
OpenCAPI 4.0
Transaction Layer
Specification

Version 1.0
16 June 2020

Approved

Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only



www.opencapi.org

Title Page

https://opencapi.org/

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Copyright and Disclaimer
Page 2 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

0.1 Copyright and Disclaimer

OpenCAPI 4.0 Transaction Layer Specification

OpenCAPI TL Specification Work Group
OpenCAPI Consortium

Version 1.0 (16 June 2020)
Copyright © OpenCAPI Consortium 2016-2020.

Printed in the United States of America February 5, 2021 .

Use of this document is controlled by the OpenCAPI Consortium License Agreement, which is available at
https://opencapi.org/license/.
All capitalized terms in the following text have the meanings assigned to them in the OpenCAPI Intellectual
Property Rights Policy (the “OpenCAPI IPR Policy”). The full Policy may be found at the OpenCAPI
Consortium website.
THE SPECIFICATION IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, ACCURACY, COMPLETENESS AND NONINFRINGEMENT OF THIRD PARTY
RIGHTS. IN NO EVENT SHALL LICENSOR, ITS MEMBERS OR ITS CONTRIBUTORS BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THE SPECIFICATION.

OpenCAPI and the OpenCAPI logo design are trademarks of the OpenCAPI Consortium.
Other company, product, and service names may be trademarks or service marks of others.

Abstract

This document details the OpenCAPI TL specification. It is the work product of the OpenCAPI Consortium TL
Specification Work Group.

This document is handled in compliance with the requirements outlined in the OpenCAPI Consortium Work
Group (WG) process document. Comments, questions, etc. can be submitted to membership@opencapi.org.

mailto:membership@opencapi.org
https://opencapi.org/license/

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Participants
Page 3 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Participants

Brian Allison, IBM, Chair

Michael Siegel, IBM, Technical Editor

Sanjay Goyal, Microchip Rick Hagen, NVIDIA Paul Hartke, Xilinx

Curt Wollbrink, IBM

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Contents
Page 4 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Contents

List of figures .. 7

List of tables .. 8

Revision log ... 10

About this document .. 11
Architecture compliance terminology .. 11
Conventions used in this specification .. 11

Bit and byte numbering ... 11
Representation of numbers .. 12
RTL notation ... 12

Notes ... 13
Engineering notes ... 13
Developer notes ... 13

Command flows and transaction diagrams ... 14
Command flow diagrams .. 14
Transaction diagrams ... 14

Terms ... 17

1. Overview .. 26
1.1 OpenCAPI protocol stack .. 27
1.2 Host operation modes ... 28

1.2.1 No attached device (C0, M0) ... 28
1.2.2 MEM-only mode (C0, M1) ... 28
1.2.3 Checkout mode (C1, M0) .. 29
1.2.4 Checkout with MEM (C1, M1) .. 29
1.2.5 Cache-only mode (C2, M0) ... 29
1.2.6 Cache + MEM mode (C2, M1) ... 29

1.3 AFUC2 ... 30
1.3.1 Host proxy cache ... 30
1.3.2 AFUC2 model ... 30

1.3.2.1 host_tag database .. 30
1.3.2.2 L1 EA cache directory .. 31
1.3.2.3 data cache .. 31

1.3.3 AFU cache states .. 32
1.3.4 AFU Cache state transition reporting, initiation, and characteristics 33
1.3.5 Design considerations when the AFUC2 and host cache line sizes are different 38

1.3.5.1 Read commands .. 38
1.3.5.2 Force evict .. 38
1.3.5.3 Upgrade state command .. 38

1.4 Command ordering ... 39
1.5 Host tags ... 39

1.5.1 host_tag run-length-capability ... 41
1.5.2 host_tag update ordering ... 41

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Contents
Page 5 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.5.2.1 TL and host rules .. 41
1.5.2.2 TLX and AFU rules ... 41

1.6 Write fragmentation ordering and atomicity .. 42
1.6.1 Write fragmentation ordering and atomicity at the host ... 42

1.6.1.1 Partial write operations ... 42
1.6.1.2 64-,128-, 256-byte write operations .. 42

1.6.2 Write fragmentation ordering and atomicity at the AFU ... 43
1.6.2.1 Partial write operations ... 43
1.6.2.2 64-, 128-, 256-byte write operations ... 43

1.7 OpenCAPI device PA space specification .. 43
1.7.1 PA-to-RA mapping rules .. 44

1.8 Address translation ... 45
1.8.1 Effective to real address translation .. 45
1.8.2 Translated addresses, AFU ATC, and dot-t commands .. 45

1.8.2.1 AFU initiated AFU ATC entry invalidation .. 46
1.8.2.2 Host initiated AFU ATC entry invalidation .. 47

2. TL and TLX command and response specifications ... 48
2.1 Handling multiple responses to a single command ... 53

2.1.1 TLX Read request getting multiple TL responses ... 54
2.1.2 TLX Write request getting multiple TL responses .. 54
2.1.3 TL read request getting multiple TLX responses. .. 55
2.1.4 TL write request getting multiple TLX responses .. 55

2.2 TL CAPP command packets ... 57
2.3 TLX AP command packets .. 82
2.4 TL CAPP response packets .. 122
2.5 TLX AP response packets ... 150

3. Virtual channel and data credit pool specification .. 163
3.1 Virtual channel .. 164

3.1.1 TLX command and response VC (TLX.vc) .. 164
3.1.2 TL command and response VC (TL.vc) ... 164
3.1.3 VC credit count specification ... 165

3.2 Data credit pool ... 165
3.2.1 TLX data DCP (TLX.dcp) ... 165
3.2.2 TL data DCP (TL.dcp) ... 166
3.2.3 DCP credit count specification ... 166

3.3 TL Virtual channel and service queues ... 168
3.3.1 Host TLX command handling .. 168
3.3.2 Host TLX response handling ... 170

3.4 TL Presync queues ... 171
3.4.1 TL queuing and service of kill_xlate_done .. 173

3.5 Device TL virtual channel queues ... 174
3.6 Virtual channel dependency rules ... 176

3.6.1 Dependency loop 1 resolution ... 178

4. The acTag table ... 180
4.1 acTag table contents ... 180

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Contents
Page 6 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

4.2 acTag table access ... 180
4.2.1 Error cases when accessing the acTag table .. 180

4.3 acTag entry management ... 180

5. DL frame format .. 182
5.1 DL frame control flit (64 bytes) .. 183

5.1.1 DL content ... 183
5.1.2 TL command/response content ... 184
5.1.3 Data transport, order, and alignment ... 184

5.1.3.1 Data alignment for commands and responses specifying a host_tag field. 186

6. TL and TLX template specifications .. 189
6.1 TLX receive and TL transmit template capability specification ... 191
6.2 TL receive and TLX transmit template capability specification ... 194
6.3 Control-flit rate capability ... 195
6.4 Metadata capability ... 196

7. Error detection .. 197
7.1 Error events ... 198

8. OpenCAPI profiles .. 210

Appendix A. AP (TLX) command transaction diagrams ... 219
A.1 AFU read with no intent to cache; 128 bytes .. 219
A.2 TLX read with no intent to cache hits device co-located AFUC2 and AFUM1 221
A.3 AFU DMA write; non-posted; 128 bytes ... 222
A.4 AFU DMA Write hits device co-located AFUC2 and AFUM1 .. 225
A.5 AFU DMA Write hits device co-located AFUM1 ... 226
A.6 AFU DMA partial write; non-posted, 8 bytes ... 227
A.7 AFU Partial read with no intent to cache hits device co-located AFUM1 228
A.8 Translate touch (xlate_touch, ta_req) ... 229
A.9 Upgrade state ... 230
A.10 Host tag locking transactions .. 235
A.11 Castout push ... 238

Appendix B. CAPP (TL) command transaction diagrams 239
B.1 CAPP memory read; 128 bytes .. 239
B.2 CAPP memory write; 128 bytes .. 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

List of figures
Page 7 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

List of figures
Figure 1. Big- and little-endian comparisons ... 12
Figure 2. Command flow example ... 14
Figure 3. Example TLX and TL transaction diagram ... 16
Figure 1-1. OpenCAPI stack ... 27
Figure 2-1. Address translation sequence: xlate_touch .. 108
Figure 3-1. TL command flow from the VC queue to the service queue .. 169
Figure 3-2. TL command flow from a service queue with a designated presync queue 172
Figure 3-3. kill_xlate_done TL flow from TLX.vc.3 to host dispatch ... 174
Figure 3-4. TLX command and response flow from the VC to the AFU protocol stack 176
Figure 3-5. VC dependency graph ... 178
Figure 3-6. Loop 1 detail ... 179
Figure A-1. TLX and TL interaction: rd_wnitc .. 220
Figure A-2. TLX rd_wnitc hits AFUC2 and AFUM1 ... 221
Figure A-3. TLX and TL interaction: dma_w ... 223
Figure A-4. TLX dma_w hits AFUC2 and AFUM1 .. 225
Figure A-5. TLX dma_w hits host cache and AFUM1 ... 226
Figure A-6. TL and TLX interaction: dma_pr_w ... 227
Figure A-7. TLX pr_rd_wnitc hits AFUM1 ... 228
Figure A-8. xlate_touch TLX and TL interaction .. 229
Figure A-9. upgrade_state TLX and TL interaction ... 230
Figure A-10. TLX upgrade_state hits host cache and AFUM1 ... 232
Figure A-11. TLX upgrade_state hits AFUC2 and AFUM1 ... 233
Figure A-12. TLX upgrade_state hits AFUM1, requires host ATC evict ... 234
Figure A-13. host_tag reuse ... 235
Figure A-14. host tag reuse .. 236
Figure A-15. host_tag reuse ... 237
Figure A-16. castout.push example showing host_tag ordering at the host ... 238
Figure B-1. TL and TLX transaction: rd_mem .. 239
Figure B-2. TL and TLX transaction: write_mem ... 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

List of tables
Page 8 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

List of tables
Table 1. Architecture terms .. 11
Table 1-1. Cache state descriptions .. 32
Table 1-2. Concurrent host proxy cache (L2) and L1 EA cache states (L1) ... 33
Table 1-3. L1 EA Cache state change request and notification .. 35
Table 1-4. host_tag run-length-capability definition ... 41
Table 2-1. TL and TLX command operands .. 48
Table 2-2. The Resp_code specification for xlate_done .. 58
Table 2-3. The Resp_code specification for intrp_rdy ... 59
Table 2-4. The cmd_flag specification for amo_rd ... 63
Table 2-5. The cmd_flag specification for amo_rw ... 65
Table 2-6. The cmd_flag specification for amo_w .. 67
Table 2-7. The cmd_flag specification for kill_xlate ... 73
Table 2-8. The cmd_flag specification for disable_cache .. 75
Table 2-9. The cmd_flag specification for enable_cache ... 76
Table 2-10. The cmd_flag specification for disable_atc ... 77
Table 2-11. The cmd_flag specification for enable_atc .. 78
Table 2-12. The cmd_flag specification for amo_rd ... 89
Table 2-13. The cmd_flag specification for amo_rw ... 91
Table 2-14. The cmd_flag specification for amo_w .. 93
Table 2-15. The command flag specification for castout .. 96
Table 2-16. The cmd_flag specification for upgrade_state .. 101
Table 2-17. The cmd_flag specification for xlate_touch (all forms) ... 106
Table 2-18. The cmd_flag specification for sync .. 121
Table 2-19. The Resp_code specification for touch_resp ... 123
Table 2-20. touch_resp Resp_code use by TLX command ... 124
Table 2-21. synonym_detected formation and actions ... 127
Table 2-22. The Resp_code specification for read_failed .. 135
Table 2-23. read_failed Resp_code use by TLX command ... 136
Table 2-24. The Resp_code specification of write_failed .. 142
Table 2-25. write_failed Resp_code use by TLX command ... 143
Table 2-26. The Resp_code specification for intrp_resp ... 144
Table 2-27. intrp_resp Resp_code use by TLX command ... 145
Table 2-28. The Resp_code specification for wake_host_resp ... 148
Table 2-29. The Resp_code specification for mem_rd_fail .. 152
Table 2-30. mem_rd_fail Resp_code use by TL command ... 153
Table 2-31. The Resp_code specification for mem_wr_fail ... 155
Table 2-32. mem_wr_fail Resp_code use by TL command .. 156
Table 2-33. The Resp_code specification for mem_cntl_done ... 158

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

List of tables
Page 9 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-34. The Resp_code specification for kill_xlate_done ... 159
Table 2-35. The Resp_code specification for cache_disabled .. 160
Table 2-36. The Resp_code specification for cache_enabled ... 161
Table 2-37. The Resp_code specification for atc_disabled ... 162
Table 2-38. The Resp_code specification for atc_enabled .. 162
Table 3-1. VC maximum credit count specification ... 165
Table 3-2. DCP maximum credit count specification ... 166
Table 3-3. Summary VC and DCP assignments ... 166
Table 3-4. Example sequence of 2 block writes and 2 flag writes ... 172
Table 5-1. DL frame format showing CRC and “bad data flit” coverage ... 182
Table 5-2. DL frame loading to illustrate data ordering ... 186
Table 6-1. Template capability definitions ... 190
Table 6-2. Terms used in template capability specifications ... 190
Table 6-3. TLX receive/TL transmit template .. 191
Table 6-4. TL receive/TLX transmit template .. 194
Table 7-1. Error event specification ... 199
Table 7-2. Cache state transition errors .. 208
Table 8-1. Feature compliance requirement notation .. 210
Table 8-2. Profile specifications for TL commands ... 211
Table 8-3. Profile specifications for TLX commands ... 211
Table 8-4. Profile specifications for TL responses .. 213
Table 8-5. Profile specifications for TLX responses .. 214
Table 8-6. Profile specifications for TLX receive/TL transmit templates ... 215
Table 8-7. Profile specifications for TL receive/TLX transmit templates ... 215
Table 8-8. Profile specifications host operation modes ... 216
Table 8-9. Profile specifications supported page size ... 217
Table 8-10. Profile specifications supported dLength by TLX ... 217
Table 8-11. Profile specifications supported dLength by TL ... 217
Table 8-12. Profile specifications support of endianness data format by the TL 217
Table 8-13. Profile specifications support of endianness data format by the TLX 218

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Revision log
Page 10 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Revision log
Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision date Description

16 June 2020 Release of Approved OpenCAPI TL 4.0 specification.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 11 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

About this document
This document provides the architectural specification of the OpenCAPI transaction layer (TL and TLX).

