02h 6 Reserved

..

Update Section 8.2.9.8.9.3 Add Dynamic Capacity Response (Opcode 4802h) as follows

...

In response to a Add Capacity Event Record, or records grouped via the More flag (see Table 8-47),
the host shall respond with exactly one Add Dynamic Capacity Response command, corresponding to
the order of the Add Capacity Events received, to update the device with the explicit portions of the
added Dynamic Capacity the host is now utilizing. For non-sharable capacity, tThe host may send the
Add Dynamic Capacity Response command with no Extent List, if the host does not utilize any of the
added capacity, or an Extent List describing a subset of the original Add Capacity Event Record Extent
List. After this command is received, the device is free to reclaim capacity that the host does not
utilize. For sharable capacity, the host shall respond with either no Extent List or an Extent List
describing the full capacity -- it shall accept all or none of the sharable capacity or the device shall

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 38

return Invalid Extent List. When capacity is described by multiple extents as indicated by the More
flag (see Table 8-47), the host shall respond with a single response for the entire group.

..

Table 8-129 Add Dynamic Capacity Response Input Payload

Byte
Offset

Length
in Bytes Description

..

04h 41

Flags
 • Bit[0]: More:

 — 0 = this is the last (or only) record associated with this
event

 — 1 = the next Add Dynamic Capacity Response Input
Payload is also associated with this operation, providing
additional extents. Payloads can be grouped this way to
overcome limits due to maximum mailbox payload sizes.
Payloads grouped this way shall be submitted with no
unrelated records between them and shall contain the
same mailbox opcode.

 • Bit[7:1]: Reserved

05h 3 Reserved

..

8.2.9.8.9.4 Release Dynamic Capacity (Opcode 4803h)

...

The device shall report Invalid Extent List if it detects a malformed Extent List. Examples of a
malformed Extent List include:

• Overlapping Starting DPA and Lengths for multiple extents

• Starting DPA not aligned to the Region Block Size

• Length not a multiple of the Region Block Size

• The Extent List covers only a portion of a tagged sharable capacity

...

Table 8-131 Release Dynamic Capacity Input Payload as follows

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 39

Byte
Offset

Length
in Bytes Description

..

04h 41

Flags
 • Bit[0]: More:

 — 0 = this is the last (or only) record associated with this
event

 — 1 = the next Release Dynamic Capacity Input Payload is
also associated with this operation, providing additional
extents. Payloads can be grouped this way to overcome
limits due to maximum mailbox payload sizes. Payloads
grouped this way shall be submitted with no unrelated
records between them and shall contain the same mailbox
opcode.

 • Bit[7:1]: Reserved

05h 3 Reserved

..

Update Section 9.13.3 Dynamic Capacity Device (DCD) as follows

Dynamic Capacity is a feature of a CXL memory device that allows memory capacity to change
dynamically without the need for resetting the device. A DCD is a CXL memory device that implements
Dynamic Capacity. Unlike a traditional DPA range that a CXL memory device might support, a
Dynamic Capacity DPA range is subdivided into 1 to 8 DC regions, each of which is subdivided by the
DCD into a number of fixed-size blocks, referred to as DC blocks. The host software is expected to
program the maximum potential capacity utilizing one or more HDM decoders to span the entire DPA
range of all configured regions. The DCD controls the allocation of these DC blocks to the host and
utilizes events to signal the host when changes to the allocation of these DC blocks occurs. The DCD
communicates the state of these DC blocks through an Extent List that describes the starting DPA and
length of all DC blocks the host can access. The Extent List does not contain extents that are still
pending acceptance from the host via the Add Dynamic Capacity Response command (see Section
8.2.9.8.9.3). Similarly, the Extent List does contain extents that are still pending release acceptance
from the host via the Release Dynamic Capacity (see Section 8.2.9.8.9.4) Figure 9-22 illustrates a
typical Extent List. Figure 9-23 illustrates an Extent List in which the DC blocks are shared by multiple
hosts. Adding and releasing capacity utilizes the Extent List to control the host’s access to portions of
the memory without the need to alter the HDM programming of the total potential Dynamic Capacity.
...