Architecture compliance terminology

In architecture descriptions, certain terms carry meaning in addition to their normal use in English. The
following terms are used within this architecture specification to describe the requirements an implementation
must meet to be considered compliant.

Conventions used in this specification

Bit and byte numbering

Throughout this document, little-endian notation is used, which means that bits and bytes are numbered in
descending order from left to right.

Thus, in the description of a 4-byte field, bit 31 is the most significant bit (MSb) and bit 0 is the least significant
bit (LSb). The corresponding byte numbering is also shown.

Table 1. Architecture terms

Term Description

invalid Used for multi-bit fields where the contents are not reliable. The field or bus shall not be
examined for any functional or error checking actions.

may An architectural option indicating that an implementation is allowed to have this behavior or
characteristic.

reserved With respect to a field of a register or bus:
• A reserved field shall be set to 0 by an implementation.
• A reserved field shall not be examined by an implementation.

With respect to a code point:
• A reserved code point shall not be issued by a compliant implementation
• A reserved code point shall cause a bounded undefined response (that is, it won’t

hang the system).
• A reserved code point may be used in future revisions of the architecture. The archi-

tecture may specify that the use of a reserved code point is an error condition.

shall An architectural requirement indicating a required behavior or characteristic.

uncertain Used for single-bit fields where the contents are not reliable. The field or bus shall not be
examined for any functional or error checking actions.

undefined When the value of a field or a bus is undefined, the value may vary between implementa-
tions and may vary for a particular implementation for different actions. An implementation
shall not examine a field when its value is undefined for functional purposes. However, the
field may be checked for errors in those cases where an implementation includes error
checking (that is, parity, ECC and so on)

M
Sb

LS
b

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
byte 3 byte 2 byte 1 byte 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 12 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The big-endian and little-endian byte ordering are described in the POWER ISA, version 3.0, Book I. Figure 1
compares big-endian and little-endian notation.

Representation of numbers

The notation for bit encoding is as follows:

• Hexadecimal values are preceded by an x and enclosed in single quotation marks. For example x‘0A00’.
Bit numbering is little endian and, in this example, is 15 to 0.

• Binary values in sentences are shown in single quotation marks. For example ‘1010’. Bit numbering in is
little endian and, in this example, is 3 to 0.

• nx means the replication of x, n times. That is, x is concatenated to itself n-1 times. n0 and n1 are special
cases:

– n0 means a field of n bits with each bit equal to 0. For example, 50 is equivalent to ‘00000’.

– n1 means a field of n bits with each bit equal to 1. For example, 51 is equivalent to ‘11111’.

RTL notation

RTL notations are used to specify the architectural transformation performed by the execution of a command.

Figure 1. Big- and little-endian comparisons

Notation Meaning

← Assignment.

|| Concatenation.

=, ≠ Equal, not equal relations.

≥, ≤ Greater than or equal to, less than or equal to relations.

LE 7 6 5 4 3 2 1 0

Bit numbering within a byte

BE 0 1 2 3 4 5 6 7

4-byte field with character data shown

LE 3 2 1 0

Content: M I K E

BE 0 1 2 3

Illustrating the difference between little endian
and big endian storing to memory of the 4-byte
field shown to the left.

Memory
offset

LE stored BE stored

0 E M

1 K I

2 I K

3 M E

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 13 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Notes

This document contains engineering and developer notes.

Engineering notes

Engineering notes provide additional implementation details and recommendations not found elsewhere. The
notes might include architectural compliance requirements. That is, the text might include Architecture
compliance terminology. These notes should be read by all implementation and verification teams to ensure
architectural compliance.

Developer notes

Developer notes are used to document the reasoning and discussions that led to the current version of the
architecture. These notes might also include recommended changes for future versions of the architecture, or
warnings of approaches that have failed in the past. These notes should be read by verification teams and
contributors to the architecture.

>, < Greater than or less than relations.

+ Two’s complement addition.

- Two’s complement subtraction, unary minus

∨ Bitwise logical OR

∧ Bitwise logical AND

⊕ Bitwise logical exclusive OR

Max(x,y) Returns x when x ≥ y; otherwise returns y

Min(x,y) Returns x when x ≤ y; otherwise returns y.

{x...y} All integer values from x through y.

A = {x...y} Returns true when A is a member of the set of integer values in the range of x through y.

Notation Meaning

Engineering note
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin cursus hendrerit enim, vel tempus nibh ornare ut.
Quisque ac augue eu augue convallis hendrerit. Mauris iaculis viverra ipsum nec dapibus. Nunc at porta libero.
Curabitur luctus ultrices augue non pulvinar. Vestibulum mattis non ipsum at venenatis. Suspendisse euismod,
neque et suscipit luctus, odio metus semper lectus, quis volutpat est libero quis nunc. Vivamus rutrum mauris sed
tristique malesuada. Vivamus at augue vitae nisl cursus feugiat. Pellentesque efficitur sed nisi in dapibus.
Curabitur vestibulum cursus arcu, ut mattis nisl.

Developer note
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin cursus hendrerit enim, vel tempus nibh ornare ut.
Quisque ac augue eu augue convallis hendrerit. Mauris iaculis viverra ipsum nec dapibus. Nunc at porta libero.
Curabitur luctus ultrices augue non pulvinar. Vestibulum mattis non ipsum at venenatis. Suspendisse euismod,
neque et suscipit luctus, odio metus semper lectus, quis volutpat est libero quis nunc. Vivamus rutrum mauris sed
tristique malesuada. Vivamus at augue vitae nisl cursus feugiat. Pellentesque efficitur sed nisi in dapibus.
Curabitur vestibulum cursus arcu, ut mattis nisl.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 14 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Command flows and transaction diagrams

Command flow diagrams

Command-flow diagrams show interactions within and across the different levels of the OpenCAPI protocol
stack. Command flows use diamonds for decision blocks and rectangles for actions taken. Circles are used
for on-page and off-page connectors and indicate a from-to direction based on the text content of the circle.

In Figure 2, a simple decision block with a state change and an off-page connector is shown. The text within
the off-page connector has the format of “source page”.destination page”.”instance”. The off-page connectors
shown in the figure is on page 1 of the figure1 and is connecting to page 2 of the figure. On page 2, identical
off-page connectors can be found. The instance indication allows for multiple connections to be shown
between two pages. Connector 2.1.A illustrates a connection from page 2 to page 1 of Figure 2. An off-page
connector can also be used to “connect” two spots on the same page as illustrated by connector 1.1.A. The
direction of the arrow, into or out of a connector, decision block, or assignment-action block, indicates the
direction of the sequence within the flow diagram.

Transaction diagrams

Transaction diagrams show the interaction between the TL and TLX layers and provide some illustrative
notes for actions taken at the host protocol layer and the attached functional unit (AFU) protocol layer. In
Figure 3 on page 16, the diagram is broken into three vertical sections. From left to right, these are the AFU
protocol layer notes, transactions between the TL and TLX layers, which are typically command and
response packets, and the host protocol layer notes. Arrows indicate the direction in which the packet or
action flows; for example, towards or away from the host (TL) layer.

1. All multi-page figures contain a “page n of y” notation in the figure description.

Figure 2. Command flow example

YN update_cache_
state_flag = 1?

current_state = directory.host_tag.cache_state

Y

N

castout.
cache_state=I

Y

N

current_state =
{I, S, ME} 1.2.A

1.2.D

1.1.A

2.1.A

1.1.A

1.2.E

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 15 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Circles are used for on-page and off-page connectors and indicate a from-to direction based on the text
content of the circle. The text content is specified in the same manner for transaction diagrams as previously
described for command flows. In addition to the specification of how connectors are used in command flows,
in transaction diagrams, when a connector is used without an arrow, the transaction shown is one of multiple
possible transaction outcomes. The use of this technique reduces the size of the transaction figure because
the preceding set of transactions do not have to be repeated.

In Figure 3, connector 1.1.B illustrates an on-page connection without an arrow to indicate a different transac-
tion out come. The prior events are assumed to have occurred when looking at the second instance of the
1.1.B connector. In the second case, one TLX packet has passed a previously issued TLX packet; this is
something that can occur when two packets use different virtual channels. Connector 1.3.A shows an off-
page connection to page 3, and connector 4.1.B shows an off-page connection from page 4.

Arrow numbering is included in transaction diagrams to simplify references to transactions. The form of the
arrow references indicates the source of the transaction (AFU or Host) and the instance of the arrow. As seen
in Figure 3, [A1] is the first arrow from the TLX packet transaction and [H1] is the first TL transaction.

A break in the vertical lines indicates where a new transaction illustration starts or ends.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

About this document
Page 16 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure 3. Example TLX and TL transaction diagram

AFU (TLX) Host(TL)

1.1.B

1.1.B

2.1.B

Host notes

host protocol

host protocol

host protocol

host protocol

Host notes

Host action
causing
TL protocol
action

1.3.A

4.1.B

TLX packet

TLX packet

TLX packet

TLX packet

TLX packet

TL packet

TL packet

[A1]

[A2]

[A3]

[H1]

[H2]

[A3]
[A4]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 17 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Terms
The following terms are used in this document.

{EA, address context}
A short hand notation to indicate an EA and address context pair.

• Used when specifying an entry in an AFU L1 directory
• Use in discussions about address translation from EA to either an RA or PA.

acLookUp(acTag)

This is a function call used in command flows and transaction diagrams. It converts an acTag found in
a TLX command packet into the address context (ac) used by the host’s platform architecture to
authenticate and provide the function requested by the TLX command.
The result of an acLookUp provides the error state of the address context provided. The state is shown
as addressContext.state in the flows. The states are:

1. Good. The address context provided is valid.
2. Invalid acTag. The acTag entry in the acTag table is not valid, or the acTag is specified outside

the acTag table range. See Table 7-1 on page 199.
3. Invalid address context. The BDF and PASID associated with the acTag are invalid. The address

context returned by the look up is not valid. See Table 7-1 on page 199.
The function description is host specific.

ACK Acknowledgment.

address context

(ac or addressContext). Address context is the information associated with a particular BDF and
PASID pair. The association is formed by actions specified by the host’s platform architecture.
For TLX commands, the acTag and the acTag table provide the BDF and PASID. See Section 4 The
acTag table on page 180 for additional details.

address context space A PASID paired with a BDF uniquely identifies the address space associated with a request. In
OpenCAPI, a request is a TLX command.

address tenure
In a split transaction bus protocol, the commands and addresses are sent on the bus by the master
before any data that might be associated with the transaction is moved. After the address tenure is
completed, the status of the completion is examined. The data, if any is specified, is sent conditionally
based on the status.

AFU

Attached functional unit. Architecturally, AFU refers to an end point unit or resource. Communication
from the processor to the AFU goes through a protocol stack, transaction layer (TL), data link layer
(DL), and physical medium layer (PHY). Command and data packets at the AFU interface are specified
by the AFU command/data interface, which is the interface between the AFU protocol stack and the
AFU.

AFU protocol
AFU protocol layer. This layer currently consists of:

• AFUC protocol layer
• AFUM protocol

AFUC

A processing element that is able to generate and receive commands to obtain data either in a cached
state (using an attached L1), or in a checked-out (non-cached) state.
It uses the AFU command/data interface to communicate with the AFUC protocol stack. All addressing
to the AFUC protocol uses an EA only. It uses the AFUC protocol stack to send and receive commands
through the TLX. If the device contains an EA L1 cache, commands may result in cache line installa-
tion (cacheable operations).
Non caching operations also specified for this device (non-allocating cache operations).
See AFU type on page 28 for the different sub-types of an AFUC.

AFUC protocol AFUC protocol layer. This protocol specifies the sequences on the AFU command/data interface and
the OpenCAPI packet interface (TLX boundary) for an AFUC-defined AFU.

AFUM

A processing element that receives commands to either provide or receive data. This element is a
memory storage device and may be mapped to the system’s memory address range.
The attributes of the memory held by an AFUM are managed by the operating system.
It uses the AFU interface to communicate with the AFUM protocol stack. All addressing to the AFUM
uses a PA only.
See AFU type on page 28 for the different subtypes of an AFUM.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 18 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

AFUM protocol AFUM protocol layer. This protocol specifies the sequences on the AFU command/data interface and
the OpenCAPI packet interface (TLX boundary) for an AFUM-defined AFU.

alias

When address translation from one address type to another results in a many to one mapping, the set
of addresses that map into the single address are referred to as alias of each other.
During address translation, an alias is formed when two different addresses translate into the same
address. For example:

• Two or more physical addresses (PA) of an OpenCAPI device map to the same host real address
(RA).

• Two or more host RA map to a single attached OpenCAPI device’s physical address.

Allocate command Class of commands on the AFU command interface that indicates the allocation of a cache line. That
is, a read operation that results in a cache line installed in the AFU L1.

AMO Atomic memory operation. This operation performs an atomic update to a naturally aligned memory
location. In some cases, this type of operation returns the original value of the memory location.

AP Attached processor. Synonymous with AFU.

ATC Address translation cache. The architecture describes a model for both a host ATC and an AFU ATC.
See Section 1.8 Address translation on page 45.

BAR Base Address Register.

back-off event
An event that causes a retry of an operation at some future time. The architecture specifies two types
of back off events: short and long. The back off duration is controlled by configuration space registers
specified in the OpenCAPI platform architecture.

BE Byte enable.

cache block segment A 64-byte block of memory held in a cache. A single cache state is associated with the cache block
segment.

cache line

A cache line consists of one, two, or four cache block segments. A cache line is the size of the data
block requested by a processor when moving data from a memory to a cache and is typically fixed in
size. In many machine implementations, a cache line is associated with a single cache state. In this
architecture, the host and AFU cache may not have the same cache line size. Due to this, there is no
assurance that the cache state obtained by the AFU is consistent across the AFU cache line data
block. The minimum granularity of cache state is assured at the 64-byte cache block segment. The TL
architecture permits an AFU to request cacheable copies of one or more cache lines with a single com-
mand; for example, using read_me. Atomicity of all cacheable requests from the AFU are at the 64
byte cache block segment only.

CAPI Coherent Accelerator Processor Interface.

CAPP Coherent accelerator processor proxy.

command packet TL/TLX construct. Contains command information for TL-to-TLX and TLX-to-TL communication.

convert2PA(RA)
This is a function call used in command flows and transaction diagrams. This coverts an RA seen on
the host processor bus into a PA used by the attached OpenCAPI device.
The mapping of an RA to a device PA is device and host platform dependent.

CRC Cyclic redundancy check.

critical OW request

The following commands are provisioned to support a critical octword (OW) request:
• rd_wnitc, rd_wnitc.t, and all dot variants of these commands
• read_mes, read_mes.t
• read_s, read_s.t
• read_me, read_me.t
• rd_mem

A critical OW request is made when the address specified by the command is on a 32-byte (octword)
boundary. Based on the size of the data block requested by the dLength specified, the address may
not be naturally aligned.
The requester is indicating that the OW specified by the command’s address is latency critical. The
requester is asking that the first data transfer associated with the first response for this command con-
tain the critical OW.
Responding with the critical OW first is optional.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 19 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

data carrier Data is transported between the TL and TLX in data carriers, which are defined as 64-byte data flits, or
as 32- or 8-byte data fields found in control flits.

DCP

Data credit pool. Each command or response specified with immediate data consumes one or more
data credits.
To add a command or response to a DL frame’s control flit, both the VC credit and the DCP credit must
be atomically obtained. That is, you must have both to proceed to insert the command or response into
the DL frame.
Adding a command or response specified with immediate data to a DL control flit defines the order the
data is sent towards its destination.
See Section 5.1.3 Data transport, order, and alignment on page 184 for full details.

dError Data error.

Device
The device refers to hardware and software attached via an OpenCAPI interface comprised of the
PHYX, DLX, TLX Framer/Parser, TLX, AFU protocol stack, AFU protocol layer AFU interface and the
AFU itself. See Figure 1-1 OpenCAPI stack on page 27.

DL OpenCAPI data link layer found on the host processor.

dLength Data length (dL).

DLX OpenCAPI data link layer found on the external OpenCAPI device.

DMA Direct memory access. A technique for using a special-purpose controller to generate the source and
destination addresses for a memory or I/O transfer.

dP, dPart Data part (dP).

EA Effective address. This is the address as seen by a program. Some host architectures refer to this as a
virtual address (VA). Mapping from an EA to an RA requires address translation services.

EA cache
 A cache that is indexed by EA and address context pair. Access to the data in an EA cache requires
that the address translation for the{EA, address context} is valid. See Section 1.3.4 AFU Cache state
transition reporting, initiation, and characteristics on page 33 for details.

ECC Error correction code. A code appended to a data block that can detect and correct bit errors within the
block.

Flit

An acronym for FLow control digITs. Typically used in networking to specify the smaller pieces that a
larger network layer packet is broken into. See FLITs.
In this architecture specification, a flit is associated with the specification of a DL frame and is defined
as a 64-byte unit of data. Control and data flits are specified.

flit-cycle The amount of time it takes 64-bytes to be either sent or received at the DL/TL or DLX/TLX interface.

host
The host refers to the host processor attached via an OpenCAPI link. It is comprised of the OpenCAPI
PHY, DL, TL Framer/Parser, TL, the Host bus protocol stack interface and the hosts processors and
other components that are implementation dependent on the host connected. See Figure 1-1 Open-
CAPI stack on page 27.

host bus protocol layer

Specifies the sequences on both the host bus and at the host bus protocol layer and the OpenCAPI
packet interface to:

• Respond to snooped host bus commands from the OpenCAPI packet to the OpenCAPI transac-
tion layer to initiate action at the target AFU.

• Master commands on the host bus, per the specification found in the OpenCAPI packet, from the
OpenCAPI transaction layer. Respond back to the source AFU at the conclusion of the host bus
operation via an OpenCAPI packet to the TL layer.

https://en.wikipedia.org/wiki/FLITs

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 20 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

host_tag arithmetic

One host_tag is associated with each 64-byte data segment of a line held in an AFUC2 cache. That is,
a host_tag is assigned to each cache block segment a line is composed of. The specification of a com-
mand or response shall ensure that the host_tags are adjacent when more than one 64-byte block of
data is specified. Adjacent in this context means numerically adjacent. That is, add 1 to the value of a
host_tag to get to the next host_tag. An operation that specifies 128 or 256 bytes shall be broken into
multiple commands or responses when the host_tags associated with the data block are not adjacent.

• When dLength is greater than one in a command that specifies a host_tag, the next host_tag is
determined by incrementing the host_tag value by one. The command requester shall ensure that
host_tags are sequential.

• When the host is returning cacheable data to an AFUC2 cache and the dLength is greater than
one, the host_tag value in the response packet is associated with the 64-byte address determined
by the command’s address and the dPart specified in the response packet. The host_tag for the
remaining 64-byte data blocks specified by this response is determined by incrementing the
host_tag value by one for each 64-byte block. The host shall ensure that the host_tags specified
by this response are sequential.

host_tag database This is an architectural model construct managed by the AFUC2. The host_tag database contains
host_tag entries. See Section 1.3.2.1 host_tag database on page 30.

host_tag entry An entry in the host_tag database. See host_tag database on page 30.

immediate data
Data associated with a command or response. Immediate data is the data specified for a write opera-
tion (the command and the data travel in the same direction). A read response has immediate data (the
response and the data travel in the same direction). A read command does not have immediate data;
the data arrives with the response.

inbound The direction from the attached OpenCAPI device towards the attached processor chip.

LRU
Least recently used. A policy for a caching algorithm that removes from the cache the item that has the
longest elapsed time since its last access. An algorithm used to identify and make available the cache
space that contains the data that was least recently used.

MEM The memory-mapped owner of the line. The owner could be the memory controller or an the owner of
a memory-mapped I/O space. Some coherency protocols refer to this as a point of coherency (POC).

metadata
Refers to information associated with a naturally aligned data block. This architecture specifies a 7-bit
metadata field and a 72 bit extended-metadata field. Metadata is found in control flits where the tem-
plate specifies the association of the metadata with the data. 7-bit metadata fields are found in tem-
plates x‘04’ through x‘09’. Extended metadata is found in templates x‘0A’ and x‘0B’.

minimum signed integer
value

4-byte value: x‘8000_0000’
8-byte value: x‘8000_0000_0000_0000’

MMIO Memory-mapped input/output. Refers to the mapping of the address space required by an I/O device
for Load or Store operations into the system’s address space.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 21 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

mnemonic specification

The general format of a mnemonic for either commands or responses is based on a base com-
mand/response type and “dotted” subtypes.
The following subtypes are currently specified:

When a mnemonic is only a base format (no additional dots), see the command specification
to determine if a command is posted or non-posted.

.be Byte enable field specified (dot-be).

.d Data transfer (dot-d). Used only for intrp_req commands.

.n Used for commands that require address translation (dot-n). If the address translation results
in a miss in the ATC, the results of the address translation are used for the current operation,
but are not loaded into the ATC.
An implementation may:
• Ignore this directive.
• Store the results in a TLB.

.

.ow Octword data specified (dot-ow). Used for responses with immediate data consists of one or
more control flits containing a 32-byte data field. The TL and TLX templates that support these
control flit forms are specified in Section 6 TL and TLX template specifications on page 189.
Responses with this form contain a dPart field with 32-byte address granularity.

.p posted (dot-p). The absence of this sub-type designation for commands indicates that the
command might be non-posted (that is, a response is expected).

.s Indicates a presync is required prior to execution of the command. (dot-s)

.t Indicates the address specified by the command consists of a translated address (TA) instead
of an EA. Applies to TLX commands only. (dot-t)

.xw X-word data specified (dot-xw). Used for responses with immediate data consists of one con-
trol flit containing an 8-byte data field. The TL and TLX templates that support these control flit
forms are specified in Section 6 TL and TLX template specifications on page 189.

MRU Most recently used. One of the results of an LRU algorithm. The cache entry that has the shortest
amount of elapsed time since its last access.

NACK Negative acknowledgment.

Engineering Note
The dot-n form is expected to be used with a host implementation that has a multi-level ATC.
This form of the command allows warming up the higher levels of the ATC hierarchy without
installing into the more resource-precious level 1 ATC.

Developer note
To eliminate errors in the expected use cases for dot-s specified commands, the following
restrictions were applied when forming the TLX command set:

• All dot-s commands must also be dot-t. This ensures that address translation does not
cause the operation to fail. Any other failure is expected to be fatal that causes the link to
go down.

• All dot-p write commands must also be dot-t. This is done to simplify the architecture.

Developer note
The current set of TL/TLX templates limits the specification of dot-xw responses to 8-byte
transfers. A future version could provide additional templates that support 16-byte data fields.
The response encodes for the current set of dot-xw responses has bit 24 specified as ‘0’. To
specify 16 bytes, bit 24 would be set to ‘1’.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 22 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

naturally aligned data block

A data block containing L bytes is naturally aligned when the address specifying the location of the
data block is an integer multiple of the length of the block.
Where:
i = {0, 1, 2, 3...}
L = {64, 128, 256}
A naturally aligned data block is located from byte address i * L through (i + 1) * L - 1.
A command’s address specification may not be aligned as specified above. An unaligned address
points to a naturally aligned data block of length L, with a starting address of
adr(63:(log2 L)) || (log

2
 L)0.

nMMU

An abstraction of a host implementation-dependent construct that performs page-table walks based on
the underlying page-table architecture as specified by the host architecture and host’s platform archi-
tecture.
In the command flows and transaction diagrams, it returns:

• nMMU_response.status = 0 when an address translation is successful. It returns page_size and
access permissions.

• nMMU_response.status <> 0 when software must be invoked to complete the requested address
translation.

Non-allocate command

Class of commands on the AFU command interface that indicates the operation will not result in the
allocation of a cache line. That is, a non-allocate read operation shall not result in the installation of a
cache line in the AFU L1. However if a cache line has already been allocated, the line is already resi-
dent in the AFU L1, then the operation results with the line remaining in the cache. See the command
description for details.

null control flit
A null control flit is defined as using template x‘00’. The 6-slot packet contains a 1-slot null command,
and the remaining five slots are undefined. A return credit response found in slots 0 and 1 may be used
to return credits. See Section 6 TL and TLX template specifications on page 189 for the specification of
template x‘00’.

OMI

OpenCAPI memory interface. Additions to the OpenCAPI 3.0 TL specification:
• Provide dot-ow and dot-xw formats of commands and responses
• Provide TL and TLX template specifications x‘04’ through x‘08’
• Expand data carrier types to include 32- and 8-byte data fields found in some control flit formats
• Specify metadata and extended metadata
• Add critical OW specification for some read commands
• Add MAD fields to some read commands

outbound The direction from the processor chip to the attached OpenCAPI device.