The basic sequence to add Dynamic Capacity to a host:

• The DCD adds a Add Capacity Event Record (see Section 8.2.9.2.1.5) to the device’s Dynamic
Capacity Event Log containing the extent of the capacity being added, sets the Dynamic
Capacity Event Log bit in the Event Status register and, if enabled, generates an interrupt to
alert the host to the new event record. The DCD does this for each extent in the Add Capacity
operation being performed, using the More flag as necessary (see Table 8-47), avoiding
overflow, and allowing the host to consume the events as necessary to complete the

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 40

operation. If the Dynamic Capacity Event Log overflows at any point, the host shall utilize Get
Dynamic Capacity Extent List to retrieve the current list of host accessible DC blocks.

...

The basic sequence to release Dynamic Capacity from a host:

• The DCD adds a Release Capacity Event Record to the device’s Dynamic Capacity Event Log
(see Section 8.2.9.2.1.5) containing the extent of the capacity it is requesting to be released,
sets the Dynamic Capacity Event Log bit in the Event Status register and, if enabled,
generates an interrupt to alert the host to the new event record. The DCD does this for each
extent in the Release Capacity operation being performed, using the More flag as necessary
(see Table 8-47), avoiding overflow, and allowing the host to consume the events as
necessary to complete the operation. If the Dynamic Capacity Event Log overflows at any
point, the host shall utilize Get Dynamic Capacity Extent List to retrieve the current list of host
accessible DC blocks.

..

Devices may forcefully release Dynamic Capacity from a host:

Host access to the released capacity may be immediately disabled and the DCD behaves as if the
capacity is no longer allocated to the host. The DCD adds a Forced Capacity Release Event Record to
the device’s Dynamic Capacity Event Log containing the extent of the capacity being released, sets the
Dynamic Capacity Event Log bit in the Event Status Register and, if enabled, generates an interrupt to
alert the host to the new event record. If the Dynamic Capacity Event Log overflows at any point, the
forced removal still takes place and the host shall utilize Get Dynamic Capacity Extent List to retrieve
a new list of host accessible DC blocks.

..

G23 Scan Media Clarifications

Update Table 1-113 Get Scan Media Results Output Payload as follows

Byte
Offset

Length
in Bytes Description

..

10h 1

Scan Media Flags

Bit[0]: More Media Error Records - When set, the device has
more Media Error Records to return for the given Scan Media
address range. The host should keep issuing the Get Scan Media
Results command with the same Scan Media Restart Physical
Address & Scan Media Restart Physical Address Length and
retrieve records until this indicator is no longer set.

..

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 41

G24 CXL.io Throttling Typo in Flit Type
This errata removes the CXL.io NOP Flit Type encoding referenced in the CXL.io Throttling feature
description, as the value referenced was stale after the encoding definition was changed for CXL.io
NOP.

Update section 6.4.3.1.2 as follows:

6.4.1.3.2 CXL.io Throttling

The Upstream Port must communicate to the Downstream Port during Phase 1 of alternate protocol
negotiation if its CXL.io inbound path does not support receiving consecutive CXL.io flits (including
CXL.io NOP flits with a DLLP payload) at a link speed of 64 GT/s. For the purpose of this feature,
consecutive CXL.io flits are CXL.io Payload flits or CXL.io NOP flits with a DLLP payload two flits with
Flit Type encoding of 01b that are not separated by either an intervening flit not associated with
CXL.iowith a different Flit Type encoding or an intervening Ordered Set. Downstream Ports are
required to support throttling transmission of CXL.io traffic to meet this requirement if the Upstream
Port advertises this bandwidth limitation in the Modified TS1 Ordered Set (see Table 6-9.). One
possible usage model for this is Type 3 memory devices that need 64 GT/s link bandwidth for
CXL.mem traffic but do not have much CXL.io traffic; this feature enables such devices to simplify
their hardware to provide potential buffer and power savings.

G25 Unexpected Flit Type Error in 256B Flit Mode
The current specification does not define how a receiver should handle a flit with Unexpected Flit Type
in 256B Flit Mode. This errata specifies that an Unexpected Flit Type should be logged in the standard
PCIe Flit Logging Extended Capability, in the Flit Error Log 1 Register, as an Unrecognized Flit.

Add section 6.2.3.3 as follows:

6.2.3.2 Framing Errors in 256B Flit Mode

An Unexpected Flit Type error is detected upon receiving a Flit with a Flit Type encoding associated
with a Protocol that was not enabled during negotiation. For example, if a CXL.cachemem Flit Type is
received while only CXL.io is enabled, this must be handled as an Unexpected Flit Type error. This is
logged as an Unrecognized Flit in the PCIe Flit Logging Extended Capability, Flit Error Log 1 Register.
Any interrupt signaling as a result of the logged error follows the PCIe specification definition.

Update Table 6-5 as follows to state CXL.cachemem flit type encoding is reserved if CXL.cachemem is
not enabled:

Flit Header Field Flit Header
Bit Location Description

Flit Type[1:0] [7:6]

 • 00b = Physical Layer IDLE flit or Physical Layer NOP flit
or CXL.io NOP flit

 • 01b = CXL.io Payload flit
 • 10b = If CXL.cachemem is enabled, CXL.cachemem

Payload flit or CXL.cachemem-generated Empty flit;
reserved if CXL.cachemem is not enabled

 • 11b = ALMP
Please refer to Table 6-6 for more details.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 42

Prior Flit Type [5]

 • 0 = Prior flit was a NOP or IDLE flit (not allocated into
Replay buffer)

 • 1 = Prior flit was a Payload flit or Empty flit (allocated
into Replay buffer)

Type of DLLP Payload [4]

 • If (Flit Type = (CXL.io Payload or CXL.io NOP): Use as
defined in PCIe Base Specification

 • If (Flit Type != (CXL.io Payload or CXL.io NOP)):
Reserved

Replay Command[1:0] [3:2] Same as defined in PCIe Base Specification.

Flit Sequence
Number[9:0] {[1:0], [15:8]} 10-bit Sequence Number as defined in PCIe Base

Specification.

G26 Buried State on Memory Protocol
This errata replaces G17. The prior errata was missing the corresponding updates to the Table 3-47
and a functional change was added to make MemRd and MemInv follow a common set of rules for
Buried State.

The buried cache rules added in CXL3.0 were found to be overly restrictive and need to be relaxed to
allow for hosts to resolve conflicts and without creating a very sub-optimial caching in a host for HDM-
D/DB. The updated rules in section 3.3.11.1 are captured in this errata. Example flows will be added
into future specifications to show problematic cases that drove the changes.

3.3.11.1 Buried Cache State Rules for HDM-D/HDM-DB

Buried Cache state for CXL.mem protocol refers to the state of the cacheline registered by the host’s
Home Agent logic (HA) for a cacheline address when a new Req or RwD message is being sent. This
cache state could be a cache that is controlled by the host, but does not cover the cache in the device
that is the owner of the HDM-D/HDM-DB memory. These rules are applicable to only HDM-D/HDM-DB
memory where the device is managing coherence.

For implementations that allow multiple outstanding requests to the same address, the possible future
cache state must be included as part of the buried cache state. To avoid this complexity, it is
recommended to limit to one Req/RwD per cacheline address.

Buried Cache state rules for host-issued CXL.mem Req/RwD messages:

 • Must not issue a MemRd/MemInv/MemInvNT (MetaValue=I)/MemRdData if the cacheline is buried
in Modified, Exclusive, or Shared state.

 • May not issue a MemRd/MemInv/MemInvNT (MetaValue=S) or MemRdData if the cacheline is
buried in Modified or Exclusive, but is allowed to issue when the host has Shared or Invalid.

 • May issue a MemRd/MemInv/MemInvNT (MetaValue = A) from any state.

 • May issue a MemRd/MemInv/MemInvNT (MetaField = NoOp) from any state. Note that the final
host cache state may result in a downgraded state such as Invalid when initial buried state exists
and conflicting BISnp result in the buried state being downgraded.

 • Must not issue MemInv/MemInvNT if the cacheline is buried in Modified or Exclusive state. The
Device may request ownership in Exclusive state as an upgrade request from Shared state.