PA

Physical address. This refers to the address space owned by an AFUM device. The host converts the
RA to the AFUM device’s physical address space using configuration settings in the host that are deter-
mined during initialization of the attached OpenCAPI device.
A PA is not the result of address translation of an EA as might be the case in some host architectures.
The host maps the device’s PA into its own (RA) address space.

packet

TL/TLX unit of information. A command packet contains commands. A response packet contains
response information. See the specification of command and response packets in Section 2 TL and
TLX command and response specifications on page 48.
Data is transferred in address-aligned:

• 64-byte data flits
• 8-byte data fields specified in some template specifications found in Section 6
• 32-byte data fields specified in some template specifications found in Section 6

PHY

The PHY layer interfaces to the DL and the network.
This is the bit stream level specifying the electrical and optical transmission medium as well as the net-
work interconnect topology.
The current specification for the network is a point-to-point connection.

PHYX
On the OpenCAPI device, the PHYX layer interfaces to the DLX and the network. This is the bit stream
level that specifies the electrical and optical transmission medium as well as the network interconnect
topology. The current specification for the network is a point-to-point connection.

pL, pLength Partial length.

POC Point of coherency. See definition of MEM.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 23 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

presync

dot-s formatted commands cause a presync event prior to execution.
When a dot-s command reaches the head of the service queue and is eligible to be removed from the
head of the service queue as described in Section 3.3 TL Virtual channel and service queues on
page 168, it is enqueued into the service queue’s corresponding presync queue.
As described in Section 3.4 TL Presync queues on page 171, the command is dispatched to the host
only when it reaches the head of the presync queue and when all prior commands have completed.
A command is defined as being completed by the host bus/AFU protocol layer when service by the
protocol layer ends. The operation completes. When, for example, a write operation’s data is globally
visible. A read operation completes when it provides the data. An address translation operation com-
pletes when it provides the necessary address translation.

presync queue

A presync queue is a queue placed after the service queue. A dot-s command at the head of a service
queue is dequeued into the presync queue specified for the service queue.
Presync queues are based on a VC. They use the same hash rules specified for service queues. An
implementation is not required to use the same hash for a presync queue as it does for its service
queue. The hash may be less or more perfect. However, it is constrained by the definition of a VC and
the perfect hash specified for the VC as defined in the definition of a service queue.

RA
Real address. A real address is the result of address translation of an EA. Some host architectures
refer to this as a physical address; this specification reserves the term physical address for other pur-
poses. See the definition of PA.

Reserved/R Indicates that a field or bit specification is reserved. A reserved field is set to zero and shall not be
examined by an implementation. See Architecture compliance terminology on page 11.

response packet TL construct that contains response information to commands. Used for TL-to-TLX and TLX-to-TL
communication.

responder TL or TLX that accepts a command, services the command, and sends back a response TL/TLX
packet that provides data, when required, and status of the service to the command.

requester
TL or TLX that issues a command. The requester collects all responses returned by the responder, if
any, to determine the status of the service provided by the command. When the command is posted,
responses are not returned.

RTL Register transfer language.

segment When used in reference to data, a segment refers to a naturally aligned 64-byte portion of a data trans-
fer. For example, a 256-byte data transfer contains four segments.

service queue

The members of a service queue are an ordered set of commands. The commands are selected by
applying a hash against the VC, BDF, PASID and stream_id associated with the command.The hash
results in the selection of a specific service queue. The hash is both implementation and command
dependent. The hash is command dependent because not all commands are specified with a BDF,
PASID and stream_id. Commands that are not specified with a VC do not enter a service queue.
Per VC, the following operands may be included in the hash:
TLX.vc.0 This VC is used for most responses, and the hash is the VC.
TLX.vc.2 Contains only castout and castout.push TLX commands. The hash is the VC.
TLX.vc.3 Contains various read and write TLX commands as well as assign_actag and

kill_xlate_done.
The assign_actag command is serviced before entering into a service queue. All other com-
mands are sorted using a hash based on the VC, BDF, PASID and stream_id.
The kill_xlate_done response is removed from the VC and is serviced as described in
Section 3.4.1 TL queuing and service of kill_xlate_done on page 173.

When the hash specified is used for a VC, the hash is perfect and the resulting service queue is identi-
cal to the definition of a virtual queue.
When an implementation removes hash terms from the VC-specific specification, the hash is not per-
fect. For example, if the stream_id term is removed from TLX.vc.1, all commands, regardless of
stream_id, occupy the same service queue.
There is at least one service queue per VC supported by the implementation.

slot A slot is a 28-bit granule used to specify a TL or TLX command or response packet.

SUE
Special uncorrectable error. Refers to error detection and attempted correction to a block of data. A
SUE indicates that an error was detected upstream from the present error detection logic. The use of
SUE indications aids in determining error origination as part of a first error incident reporting scheme.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 24 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

synonym

 In this term relates to address translation during cacheable transactions. A synonym is formed when
two or more effective addresses (EAs), regardless of address context, map into the same host real
address (RA).
A synonym is detected by the host during the execution of a TLX read_me, read_me.t, read_mes,
read_mes.t, read_s, read_s.t, upgrade_state, or upgrade_state.t command. When the EA is trans-
lated or the TA used, a synonym is detected if the host’s proxy directory is holding the RA in a state
other than invalid and indicates that the line is inclusive of the AFU’s cache.
Detection of a synonym results in a TL synonym_detected response. The host_tag is returned to the
requester, which is required to manage the synonym detection event.
The AFU is not required to fully support synonyms. At a minimum, on receipt of a synonym_detected
response, the AFU shall:

• Wait until all responses for the current operation have been received.
• Schedule a castout or castout.push of the data block specified by the original read request.
• Schedule a synonym_done command once the cast out has been added to its VC.

After the synonym_done has been placed into its VC, the AFU may re-issue the original request.

TL

OpenCAPI transaction layer found on the host processor.
• Interfaces to the DL and the protocol layer. Responsible for command-packet formation and

response-packet handling and formation. Ensures that the order of data sent to the DL matches
the command- and response-packet order sent to the DL.

• Manages data flits, 8- and 32-byte data carriers specified in some control flits from the DL. Asso-
ciates the data with the command or response packet that was received prior to the arrival of the
data. The command- and response-packets contain data descriptors that enable this association.

• Performs flow control.
• Performs error handling and control.
• Manages all service queues and presync queues associated with each virtual channel. Order is

retained within virtual channels.

TLB
Translation lookaside buffer. An on-chip cache that holds the translation of an effective address (EA) to
a real address (RA). A TLB caches page-table entries for the most recently accessed pages, thereby
eliminating the necessity to access the page table from memory during load-store operations.

TLX

OpenCAPI transaction layer found on the external OpenCAPI device.
• Interfaces to the DLX and the protocol layer. Responsible for command packet formation and

response packet handling and formation. Ensures that the order of data sent to the DLX matches
the command and response packet order sent to the DLX.

• Manages data flits, 8-, and 32-byte data carried in some control flits from the DLX and associates
the data with the command or response packet that was received prior to the arrival of the data.
The command and response packets contain data descriptors that enable this association.

• Flow control.
• Error handling and control.

UE Uncorrectable error. Refers to error detection and attempted correction to a block of data. An uncor-
rectable error indicates that an error was detected and the attempted correction failed.

VC Virtual channel. See Section 3 Virtual channel and data credit pool specification on page 163, and the
specification of all commands and responses in this section.

virtual queue

The specification of a service queue describes the VC-specific hash required to form a service queue
from a virtual queue.
The members of a virtual queue are an ordered set of commands received from a VC. That is, the
ordering of the commands found in the VC shall be retained when adding commands from the VC to a
virtual queue.

warming up The process of loading or populating a cache with a set of valid data.

write class command A command that is used to write data to a destination. The source of a write class command is also the
source of the data.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Terms
Page 25 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

xlate_result = adr_xlate(EA,
addressContext)

This is a function call used in command flows and transaction diagrams. This returns the host’s results
from an address translation. The function returns an RA (xlate_result.RA) and a status (xlate_re-
sult.status). The status returned is:

1. Complete. Address translation completed successfully with an RA provided. The ATC may have
been updated with the result.

2. rty_req. Indicates that the address translation could not be completed at this time. The operation
may be attempted at a later time.

3. xlate_pending. Indicates that the address translation could not be completed. The ATC did not
contain the translation and software was invoked. An asynchronous xlate_done TL command is
sent when the software actions have completed.

Engineering note
The Resp_code=xlate_pending is sent in a read_failed, touch_resp, or write_failed response
packets. These TL responses shall precede the xlate_done command in the TL.vc.0 virtual
channel.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 26 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1. Overview
The OpenCAPI transaction layer specifies the control and response packets passed between a host and an
OpenCAPI device. The transaction layer implemented on the host is referred to as the TL. The transaction
layer implemented on the OpenCAPI device is referred to as the TLX.

On the host, the transaction layer converts:

• Host-specific protocol requests into transaction-layer-defined commands.

• TLX commands into host-specific protocol requests. When the host protocol completes, it provides
responses to the TLX commands when required.

• TLX responses into responses for host-initiated requests.

On the OpenCAPI device, the transaction layer converts:

• AFU-specific protocol requests into transaction-layer-defined commands.

• TL commands into AFU-specific protocol requests. When the AFU protocol completes, it provides
responses to the TL commands when required.

• TL responses into responses for AFU-initiated requests.

Working together, the TL and TLX provide a standard method to bridge between a host protocol architecture
and an AFU protocol architecture. This is accomplished by the exchange of command and response packets
specified by the OpenCAPI transaction layer specification.

Version 4.0 of this specification builds on the version 3.1 base and adds the following extensions:

• New AFU type: AFUC2. The AFUC2 adds an AFU processing element that supports a local cache.

• The AFUC2 introduces an EA AFU cache and specifies cache states. See Table 1-1 Cache state descrip-
tions on page 32. Commands for the host to manage access between the AFU processing element and
its cache are added. Commands for the host to manage the AFU cache contents are added.

• Adds a host proxy cache to the host protocol layer. The architecture specifies that the host proxy cache is
inclusive of the AFUC2 cache contents. See Section 1.3.4 AFU Cache state transition reporting, initiation,
and characteristics on page 33.

• The AFUC2 adds the concept of a host_tag that associates the AFU’s cache to the host’s proxy cache.

• TL.vc.2 and TLX.vc.2 virtual queues

• TLX.dcp.2 data credit pools

• New commands and responses to manage cacheable data.

• AFU ATC architecture models and commands to manage them.

• Adds Translated addresses, AFU ATC, and dot-t commands.

• dot-p forms of commands that are posted.

• dot-s forms of commands that enable the use of TL Presync queues.

• Modifications to Write fragmentation ordering and atomicity and the addition of the ordered segment (Os)
directive to some write commands.

• TL versions of amo_rd, amo_rw, and amo_w commands

• Additional Error event specifications for the new extensions.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 27 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.1 OpenCAPI protocol stack

Figure 1-1 on page 27 shows the OpenCAPI protocol layers.

Figure 1-1. OpenCAPI stack

Host bus Interface

Host bus protocol layer

TL

TL Framer/Parser

DL

PHY

PHYX

DLX

TLX

TLX Framer/Parser

AFU protocol layer

AFU

Host bus protocol stack interface

OpenCAPI packets

DL packet (format)

DL packet

DLX packet

DLX packet (format)

AFU interface

AFU packets

AFU protocol stack interface

H
os

t p
ro

ce
ss

or
O

pe
nC

AP
I d

ev
ic

e

Serial link

Host proxy
cache directory

AFU L1 cache

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 28 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.2 Host operation modes

The interface between the host and the AFU can be implemented with varying levels of complexity. Interoper-
ability with an AFU implementation is dependent on the operation mode supported by the host and the
requirements of the AFU.

The various combinations of AFU capabilities are broken into two subclasses, AFUC and AFUM. There are
three sub-classes of AFUC, and two sub-classes of AFUM.

The following sections describe the combinations of AFUC and AFUM devices on a single OpenCAPI device.

1.2.1 No attached device (C0, M0)

No device is attached to the OpenCAPI interface. No transactions occur.

1.2.2 MEM-only mode (C0, M1)

In this mode of operation, the AFU appears to be a memory controller with an address space mapped into the
host’s system address space. Access by the host uses the PA. See the specification of an AFUM.

AFU type Description

AFUC0

(C0 or none). There is no visible-to-the-host processing element. The host never sees any
commands sourced by the TLX.
While a processor element might not be visible to the host, it may still be present. If it is pres-
ent, it shall not cache any lines in any coherent data valid state and shall not rely on the
host’s coherency protocol for correct operation.

AFUC1

(C1 or type 1 processing element). A processing element with no cache. An AFUC1 may
issue TLX commands to the host. It uses an EA to access host system memory. The host
provides address translation and access to system memory.

AFUC2

 (C2 or type 2 processing element). A processing element with a EA L1 cache. An AFUC2
uses EA to access host system memory. Host provides address translation, access to sys-
tem memory, and host_tag with cache state for each 64 byte naturally aligned data block
(cache line or partial cache line depending on the host’s cache line size).
See Section 1.3 AFUC2 on page 30 for the requirements this mode places on the host and
device behaviors.

AFUM0

(M0 or none). There is no host system address space mapped to this device. That is, host
system address space shall not be mapped to this device. Configuration space may be
specified for this device.

AFUM1

(M1 or type 1 MEM). A range of host system address space shall be assigned to this device.
This address range shall be accessible only through the host (TL-to-TLX interactions). The
host shall use the PA to access data.

Engineering Note
The address range assigned to this type of device may be limited to MMIO space
only or may include memory that is manged by the operating system; for example,
memory that is backed by DRAM and that can be migrated to disk as needed.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 29 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.2.3 Checkout mode (C1, M0)

In this mode of operation, the AFU appears as a processing element without a cache. It may have a non-
coherent scratch pad memory, which is used for local processing only. Access to system memory is permitted
as coherent, no-intent-to-cache actions. The AFU shall use an EA for these requests. The host shall perform
address translation to enable access to system memory.

1.2.4 Checkout with MEM (C1, M1)

In this mode of operation, the AFU appears as a processing element without a cache. It may have a non-
coherent scratch pad memory, which is used for local processing only. Access to system memory is permitted
as coherent, no-intent-to-cache actions. The AFU shall use an EA for these requests. The host shall perform
address translation to enable access to system memory.

In addition, the AFU provides a memory controller function with an address space mapped into the host’s
system address space. Access by the host uses a PA. See the specification of an AFUM.

1.2.5 Cache-only mode (C2, M0)

In this mode of operation, the AFU appears to be a processor element with a coherent EA based L1 cache.
Access to system memory is permitted using EA. The host performs address translation to enable access to
system memory.

This combination is not likely to be viable since there must be some access method to configure the Open-
CAPI device.

1.2.6 Cache + MEM mode (C2, M1)

In this mode of operation the AFU appears to be a processor element with a coherent EA based L1 cache
and a separate PA accessed memory controller. The processor element is unable to directly access the
contents of the memory controller; that is, any access by the processor element requires address translation
through the host and access to the data is provided by the host.

While a processor element might not be visible (C0), it might still be present. If it is present, it cannot cache any
lines in any coherent data valid state and cannot rely on the host’s coherency protocol for correct operation.
Examples of this type of configuration that meet the above requirements are:

• An encrypted memory device. In this device, the data is encrypted/decrypted when the data is written to the
M1 or read from the M1. The processing element that performs the encryption/decryption is not visible to the
host. Topologically, the processing element is between the memory and the host.

• A memory cache device. The cache is managed by a processing element. The cache exists to reduce
latency, and the cache states are not related to the host’s coherency protocol. Data might be fetched or
stored into the cache. The host cannot tell this is happening except for an improvement in performance.

Developer note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 30 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.3 AFUC2

As described in Host operation modes, support for an AFUC2 places requirements on the behavior of the
device and on the host. The following sections describe the requirements placed on the host’s and device’s
behavior.

1.3.1 Host proxy cache

Supporting an AFUC2 places a requirement on the host to provide a host proxy cache. The host proxy cache
shall appear to be inclusive of the AFU L1 EA cache.

The host proxy cache appears to be an RA cache holding the coherence state of the RA as known by the
host. The states held by a host proxy cache entry appear to be the same as those specified for the AFU
cache which are specified in Table 1-1 Cache state descriptions on page 32. An implementation may choose
to provide additional or fewer states. Any implementation specific changes to the states specified by
Table 1-1 shall be done in such a manner that the differences are not externally visible.

A host proxy cache entry shall appear to have a 64-byte data block granularity. That is, each entry in the host
proxy cache contains the state of a 64-byte naturally aligned block of data. A host tag is assigned to each
entry in the host proxy cache. An implementation may choose to form a host proxy cache differently. Any
implementation specific differences to the host proxy cache shall be done in such a manner that the differ-
ences are not externally visible.

The assignment of the host_tag value to the host proxy cache entry is implementation dependent.

The state held by the host proxy cache entry may not match the state of the corresponding entry or entries in
the AFUC2 EA L1 cache2 pointed to by the host_tag.

1.3.2 AFUC2 model

The architectural model of a AFUC2 contains the following structures

• host_tag database

• L1 EA cache directory

• data cache

An AFUC2 may choose to support synonyms or may provide only the minimum support for synonyms.

1.3.2.1 host_tag database

The host_tag database is comprised of a number of host_tag entries. The number of entries is determined
during discovery and configuration time. The host tag value is provided by the host and appears in
commands and responses. The host tag value is used to index into the host_tag database.

The architecture model of a host tag entry is comprised of a valid field, a L1 cache id and a set and way id.
The L1 cache id allows for multiple L1 cache directories to be maintained, and the set and way id specifies
the entry in the L1 directory that is described below. When a new L1 cache directory entry is created, the host

2. See Section 1.3.2.2 L1 EA cache directory on page 31.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 31 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

provides a host_tag. The AFUC2 provides the L1 cache id and the set and way id. The host_tag entry
contains a single host_tag dirty bit. This bit is set either during the validation of the host_tag entry or when the
data associated with the host_tag entry has been modified by an action taken by the AFUC2.

To support synonyms, the host_tag entry is expanded by providing multiple valid, L1 cache id, and set and
way fields.

An implementation may choose to form a host tag database differently. Any implementation specific differ-
ences to the host_tag database cache shall be done in such a manner that the differences are not externally
visible.

See Section 1.5 Host tags on page 39.

1.3.2.2 L1 EA cache directory

The architectural model of the L1 EA cache directory is comprised of entries that each have a 64-byte data
block granularity. The cache line for the L1 EA may be 64-, 128-, or 256-bytes. Since the cache line of the
host may also be 64-, 128- or 256-bytes, both the host proxy cache and the L1 cache directory are required to
appear to maintain 64-byte granularity.

The L1 EA cache directory entry contains an address tag3, an address context identifier, the host_tag associ-
ated with the 64-byte naturally aligned data block associated with this entry, the cache state of the entry as
defined in Table 1-1 Cache state descriptions on page 32, and a data cache set and way identifier.

The data cache set and way identifier is an explicit pointer to the location of the data. An alternative is an
implied pointer based on the location of the cache directory entry.

An implementation may choose to form the L1 EA cache directory differently. Any implementation specific
differences to the L1 EA cache directory shall be done in such a manner that the differences are not exter-
nally visible.

1.3.2.3 data cache

The data cache holds the data referenced by the host tag data base and the one or more L1 cache directory
entries. The implementation shall ensure when synonyms are supported, that changes made to the data by
processes that have write authority is seen by all synonyms. That is, any accesses using a synonym and
holding a state that indicates valid data, has access to the same data state as any other synonym holding a
state that indicates valid data4. This could be accomplished by a using either a single data cache, or distrib-
uted data caches based on either the L1 cache id or by the address context used.

An implementation may choose to form the data cache differently. Any implementation specific differences to
the data cache shall be done in such a manner that the differences are not externally visible.

3. A set and way cache structure is assumed
4. I and EI states indicate invalid data

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 32 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.3.3 AFU cache states

Cache state specifications and legal downgrade states are provided in Table 1-1 on page 32.

In Table 1-2 below the relationship between the host proxy state corresponding to a single host_tag entry and
the one or more L1 EA entries that point to the same host_tag entry in the host_tag database is illustrated.

In Table 1-2 below, there are separate columns for an implementation that supports synonyms and for imple-
mentations that do not. AFUC2 Implementations that do not support synonyms have a one to one relationship
between a single host_tag entry and a single L1 EA cache directory entry. AFUC2 implementations that do
support synonyms have a one to many relationship between a single host_tag entry and multiple L1 EA
cache directory entries. AFUC2 implementations that support synonyms are required to track the clean/dirty
state of the data associated with the host_tag entry. This is used by the AFUC2 to determine if a
castout.push is required when invalidating the host_tag entry. That is, when the last L1 EA cache directory
entry associated with a host_tag entry is evicted, the clean or dirty state of the data (dirty bit set column in
Table 1-2) is examined to determine if a castout or castout.push is used to inform the host.

Table 1-1. Cache state descriptions

Mnemonic State name Unique Description

I Invalid No Cache line data and L1 EA entry are not valid

E Exclusive Yes

Cache line data and L1 EA entry are valid. Data is not modified with
respect to MEM/POC contents unless the dirty bit in the host_tag
data base is set.
Castout does not require a memory write operation unless the dirty bit
in the host_tag database is set. Write permission is implicitly indi-
cated for this state.

EI Exclusive - no data Yes

Cache line data is not valid, and the L1 EA entry is valid. This is a
special E state where the line has been forced back to the memory
owning the line.
This cache state occurs when exclusive ownership of the line is
granted using upgrade_state requesting a I → EI transition.

M Modified Yes

Cache line data and L1 EA entry are valid. Data may be modified with
respect to MEM/POC contents.
Castout requires a memory write operation. Write permission is
implicitly indicated for this state.

S Shared No

Cache line data and L1 EA entry are valid. Write permission is
unknown and shall not be assumed.
Eviction actions from the L1 EA cache shall not include a memory
write operation unless the dirty bit in the host_tag database is set.
That is, a castout.push shall not be issued when the cache state
transitions from an S to an I state and the dirty bit in the host_tag data
base is not set.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 33 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.3.4 AFU Cache state transition reporting, initiation, and characteristics

As described above, host_tags are used to index into the host_tag database and are assigned by the host.
The reader of this specification should be aware that this specification refers to one host_tag per coherence
block for descriptive simplicity. When a coherence block uses multiple host tags, the intent of the architecture
is to apply all rules and comments to the set of host tags associated with the coherence block, or in the case
of command and response descriptions, with the aligned data block specified by the command or response.
Section 1.5 Host tags on page 39 describes host tags in detail.

The AFU L1 cache is an EA cache. When the AFU processor accesses its L1 cache, the address translation
for the cache entry must be valid. This requires that the host inform the AFUC2 when address translation is
lost for an entry in the AFU L1 cache. This may be accomplished using any of the following techniques.

• The host may issue force_evict to clear the entries out of the L1 EA cache.

• When the AFU maintains an ATC5, the AFU shall access both its ATC and its L1 EA cache. Both the ATC
and the L1 cache must be valid in order for the AFU processor to access the L1 EA contents. If either is
invalid, the processor shall not gain access to the requested data.

Note that the AFUC2 L1 EA cache shall continue to respond to force_evict commands from the host
when there is no valid address translation in the AFU’s ATC.

An AFU implementation may support synonyms. A synonym is detected by the host when the AFU requests
a line for its cache for which the host has already provided a host_tag. In these synonym detected cases, the
host_tag is returned without data to the AFU using the TL synonym_detected response. The AFU locks the
host_tag provided with the synonym_detected response. Additional actions are taken by the AFU to

Table 1-2. Concurrent host proxy cache (L2) and L1 EA cache states (L1)

No synonym support Synonyms supported

L2 States L1 states dirty bit set L1 states (may be concur-
rent in the L1)3 dirty bit set

I I No I No

S S No S, I No, No

E E, EI, M No, No, Yes E, EI, M, S, I No2, No2, Yes, No2, No2

EI EI, M No, Yes EI, M, S, I No2, Yes, No2, No2

M M Yes E, M, S, I Yes, Yes, No1, No1

1. L2 state is M. This means the data was at one time handed to the AFUC2 in a dirty state. The dirty bit is set.
2. Dirty bit set if data has been modified by other synonyms that have write authority.
3. When the L2 is not in an I state, a state other than I is expected in the L1. The only time that the L1 state of a line is I and the state

found in the L2 is not I, is during the window where the line has been cast out by the AFUC2, that is, invalidating the host tag, and
the time the host sees and acts on the cast out.

5. See Section 1.8 Address translation on page 45.

In reference to the last bullet above. The requirement that the AFU’s ATC contain a valid address
translation in order for access to the L1 EA content allows the host to quickly invalidate address trans-
lations and stop the AFUC2 processor from accessing lines that have lost their address translation.

Engineering note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 34 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

complete the TLX command that was originally issued. synonym_done shall be issued as part of the actions
taken. It is the responsibility of the AFU to determine if the current state of the line held in its cache that is
associated with the host_tag allows the completion of the operation. For example when synonym_detected
is returned and:

• The host_tag is found to be invalid. The AFU shall issue synonym_done and may retry the operation to
obtain the data.

• The host_tag is found to be valid and the data is invalid and the operation required valid data. The AFU
shall first evict the line using the TLX castout command to release the host_tag and then issue syn-
onym_done. The implementation shall ensure that castout precedes synonym_done in the VC6. Once
synonym_done is issued, the AFU may retry the operation.

• The host_tag is found to be valid, the data is valid, and the state indicated by the synonym_detected
response does not match the current state of the line.

– For example, when the AFU cache holds the line in an S state and issues a read_me to obtain write
authority for the line. The synonym detected is for the existing {EA, address context}. The state of the
existing entry is updated with the new state specified by the synonym_detected cache_state field.

– For example, when a process is attempting to gain access of a cache line and takes a cache miss, it
may issue a read_me, read_mes or read_s command. The receipt of synonym_detected indicates
that the host proxy cache's state indicates that the line requested has already been provided. Since
the current state of the L1 cache entry is invalid, the AFUC2 takes the following actions:

— If the AFUC2 does not support synonyms, the line specified by the host_tag found in the
synonym_detected response is cast out and invalidates the host_tag entry. The castout or
castout.push and the synonym_done commands are both in TLX.vc.2. The castout or
castout.push shall precede the synonym_done command.