 • May issue MemClnEvct from Shared or Exclusive state.

 • May issue MemWr with SnpType=SnpInv only from I-state. This use of this encoding is not allow
for HDM-DB memory regions where coherence extends to multiple hosts (e.g. Coherent Shared
FAM as described in Section 2.4.4).

 • MemWr with SnpType=NoOp may only be issued from Modified state.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 43

 summarizes the Req message and RwD message allowance for Buried Cache state.
MemRdFwd/MemWrFwd/BIConflict are excluded from this table because they are response messages.

Table 3-47 Allowed Opcodes for HDM-D/HDM-DB Req and RwD Messages per
Buried Cache State

CXL.mem Req/RwD Buried Cache State

Opcodes MetaField MetaValue SnpType Modified Exclusive Shared Invalid

MemRd/MemRdD
ata

All Legal Combinations

All Legal
Combinations

 X X

MemClnEvct X X

MemRd/MemInv/
MemInvNT

MS0/EMD

A X1 X
X

(When
MV=A)

X

S X X

I X

No-Op N/A

X1 X X X
EMD Explicit No-

Op

MemWr

All Legal Combinations

SnpType=No
-Op X

SnpType=Sn
pInv X

1Requesters that have active reads with buried-M state must expect data return to be stale. It is up to the requester to ensure that
possible stale data case is handled in all cases including conflicts with BISnp.

G27 Responses for Requests Targeting NXM
The CXL specification is incomplete regarding CXL.mem requests targeting non-existent memory
(NXM). It includes the MemData-NXM opcode for MemRd/MemRdData requests (that decode to non-
existent memory) but does not mention how to handle the other request opcodes (e.g., MemInv). The
new section, below, fits within Section 3.3 “CXL.mem” between current Section 3.3.10 and 3.3.11 and
discusses the need for special handling while providing a table covering all opcodes. This errata also
adds cross-references to this new section in existing tables:

3.3.11 Responses for Requests Targeting NXM

Device responses to CXL.mem requests differ between HDM-H regions and HDM-D/HDM-DB regions,
which creates an ambiguity when device receives a CXL.mem request it cannot map to a specific
memory region. In this situation, devices shall respond according to Table 1-1. CXL.mem Responses
for Requests to Non-existent Memory Requesting device must accept and properly handle these
responses regardless of its memory region decode results.

The ambiguity mentioned above is for reads and for some MemInv* cases. For reads, the response is
DRS only for HDM-H or a DRS+NDR for HDM-D*. For MemInv*, HDM-H returns Cmp opcode and
HDM-D/HDM-DB may expect only Cmp-E or Cmp-S as show in Table C-3 “HDM-D/HDM-DB Memory
Requests”.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 44

The capability to support MemData-NXM is exposed in the “CXL HDM Decoder Capability Register” bit
20 (see Section 8.2.4.19.1).

Table 1-1. CXL.mem Responses for Requests to Non-existent Memory

CXL.mem Request Device Response when NXM

MemRd, MemRdData MemData-NXM

See Table 8-27 “CXL.mem Read
Response – Error Cases” for
additional details.

MemInv, MemInvNT, MemClnEvct, MemWr,
MemWrPtl Cmp

End of new section. The following are changes to cells in existing tables.

Table 3-53. S2M DRS Opcodes

Row “MemData-NXM”, Column “Description” – Add cross reference to new section 3.13.

Table C-3. HDM-D/HDM-DB Memory Requests

Row “MemRd + MemData-NXM”, Column “Description” – Add cross reference to new section 3.13.

Rows “MemInv”, Column “Device Response, S2M NDR” – Add footnote to “Cmp-E” and “Cmp-S”
cells with footnote indicating NXM case exception and cross reference to new section 3.13.

Row “MemRdData + MemData-NXM”, Column “Description” – Add cross reference to new section
3.13.

Table C-6. HDM-H Memory Request

Footnote 2: Add cross reference to new section 3.13.