— If the AFUC2 supports synonyms, then the new cache entry, which is starting the process in an
Invalid state, shall be updated using the cache state provided by synonym_detected. See
Table 2-21 on page 127 in the description of synonym_detected.

• The AFU supports mapping a single host_tag entry to multiple {EA, address context} entries as described
in Section 1.3.2.1 host_tag database on page 30. The number of synonyms supported is implementation
dependent and the host is not aware of the AFU’s capabilities. The AFUC2 assigns another pointer in the
host_tag entry to the new {L1 cache, EA, address_context} and the state of the cache entry is provided
by the cache state found in the synonym_detected command. The dirty bit in the host_tag database
entry is set when the M state is specified.

Cache state transitions that are initiated at the AFU are shown in Table 1-3 on page 35. Not all transitions at
the L1 are required to be immediately reported to the host.

• As a consequence of an AFUC2 EA L1 cache holding synonyms, there are cases where an eviction of a
synonym does not result in the AFU informing the host of the eviction. For example, if an AFU cache were
to evict one synonym, leaving other synonyms in the AFUC2 EA L1 cache, the host_tag is still in use
because the line is still present in one or more locations in the AFUC2 EA L1 cache. A more detailed
examination of actions taken when a command from the AFU results in a synonym_detected response
is found in Table 2-21 on page 127 which is part of the description of synonym_detected.

6. TLX.vc.2

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 35 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 1-3. L1 EA Cache state change request and notification

Starting State →
Transition to

↓
I E EI M S

I Note 1 castout
castout.push

Note 2

castoutNote 2

castout.pushNote 5
castout.push

Note 2
castout
Note 2

E read_me
read_mes

Note 3

castoutNote 4

castout.pushNote 5
castoutNote 6

castout.pushNote 5
castout.push

Note 5
read_me

Note 7

EI upgrade_state
(I → EI)
Note 3

castoutNote 4

castout.pushNote 5
castoutNote 4

castout.pushNote 5
castout.push

Note 5
Note 8

M read_me
read_mes

upgrade_state
(I → M)
Note 3

castoutNote 4

castout.pushNote 5
castoutNote 4

castout.pushNote 5
castoutNote 4

castout.pushNote 5
read_me

Note 7

S read_mes
read_s
Note 3

Note 9 Note 9 Note 9 castout
Note 6

See Table 7-2 Cache state transition errors on page 208 for illegal state transitions as seen by the host’s L2.
Notes:

1. Notification not required.
2. Downgrade to an I state shall be reported.
3. The command response specifies the state the line is granted in to the AFUC2.
4. State change is neither an upgrade or downgrade. Immediate notification not required when a data update (clean) is not required.
5. State change is neither an upgrade or downgrade. Immediate notification required when data update (clean) is required.

• Some multi-step transitions are not visible at the L2, but occur at the L1. For example: EI →M -> I, E → M → E, EI → M →E
6. State change is neither an upgrade or downgrade. Immediate notification is not required. Allowed only when castout indicates an

mru_update (cmd_flag = ‘0001’).
7. Upgrade request required response from host granting the upgrade in state. This action results in a synonym_detected response.
8. No direct transition. Must castout the line before reacquiring the line in the desired state.
9. A direct downgrade to S state not allowed by architecture due to an unresolved race condition. See Figure on page 36.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 36 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Downgrade to S Developer note showing state mismatch condition (Page 1 of 2)

AFU (TLX) Host(TL)
EA0 ↔ RA0
EA1 ↔ RA0
host_tag(A) ↔ nullhost_tag(A) ↔ null

read_me(EA0, acTag)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
operation.

Host read M/E

RA0 misses host direc-
tory. Picks host_tag(A)

RA0 granted in M

host_tag(A) locked

cl_rd_resp(host_tag(A), state=M)
TL.vc.0 Data

[H1]

[H2]

Unlock host_tag(A)

AFU locks host_tag(A)
Updates state (M) and
data directory. Marked
as dirty if M.

host_tag(A) ↔ EA0, M,dirty
Unlock host_tag(A)

read_me(EA1, acTag)
TLX.vc.3

[A3]
adr xlate ok; Host issues read
operation.

Host read M/E

RA0 granted in M/E

RA0 hits L2 at host_tag(A)

[H3]

host_tag(A) ↔ RA0 ,in M

AFUC2 cleans line, keeps S state.
host_tag(A) ↔ EA0, S, clean

castout.push(host_tag(A), state=S)
TLX.vc.2

synonym_detected(host_tag(A), state=M)
TL.vc.0

Host issues castout / clean
operation
host_tag(A) ↔ RA0 ,in S

[A2]

castout(host_tag(A), state=I)
TLX.vc.2

Host issues castout
operation
host_tag(A) ↔ in I

AFUC2 evicts line -
minimum synonym support
host_tag(A) ↔ null

synonym_done(host_tag(A))
TLX.vc.2

[A4]

[A5]

AFUC2 retries the EA1 operation. With minimum syn-
onym support, there is no state mismatch when

synonym_done is processed at the host.

Unlock host_tag(A)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 37 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Downgrade to S Developer note showing state mismatch condition (Page 2 of 2)

AFU (TLX) Host(TL)
EA0 ↔ RA0
EA1 ↔ RA0
host_tag(A) ↔ nullhost_tag(A) ↔ null

read_me(EA0, acTag)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
operation.

Host read M/E

RA0 misses host direc-
tory. Picks host_tag(A)

RA0 granted in M

host_tag(A) locked

cl_rd_resp(host_tag(A), state=M)
TL.vc.0 Data

[H1]

[H2]

Unlock host_tag(A)

AFU locks host_tag(A)
Updates state (M/E) and
data directory. Marked
as dirty if M.

host_tag(A) ↔ EA0, M,dirty
Unlock host_tag(A)

read_me(EA1, acTag)
TLX.vc.3

[A3]
adr xlate ok; Host issues read
operation.

Host read M/E

RA0 granted in M

RA0 hits L2 at host_tag(A)

[H3]

host_tag(A) ↔ RA0 ,in M

AFUC2 cleans line, keeps S state.
host_tag(A) ↔ EA0, S, clean

castout.push(host_tag(A), state=S)
TLX.vc.2

synonym_detected(host_tag(A), state=M)
TL.vc.0

Host issues castout / clean
operation
host_tag(A) ↔ RA0 ,in S

[A2]

AFUC2 upgrades in place and re-
assigns host_tag(A)
host_tag(A) ↔ EA1, M, dirty

synonym_done(host_tag(A))
TLX.vc.2

[A4]

Unlock host_tag(A)

AFUC2 upgrades the state to M and re-assigns
host_tag(A) to EA1, M, dirty. EA0 is evicted locally, the
data cache is valid. There is a state mismatch when

synonym_done is processed at the host.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 38 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.3.5 Design considerations when the AFUC2 and host cache line sizes are different

The architecture supports 64-, 128-, and 256-byte cache line sizes. This allows for a system where the AFU
and the host have different cache line size specifications. Since the cache line size specification of the host
and the AFUC2 may be different, an AFUC2 shall not assume that obtaining a cache line greater than 64 bytes
is performed in an atomic fashion by the host.

1.3.5.1 Read commands

As noted in Section 2.1.1, a difference in cache line size may result in a single TLX read_me, read_mes or
read_s command getting multiple responses.

read_me, read_mes and read_s cases:

• A mix of cl_rd_resp and read_failed responses are received.

The AFUC2 received a cl_rd_resp which indicates the host has allocated one or more host_tags and
assigned a state in its proxy directory. The AFUC2 is permitted to

– retry the failed portion of the operation

– Cast out the segment of the cache line that was successfully obtained, and retry the operation. Cast-
ing out the segments obtained shall be done indicating a final state of I. This releases the host_tags
in the host’s proxy directory.

• A mix of states due to multiple cl_rd_resp or synonym_detected responses.

Multiple responses and a mix of states is an indication that the host has allocated multiple host tags

– A mix of E and M states is resolved by the AFUC2 setting the dirty bit in the host_tag data base
entries corresponding to the responses indicating an M state. Locally the AFUC2 might treat the
cache line as being in an M state.

– A mix of M, E, and S states requires that the AFU cast out the cache line segments7 held in M and E.
The cast out of the segments shall be done indicating a final state of I. The segments can be reac-
quired by issuing a read_s command to ensure that an S state is obtained.

1.3.5.2 Force evict

When a force_evict command specifies only a segment of the AFUC2 cache line, the AFUC2 shall castout
the segment of the cache line specified by the force_evict command. It may cast out all of the L1 EA cache
line.

1.3.5.3 Upgrade state command

As noted in Section 2.1.1, a difference in cache line size may result in a single upgrade_state command
getting multiple responses.

• A mix of upgrade_resp, synonym_detected and read_failed responses are received.

The AFUC2 received an upgrade_resp, which indicates the host has allocated one or more
host_tags and assigned a state in its proxy directory. The AFUC2 is permitted to

7. Multiple responses were received. Each response may indicate one or more 64-byte blocks, each having an entry in the
host_tag database. A segment refers to block referenced by the response.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 39 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

— retry the failed portion of the operation as specified by the read_failed response.

— Cast out the segment of the cache line that was successfully obtained, and retry the operation.
Casting out the segments obtained shall be done indicating a final state of I. This releases the
host_tags in the host’s proxy directory.

1.4 Command ordering

Ordering within a VC is maintained through the TL/TLX, but it is not assured after the command has moved to
the upper protocol layers (host and AFU) as described in Section 3 Virtual channel and data credit pool spec-
ification on page 163.

1.5 Host tags

A host_tag is a host specified identifier used by an AFUC2 when evicting data blocks from the AFU L1 EA
cache. The host_tag is specified in synonym_done, castout, and castout.push TLX commands. The
host_tag is specified in the force_evict TL command and in the synonym_detected, cl_rd_resp,
upgrade_resp, and cl_rd_resp.ow TL responses.

While a single host_tag field is specified in the above commands and responses, the host_tag is associated
with a single 64-byte naturally aligned block of data. The commands and responses with dLength and dPart
fields may specify data blocks of 128 or 256 bytes. The host_tag found in the command or response is asso-
ciated with the 64-byte block at offset 0 within the naturally aligned block of data specified by the dLength and
dPart. The host_tags associated with the remaining 64-byte blocks are determined using host_tag arithmetic
defined on page 20. Restrictions on the host_tag arithmetic are specified by the host and are provided to the
AFUC2 through the host_tag run-length-capability.

An AFUC2 retains the association between a host_tag and at least a single {EA, address context} L1 EA
cache directory entry within a host_tag database. A host_tag may be associated with multiple {EA, address
context} L1 EA cache directory entries. The AFUC2 is managing synonyms when a single host_tag is associ-
ated with multiple {EA, address context} L1 EA cache directory entries. See host_tag database on page 30.

The host_tag database tracks the association between each host_tag and the association to one or more
{EA, address context} L1 EA cache directory entries maintained in the AFUC2 cache. The host specifies its
own restrictions on host_tags and the applicability of host tag arithmetic.

• Responses with host_tag fields and dPart fields are a response to a command specifying a dLength. For
each response, the response’s dLength refers to the immediate data and/or address range associated
with the response. The dPart specifies the offset from the address specified by the command the
response is associated with. That is, either the immediate data provided by the response or the address
range.

• TL responses synonym_detected, cl_rd_resp, and upgrade_resp are formed by the host. The host
specifies its own restrictions on host_tags and the applicability of host tag arithmetic.

Developer note
The TLX command set provides posted (dot-p) and non-posted commands with presync directives (dot-s). See
Section 3.3 TL Virtual channel and service queues and Section 3.4 TL Presync queues.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 40 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

• TL response cl_rd_resp.ow specifies a single 32-byte naturally aligned data block. The 3 bit dPart field
specifies the offset within the command's dLength sized naturally aligned data block. The host_tag is
repeated for dPart pairs: {(0,1), (2, 3), (4, 5), (6, 7)}. The host specifies its own restrictions on host_tags
and the applicability of host tag arithmetic.

• TL command force_evict specifies a naturally aligned block of data to be evicted from an AFUC2 cache.
The host_tag field specifies the first naturally aligned 64-byte data block. All {EA, address context} copies
of the data block associated with the host_tag shall be evicted from the AFUC2 cache using a castout or
castout.push command8. When the dLength is greater than 64-bytes, host tag arithmetic is used to
determine the next host_tag value to be used to determine the data blocks to be evicted.

• TLX command synonym_done is a response to a TL response synonym_detected.
synonym_detected specifies a host_tag and dLength. The AFU shall use the same dLength and host
tag in forming the synonym_done command9.

• TLX castout or castout.push commands shall be issued in response to a TL force_evict or due to the
EF directive found in upgrade_resp, cl_rd_resp, and cl_rd_resp.ow responses.TLX castout or
castout.push commands may be issued as part of normal AFUC2 cache management, or the unique
AFU processor architecture that may specify pushing a line out of the cache.

– When the castout or castout.push is the result of a force_evict or due to the EF directive found in
upgrade_resp, cl_rd_resp, and cl_rd_resp.ow, the AFUC2

— May use the same dLength and host tag specification for the castout or castout.push command
that was found in the force_evict command or due to the EF directive found in upgrade_resp,
cl_rd_resp responses.