G28 Reserved Bit field forwarding
The CXL specification does not stated any requirement for Reserved bit forwarding in a switch. The
new section below addresses the required handling for reserved bits. This fits within Section 7.3
“CXL.io, CXL.cachemem Decode and Forwarding” and under the sub-set for 7.3.2 CXL.cache and 7.3.3
CXL.mem.

7.3.2.3 CXL.Cache Reserved bit forwarding

A switch shall forward 256B Flit messages reserved bits between the ingress port and the egress port.
Both HBR and PBR formats are defined for 256B flit messages where a switch can translate between
those formats. When doing the translation between HBR and PBR formats defined for 256B flits the
Reserved bits shall be preserved. When a switch with 256B flit capability sends to a port with 68B flit
format the reserved bits shall be set to zero. Similarly, messages received as 68B flit formats shall
never have reserved bits forwarded to a port with 256B flit messages.

Note: The reason for forwarding of reserved bits is to allow new features to be supported without
requiring changes to existing switches. The reason for not forwarding in 68B flit format is that
new features are expected to be added only to 256B flit formats so there is no need to
support the complexity of translating reserved bits to/from 68B flits.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 45

7.3.3.3 CXL.Mem Reserved bit forwarding

CXL.mem follows the same rules as CXL.cache as defined in Section 7.3.2.3.

G29 S2M Opcodes for 256B Flit only
The CXL.mem protocol has added new features that only apply to 256B flits. For M2S Req/RwD the
opcode table notes the opcodes through use of a footnote. This was not done for S2M NDR/DRS
messages and this errata adds the footnote to those opcode tables. Table 3-50 is in Section 3.3.9
“S2M No Data Response (NDR)” and Table 3-xx is in Section…

Note that the errata shows the foot note at the bottom of the page with opcode highlight, but when
merged into the specification this will be attached to each table without the highlighting.

Table 3‑50. S2M NDR Opcodes

Opcode Description Encoding

Cmp Completions for Writebacks, Reads and Invalidates. 000b

Cmp-S Indication from the DCOH to the Host for Shared state. 001b

Cmp-E Indication from the DCOH to the Host for Exclusive ownership. 010b

Cmp-M
Indication from the DCOH to the Host for Modified state. This is optionally
supported by host implementations and devices must support disabling of this
response.

011b

BI-ConflictAck4 Completion of the Back-Invalidate conflict handshake. 100b

CmpTEE1 Completion for Writes (MemWr*) with TEE intent. Does not apply to any M2S Req. 101b

Reserved Reserved <Others>

Table 3‑53. S2M DRS Opcodes

Opcode Description Encoding

MemData Memory read data. Sent in response to Reads. 000b

4 Only support in 256B flit mode.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 46

MemData-NXM

Memory Read Data to Non-existent Memory region. This response is only
used to indicate that the device or the switch was unable to positively
decode the address of the MemRd as either HDM-H or HDM-D*. Must
encode the payload with all 1s and set poison if poison is enabled.
This special opcode is needed because the host will have expectation of a
DRS only for HDM-H or a DRS+NDR for HDM-D*, and this opcode allows
devices/switches to send a single response to the host, allowing a
deallocation of host tracking structures in an otherwise ambiguous case.

001b

MemDataTEE1 Same as MemData but in response to MemRd* with TEE attribute. 010b

Reserved Reserved <Others>

G30 Chapter 7 Errata
In Section 7.2.1.3, make the following update:

In the case where the switch, FM, and host boot at the same time:
1. VCSs are statically defined.
2. DSP vPPBs within each VCS are unbound and presented to the host as Link Down.
3. Switch discovers downstream devices and presents them to the FM.
4. Host enumerates the VH and configures the DVSEC registers.

In Section 7.3.4, make the following update:

All PPBs are FM-owned. A PPB can be connected to a port that is disconnected or,
linked up as an RCD, CXL SLD, or CXL MLD. SLD components can be bound to a
host or unbound. Unbound SLD components can be accessed by the FM using CXL.io
transactions via the FM API. LDs within an MLD component can be bound to a host or
unbound. Unbound LDs are FM-owned and can be accessed through the switch using
CXL.io transactions via the FM API.

In Section 7.5, make the following update:

Table 7-13. CXL Switch RAS

HostTriggering
Action

Description Switch Action for

Non-pooled Devices
Switch Action for
Pooled Devices

Switch boot Optional power-on reset pin
Assert PERST#
Deassert PERST#

Assert PERST#
Deassert PERST#

Upstream PERST# asserted

VCS fundamental reset

Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD
Note: Only the FMLD

provides the
MLD DVSEC
capability.

Ev
al

ua
tio

n
C

op
y

Errata for the Compute Express Link Specification Revision 3.0

December 13, 2023 47

FM issues port reset
command

Reset of an FM-owned DSP Send Hot Reset Send Hot Reset

PPB Secondary Bus Reset

Reset of an FM-owned DSP

Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of all LDs

USP receivesd Hot Reset

VCS fundamental reset

Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

USP vPPB Secondary Bus
Reset

VCS US SBR

Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

DSP vPPB Secondary Bus
Reset

VCS DS SBR

Send Hot Reset

Write to MLD DVSEC
to trigger LD Hot Reset
of the associated LD

Host writes FLR Device FLR No switch involvement No switch involvement

Switch watchdog timeout Switch fatal error Equivalent to power-on
reset

Equivalent to power-
on reset

In Section 7.6.6.7, make the following update:

When a device is Hot-Added to an unbound port on a switch, the FM receives a
notification and is responsible for binding as described in the steps below:
1. The switch notifies the FM by generating Physical Switch Event Records as

the Presence Detect sideband signal is asserted or when a Link Up is detected if
the PPB does not support Presence Detectand the port links up.

In Section 7.6.7.3.1, make the following update:

When sent to an MLD, this provided command is tunneled by the FM-owned LD to the
specified LD, as illustrated in the example in Figure 7-22 of a “Set LSA Request” being
tunneled to LD 1 in an MLD.

In Section 7.6.7.6.1, make the following update:

Table 7-61. Get DCD Info Response Payload

Byte
Offset

Length
in Bytes

Description

00h 1 Number of Hosts: Total number of hosts that the device supports. This field
shall have a minimum value of 1.

01h

1

Number of Supported DC Regions: The device shall report the total
number of Dynamic Capacity Regions available per hostLD. DCDs shall report
between 1 and 8 regions. All other encodings are reserved.

…

	G1 Section 3.3.7 and Section 4.3, BIRsp PBR message requires SPID field
	G2 Latency-Optimized Empty Flits Allocate to Tx Retry Buffer
	G3 Latency-Optimized Flit Processing When Even CRC Fails on Replayed Flit
	G4 Table 4-19 IDE.TMAC and IDE.MAC messages
	G5 Figure 4-70 and Figure 4-71 Late Viral injection in 256B Flits (Standard and LatOpt)
	G6 CXL Link Capability Version
	G7 Deprecate the Trust_Level field in the Cache ID Decoder
	G8 Correct the TLP Type field in PM VDM Header - Flit Mode
	G9 Disambiguate between Message Tag fields
	G10 Correct Offsets in Identify Output Payload data structure
	G11 Sync Header Bypass Enable Not Applicable at 64 GT/s and Ordered Set Insertion Interval
	G12 Empty Flits Allocate to Tx Retry Buffer
	G13 CXL.cachemem Retry in 68B Flit mode corrections
	G14 Clarifications from PCIe L0p errata
	G15 CXL Viral Handling
	G16 H2D Req Targeting Local Memory of Type 2 Devices
	G17 Buried State on Memory Protocol (replaced by G24)
	G18 Clarify Uncorrectable Error Severity Control
	G19 Clarify HDM Decoder Functionality
	G20 IDE and LOpt Interactions
	G21 ARB/MUX Error Mark Register attributes and defaults
	G22 Miscellaneous DCD Clarifications
	G23 Scan Media Clarifications
	G24 CXL.io Throttling Typo in Flit Type
	G25 Unexpected Flit Type Error in 256B Flit Mode
	G26 Buried State on Memory Protocol
	G27 Responses for Requests Targeting NXM
	G28 Reserved Bit field forwarding
	G29 S2M Opcodes for 256B Flit only
	G30 Chapter 7 Errata