— May issue multiple castout or castout.push commands in response to a force_evict or due to
the EF directive found in upgrade_resp, cl_rd_resp using smaller dLength field values than the
value found in the force_evict or due to the EF directive found in upgrade_resp, cl_rd_resp
responses and may assume that the set of host tags implied by host_tag arithmetic can be
returned individually, in even-odd pairs (offset from the original host tag), or a combination of indi-
vidual and pairs.

— Shall issue a single castout or castout.push using only the host tag in response to a
cl_rd_resp.ow with an EF directive specified.

– When the castout or castout.push is the result of normal AFUC2 cache management, or the unique
AFU processor architecture that may specify pushing a line out of the cache, the AFUC2 may issue
castout or castout.push commands with dLength specifying a 64-byte block regardless of the set-
ting of the host_tag run-length-capability. That is, specifying a single host tag with each command.
Using the host_tag run-length-capability, the AFUC2 shall issue castout or castout.push commands
using dLength field specifications of

— 64- or 128-bytes when the run length is 2

— 64-, 128-, or 256-bytes when the run length is 4.

That is, the run length places a restriction on the dLength specification used by the AFUC2. The
AFUC2 shall not exceed this restriction.

8. All copies of the line specified by the force_evict command are locally evicted and a single castout operation occurs that is
visible to the host. The castout operation takes the line to an I state.

9. synonym_detected also has a dPart field, so multiple synonym_detected responses can be received at the AFU. For
each synonym_detected response received, the AFU shall respond with a synonym_done once all actions required by
the synonym_detected have been completed.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 41 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.5.1 host_tag run-length-capability

An AFUC2 uses the host_tag run-length-capability when specifying castout and castout.push commands
that are not due to a force_evict or due to the EF directive found in upgrade_resp, cl_rd_resp, and
cl_rd_resp.ow. See the discussion above.

The configuration space specification of the host_tag run-length-capability is found in the OpenCAPI
Discovery and configuration specification. The description of the capability is shown below.

The host_tag run-length-capability specifies the run length of the host_tag specification. The run length indi-
cates the size of the naturally aligned data block that the hosts assigns to consecutive host tags.

1.5.2 host_tag update ordering

1.5.2.1 TL and host rules

With respect to castout and castout.push commands (TLX.vc.2):

• castout and castout.push commands with different host_tag specifications may be completed by the
host protocol layer in any order.

• castout and castout.push with the same host_tag specification shall be completed by the host protocol
layer in the order specified by the command order found in the VC (TLX.vc.2).

This does not place a direct requirement on the host protocol. In cases where the host protocol does not
support the above requirements, the TL implementation of the host shall enforce the above rule by any
method and in such a manner that the difference between host direct compliance or additional TL implemen-
tation actions are not externally observable.

See Figure A-16. castout.push example showing host_tag ordering at the host on page 238.

1.5.2.2 TLX and AFU rules

The TLX locks the host_tag entry prior to dispatching the TL packet to the AFU dispatch interface for the
following TL commands and responses: force_evict, cl_rd_resp(EF=1), cl_rd_resp.ow(EF=1)and
synonym_detected. The AFU responds with a TLX castout or castout.push command when the TL
command is force_evict, cl_rd_resp(EF=1), or cl_rd_resp.ow(EF=1). The AFU responds with a TLX
synonym_done command when the response is to a TL read_me, read_mes, or read_s or upgrade_state
is synonym_detected. There is no response expected from the AFU when the TL response is
cl_rd_resp(EF=0).

Table 1-4. host_tag run-length-capability definition

run length Description

1 Indicates that the host assigns a host tag to each 64-byte naturally aligned data block.

2 Indicates that the host assigns {host_tag, host_tag+1) to each 128 byte naturally aligned data block. Within
an AFUC2 cache two 64-byte data blocks are consecutive only when EA0 is on a 128-byte boundary and
EA0+64 uses the same address context as EA0.

4 Indicates that the host assigns {host_tag, host_tag+1, host_tag+2, host_tag+3} to each 256-byte naturally
aligned data block. Within an AFUC2 cache four 64-byte data blocks are consecutive only when EA0 is on a
256-byte boundary and EA0+64, EA0+128, and EA0+192 all use the same address context as EA0.

all other values Reserved.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 42 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

See Section 3.5 Device TL virtual channel queues on page 174

1.6 Write fragmentation ordering and atomicity

1.6.1 Write fragmentation ordering and atomicity at the host

Write commands issued by the AFU may be fragmented by the host. The following sections specify the
atomicity of the fragments and the order in which the updates become globally visible.

1.6.1.1 Partial write operations

These are TLX commands found in the following command classifications: pr_dma_write, atomics.r,
atomics.rw, and atomics.w.

Minimum guaranteed write atomicity is specified as 16 bytes when aligned on a 16-byte address boundary.
When the partial write operation is not specified with a naturally aligned address, atomicity may be reduced to
a single byte. Data shall be globally visible in increasing address order.

1.6.1.2 64-,128-, 256-byte write operations

These are TLX commands restricted to 64-, 128-, or 256-byte naturally aligned write operations. These are
TLX commands found in the following command classification: dma_write.

Minimum guaranteed write atomicity is specified as 64 bytes. When the write operation specifies 128 or 256
bytes and the host fragments the write operation, ordering is controlled by the ordered segment bit found in
the command.

When the ordered segment bit is set to 0, there is no ordering guarantee for the data segments written.

• When the ordered segment bit is set to 1, each segment is written atomically and increasing address
order.

Engineering note
The architecture does not currently provide TLX commands that specify partial write operations where the data
and address are not naturally aligned. Unaligned partial writes can be specified using, for example, the
dma_w.be command.

If an implementation breaks the writes specified by the byte enable mask into a series of host write commands,
and when a host implementation does not directly support the byte enable mask, the implementation issues the
commands in increasing address order and ensures that the results are globally visible in the order the
commands are issued.

castout.push does not have an Os bit assigned and is not included in this discussion. A process attempting to
obtain data held in the L1 cache obtains the data in the L1 cache and are not able to obtain stale data from the
MEM as long as the data block is treated coherently.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 43 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.6.2 Write fragmentation ordering and atomicity at the AFU

Write commands issued by the host may be fragmented by the AFU. The following sections specify the
atomicity of the fragments and the order in which the updates become globally visible.

1.6.2.1 Partial write operations

These are TL commands found in the following command classifications: mem_atomics.r, mem_atomics.rw,
mem_atomics.w, pr_mem_write, and configuration.

Minimum guaranteed write atomicity is specified as 16 bytes when aligned on a 16-byte address boundary.
When the partial write operation is not specified with a naturally aligned address, atomicity may be reduced to
a single byte. Data shall be globally visible in increasing address order.

1.6.2.2 64-, 128-, 256-byte write operations

These are TL commands restricted to 64-, 128-, or 256-byte naturally aligned write operations. These are TL
commands found in the following command classification: mem_write.

Minimum guaranteed write atomicity is specified as 64 bytes. When the write operation specifies 128 or 256
bytes and the AFU fragments the write operation, ordering is controlled by the ordered segment bit found in
the command.

• When the ordered segment bit is set to 0, there is no ordering guarantee for the data segments written.

• When the ordered segment bit is set to 1, each segment is written atomically and increasing address
order.

1.7 OpenCAPI device PA space specification

An OpenCAPI device may have the following three PA spaces specified:

1. Configuration space shall be specified for the device.

2. System memory space may be specified for the device.

3. MMIO space may be specified for the device.

Developer note
Applications are expected to use 64-byte or smaller writes for synchronizing required events; for example, when
writing a semaphore. Larger data transfer sizes are expected to be used for data transfer efficiency. Synchro-
nizing control events are expected to use presync (dot-s) variants of write commands.

Ordering is provided between data segments of a single command as well as between commands using presync
versions of write commands. Both segment ordering and presync have performance implications and should be
used only when necessary.

Developer note
The architecture does not currently provide TL commands that are able to specify partial write opera-
tions where the data and address are not naturally aligned.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 44 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The configuration space is accessed by using the config_read or config_write commands. The PA specified
for this space is separate from the system memory space and the MMIO space. The host may:

• Provide a configuration address BAR to access this space using a direct access load/store model.

• Provide an MMIO register set to access this space using an indirect access method.

This architecture does not specify the application of metadata to a device’s configuration space.

The system memory space is memory space owned by the OpenCAPI device that is mapped to the host’s
system memory. The PA for system memory space is defined to start at offset 0. The host differentiates
between the different system memory spaces of different OpenCAPI devices by providing a configuration
address BAR for each attached device.

The MMIO space shares the PA space used by the system memory space. It is specified by a fixed offset
from PA 0 which is specified in the OpenCAPI device’s configuration space. The host differentiates the MMIO
spaces of different OpenCAPI devices by providing a configuration address BAR for each attached device.
Access to MMIO space is sensitive to the operand length and the command specified. The device literature
should provide information on how to correctly access MMIO space.

• A device may not support all operand lengths provided by the architecture when accessing a specific
address found in MMIO space. If an MMIO access does not use a correct operand size for the address
specified, an unsupported-operand-length Resp_code shall result.

• A device may not support all commands provided by the architecture when accessing a specific address
found in MMIO space. If an MMIO access does not use a correct command for the address specified, a
Failed Resp_code shall result.

• All accesses to MMIO space shall result in a single response from the device. That is, when a dLength of
128 or 256 bytes is permitted, the device shall respond with the same dLength used in the command.

System and MMIO spaces are expected to be contiguous based on the configured starting PA and size.
Access to unimplemented addresses results in the following:

• Read access to an unimplemented PA shall return all 1s data.

• Write access to an unimplemented PA shall result in discarded data.

1.7.1 PA-to-RA mapping rules

Real addresses (RA) are mapped into the physical address (PA) space specified for a device. This eliminates
any requirement placed on the OpenCAPI device to have knowledge of the host’s real address space or how
the OpenCAPI device’s PA space is mapped into it. The following rules place restrictions on the OpenCAPI
device’s specification of its PA space.

1. No address aliasing for PA-to-RA translation. That is, a PA for any specific device attached to an
OpenCAPI link (PA + unique interface) translates into a unique RA. The address translation is specified
by address ranges configured by software.

2. No address aliasing for RA-to-PA translation. The host protocol is provided with a single POC for each
RA.

Engineering note
MMIO space notes: Access to MMIO should be non-blocking. Retrying access to MMIO space is not prohibited
by the architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 45 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

1.8 Address translation

1.8.1 Effective to real address translation

Effective to real address translation is specified by the host’s architecture. The TL architecture model
assumes a host address translation cache (ATC) that holds valid effective (EA) to real address (RA) transla-
tions. The ATC contains, at a minimum, a valid indication, the page size, the page size aligned starting effec-
tive address (EA), the address context of the translation in the form of the BDF and PASID, page write
permission (W) and the host’s corresponding real address.

The architecture supports multiple page sizes. All implementations shall support the minimum page size of
4K-bytes. See the specification of log2_page_size on page 52 and page size capability recommendations
found in Table 8-9 Profile specifications supported page size on page 217. During configuration, the set of
page sizes used by host and AFU is determined by taking the intersection of the set of page sizes supported
by the host and the set of page sizes supported by the AFU.

An implementation may choose to provide additional fields, or may replace some of the fields listed above
with other host specific content. Since the architecture assumes that the contents of an ATC entry contain the
fields specified by the TL architectural model, any implementation specific alterations shall be done in such a
manner that the differences are not externally observable.

The architecture model does not require, but allows for, a multi-level ATC. Higher level ATC might have a
smaller capacity and have faster access than a lower level ATC that have more capacity and longer access
latency. The structure of a host’s ATC is outside the scope of this architecture.

The TL architectural model assumes that TLX commands with an EA specified go through effective to real
address translation before execution on the host protocol bus. See Section 3.3 TL Virtual channel and service
queues on page 168 for additional details.

An AFU can warm up the host’s ATC by using the TLX xlate_touch command. See the command description
for additional details.

1.8.2 Translated addresses, AFU ATC, and dot-t commands

All dot-t commands have a translated address (TA) specified. To obtain a TA, the AFU may10 issue a
xlate_touch command with the translated address request option asserted as specified by the command flag
bit 3 being set to ‘1‘.

A successful address translation results in the TL returning a touch_resp.t that provides a page size aligned
translated address (TA), page write permission (W), memory hit (mem_hit) indication, and the size of the
page. The AFU uses the provided base TA and adds in the offset into the page when accessing data within
the range of the page.

The TA returned is unique to the address context associated with the xlate_touch. The same TA value may
be used for different {EA, address context} translations. touch_resp.t returns a {TA, address context} pair.
The AFU shall make the association between the TA returned and the address context when updating its
ATC on receipt of the TL touch_resp.t response.

10.Other methods are permitted by the architecture. Those methods are outside the scope of the architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 46 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The TL architecture model assumes an AFU address translation cache (ATC) that holds valid effective {EA,
address context} to {TA, address context} address translations.The AFU ATC contains, at a minimum, a valid
indication, the page size, the page size aligned starting effective address (EA), the address context of the
translation in the form of the BDF and PASID, page write permission, and the page size aligned translated
address (TA). An implementation may choose to provide additional fields, or may replace some of the fields
listed above with other AFU specific content. Since the architecture assumes that the contents of an AFU
ATC entry contain the minimum set of fields specified by the TL architectural model, any implementation
specific alterations shall be done is such a manner that the differences are not externally observable.

The architecture supports multiple page sizes. All implementations shall support the minimum page size of
4K-bytes. See the specification of log2_page_size on page 52 and page size recommendations found in
Table 8-9 Profile specifications supported page size on page 217. During configuration, the set of page sizes
used by host and AFU is determined by taking the intersection of the set of page sizes supported by the host
and the set of page sizes supported by the AFU.

When supporting an AFU ATC, the host address translation cache is modified from the description provided
in Section 1.8.1 beginning on page 45 by the addition of translated addresses (TA). The TA field is added to
the host’s ATC in order to support the use of TA by the AFU. The host’s ATC shall be accessible by either EA
or TA. Since the architecture assumes that the contents of an ATC entry contain the fields specified by the TL
architectural model, and assumes the access methods described, any implementation specific alterations
shall be done in a manner such that the differences are not externally observable.

1.8.2.1 AFU initiated AFU ATC entry invalidation

The AFU manages its ATC without direction from the host. The implementation dependent topology of the
ATC may require that an entry must be removed before a new entry can be added. This is may be accom-
plished by the AFU issuing a xlate_release command or the AFU may evict the ATC entry without notifying
the host. When using xlate_release, the command shall be enqueued into its VC after all commands depen-
dent on the translation.

Engineering note
Multiple host ATC and TA implementation approaches are possible to meet the architectural model’s require-
ments. For example:

• Pin the host ATC entry. When implemented in this manner, the TA has the same value as the EA. A field is
added to the host ATC entry indicating that the ATC entry is pinned.

• TA database. This is a database containing the same fields as an ATC entry where the TA value and the
contents found in a host ATC entry are provided. The TA is the index into the TA database.

When requesting and releasing translated addresses:
• An AFU making multiple requests for the same {EA, address context} may either receive the same TA value

or may receive different TA values. The address context is the same.
• Regardless of the number of times the AFU obtains the same TA value, a single xlate_release releases the

{TA, address context}.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Overview
Page 47 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Since xlate_release is assigned to TLX.vc.3 the service queue hash11 used by the host may include the
stream_id. In cases where the address translation is in use by multiple stream_id, the AFU shall stop issuing
commands using the address translation and then issue a sync command to all stream_id using the transla-
tion. Once all sync commands have received a response12, the AFU sends xlate_release to any one of the
stream_id to return the translation to the host.

1.8.2.2 Host initiated AFU ATC entry invalidation

For various reasons13 the host might require that an address translation held by the AFU ATC be invalidated.
This is accomplished by the host requesting the TL to issue a kill_xlate command. The AFU shall complete
all currently active operations using the address translation specified by the command and invalidate its AFU
ATC entry. New operations shall not be started using the ATC entries specified by the kill_xlate command.
All TLX commands using these address translations shall be placed into the TLX.vc.3 before the kill_xlate
command can be completed by sending a kill_xlate_done. See Section 3.4.1 TL queuing and service of
kill_xlate_done on page 173 for additional detail.

11.See the specification of service queue hash in the definition of a service queue on page 23.
12.sync_done
13.For example, invalidation of the address translation by the host’s operating system, or the host’s management of its ATC

requires an entry be removed before adding a new host ATC entry.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 48 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2. TL and TLX command and response specifications
This section specifies all command and response types originated in the TL and the TLX. Commands origi-
nating in the TL are referred to as CAPP command packets (CAPP_cmd). Commands originating in the TLX
are referred to as AP command packets (AP_cmd). Responses originating in the TL are referred to as CAPP
response packets (CAPP_response). Responses originating in the TLX are referred to as AP response
packets (AP_response)

In the subsections of this chapter descriptions use the following format:

Table 2-1 lists the command operands used in the TL and TLX command and response specifications. See
Terms on page 17 for definitions of terms used in these specifications.

Command descriptive name mnemonic Assigned opcode

command classification VC used, DCP used (immediate data) 28-bit slot count

Table 2-1. TL and TLX command operands (Page 1 of 6)

Operand mnemonic Field
width Description

acTag 12

Address context tag. The address context tag is managed by the AFU. The acTag is used as an
index into a host table that contains the BDF and PASID associated with the acTag. The
OpenCAPI device learns its Bus number during a config_write, T=0 operations. The function and
device numbers are assigned by the attached OpenCAPI device’s implementation and cannot be
modified by any configuration actions. The OpenCAPI device shall be assigned at least one
PASID, and may be assigned more than one PASID, by host software during the initialization and
operation of the device. The BDF and PASID are used for address translation authorization and
operation validation.

AFUTag 16

Unique handle specifying the AFU and command instance. Provided by the AFU that is request-
ing command services of the TLX. A TL response to a single TLX command may be broken into
multiple TL response packets. When this occurs, all responses associated with the TLX command
shall return the same AFU Tag value.

BDF 16 Bus device function. This is the identifier of a TLX requester. See acTag on page 48 for additional
details.

Byte enable 64 (BE) This field is found in commands with dot-be mnemonic specifications. Valid only for write
class commands.

Engineering Note
The TL shall not use the AFUTag for any purpose other than as data to complete the
contents of a response packet, or when forming an xlate_done or intrp_rdy TL
command packet. Any retirement rules specified by a device implementation for the
AFUTag shall not be checked by the TL.
AFU tag retirement recommendations:

• For non-posted commands, the AFU should not reuse an AFUTag until all
responses for the command have been received.

• For posted commands, the AFU tag is not used by the TL and is not returned to
the TLX. There are no recommendations when AFUTag values can be re-used.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 49 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

cache_state 3

Specifies the cache state the cache line has obtained. The minimum data block size granularity
associated with a cache state assignment is 64 bytes.This specification defines 4 states:
000 Invalid (I).
001 Shared (S). Read only cached copy of the line. To modify the line, the state must be

upgraded to an M or E state.
010 Exclusive (E). No other cached copies exist in the system. The line is unmodified with

respect to the copy held in the MEM (memory).
011 Modified state (M). An exclusive state where the line is modified with respect to the copy

held in the MEM (memory).
100 Exclusive with no valid data held (EI). No other cached copies exist in the system. Data is

held by the MEM.
All other encodes are reserved. See Table 1-1 Cache state descriptions on page 32 for a full
description of the cache states. See Table 7-2 Cache state transition errors on page 208 for the
specification of legal and illegal cache state transitions due to castout and castout.push com-
mands. See the descriptions of upgrade_state and read_me TLX commands for supported
upgrade cache transitions.

CAPPTag 16

Unique handle specifying the host CAPP and command instance. Provided by the CAPP that is
requesting command services of the TL.

cmd_flag 4
Specifies execution behavior for commands and responses specified with this field. The com-
mand or response specification includes the behavior specification for the cmd_flag when the field
is specified.

cmd_opcode 8 Specifies the operation to be performed.

credit_return 48

Specifies the number of credits returned to the VC and DCP credit pools. The credits are returned
in fixed subfield locations in a 2-slot (56-bit) TL or TLX response packet. See the specification for
return_tlx_credits and return_tl_credits for the format of the field.
Each VC credit allows for a single command or response to be sent in the virtual channel.
Each DCP credit allows the sending of one data carrier.

Table 2-1. TL and TLX command operands (Page 2 of 6)

Operand mnemonic Field
width Description

cl_rd_resp.ow
A singe read request for a data block greater than 32 bytes results in multiple responses
when cl_rd_resp.ow is used to return the data. The minimum granularity of a cache state
assignment to a data block in memory is 64 bytes. For multiple cl_rd_resp.ow responses
to a single command, the value of the cache_state field shall be the same for dPart field
values of {0, 1}, {2, 3}, {4, 5}, and {6, 7}.

Engineering Note

Engineering Note
The TLX shall not use the CAPPTag for any purpose other than as data to complete
the contents of a response packet. Any retirement rules specified by the host imple-
mentation for the CAPPTag shall not be checked by the TLX.
CAPPTag retirement recommendations:

• For non-posted commands, the CAPP should not reuse a CAPPTag until all
responses for the command have been received.

• For posted commands, the CAPP tag is not used by the TLX and is not returned
to the TL. There are no recommendations when CAPPTag values can be re-
used.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 50 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

dLength 2

Data length (dL). Indicates the number of data bytes associated with a command or response
packet. This 2-bit field indicates a length of:
00 32 bytes when the command is pad_mem or when in response to a pad_mem com-

mand is mem_wr_response or mem_wr_fail. Reserved for all other commands and
responses.

01 64 bytes. This field value shall be used in a response packet when the command is a
partial read or write operation.

10 128 bytes. Reserved when the command is a partial read or write operation.
11 256 bytes. Reserved when the command is a partial read or write operation.
When the dLength field in the response packet does not match the full amount of data requested
by the command, the dPart field is used to indicate the offset within the naturally aligned data
block specified by the command’s address. For example, in the multiple responses to a single
TLX read command, the AFUTag is unchanged. That is, the dLength may vary and the dPart shall
vary when multiple responses are returned for a single command.
For multiple responses to a single command, there is no order requirement placed by the archi-
tecture. That is, continuing with the above example, the TLX may see the values of dPart returned
in any order.
Support for 256 bytes is optional for the TLX and AFU. See Table 8-10 Profile specifications sup-
ported dLength by TLX on page 217.

dPart(1:0) 2

Data part (dP(1:0) or dPart(1:0)). Indicates the data content of the current response packet. Read
requests can be 64, 128, or 256 bytes in length. This field indicates the starting offset from the
naturally aligned data block specified by the address provided in the read command. The amount
of data transfered due to this response packet is found in the dLength field.
00 Offset at 0 bytes. This field value shall be used for response packets when the command

is a partial read or write operation.
01 Offset at 64 bytes. This field value shall not be used when the dLength specifies 128 or

256 bytes. Reserved when the command is a partial read or write.
10 Offset at 128 bytes. This field value shall not be used when the dLength specifies 256

bytes. Reserved when the command is a partial read or write.
11 Offset at 192 bytes. This field value shall not be used when the dLength specifies 128 or

256 bytes. Reserved when the command is a partial read or write.
The presence of this field in a command allows for multiple responses to be returned for a com-
mand. For example, a 256-byte read command such as rd_wnitc may result in four responses
with the dPart field taking on all four states.

dPart(2:0) 3

Data part (dP(2:0) or dPart(2:0). Indicates the data content of the current response packet. This
field indicates the starting offset from the naturally aligned data block specified by the address
provided in the read command.This extended version of dPart is used for dot-ow variants of
cl_rd_resp, mem_rd_response, and read_response.
The extended field width allows the specification of offsets with 32-byte granularity. The data is
sent in 32-byte data carriers. For example, a 256-byte read command such as rd_wnitc results in
eight responses with the dPart(2:0) field taking all eight states. A pr_rd_wnitc uses a single
response and is restricted to an offset of 0 bytes.
000 Offset at 0 bytes.
001 Offset at 32 bytes. Reserved when the command is a partial read or write.
010 Offset at 64 bytes. Reserved when the command is a partial read or write.
011 Offset at 96 bytes. Reserved when the command is a partial read or write.
100 Offset at 128 bytes. Reserved when the command is a partial read or write.
101 Offset at 160 bytes. Reserved when the command is a partial read or write.
110 Offset at 192 bytes. Reserved when the command is a partial read or write.
111 Offset at 224 bytes. Reserved when the command is a partial read or write.

Table 2-1. TL and TLX command operands (Page 3 of 6)

Operand mnemonic Field
width Description

Developer note
The constraints placed on dPart are to ensure that responses specify naturally aligned
data blocks. This is intended to simplify the design and the verification state space.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 51 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

E 1

Operand endianness. Used for mem_atomics.* and atomics.* class commands to specify the
endianness of the operands. For bitwise logical operations, the endianness of the operands does
not change the result. The field is specified as follows:
0 Operands are little endian.
1 Operands are big endian.

EA 52, 59,
64

Effective address (also referred to as the VA or virtual address by some host architectures).
Length specification is dependent on the command issued and is noted in the command specifi-
cation.

EF 1

Evict and Fill.
This directive is used in upgrade_resp, cl_rd_resp and cl_rd_resp.ow to indicate if the host_tag
specified by the command is being re-assigned. When asserted, the entry in the L1 cache indi-
cated by the current state of the host_tag database host_tag entry is to be evicted from the L1
cache before installing the new data and cache state specified by this response.

host_tag 24

Unique identifier provided by the host to the AFU associated with a 64-byte address aligned data
block held in the AFU L1.

• The AFU L1 is required to retain the association between the host_tag provided and the AFU
L1 entry or entries.

• The host uses this field when specifying cl_rd_resp, upgrade_resp, upgrade_resp, and
force_evict.

• A single host_tag value applies to an address aligned 64-byte data granule. In combination
with a dLength field, a single host_tag specification in a command may infer up to 4 host_tag
values. See host_tag arithmetic on page 20.

The minimum supported host_tag width shall be 6 bits and the largest supported host_tag width
shall be 24 bits.
See Section 1.3.2.1 host_tag database on page 30.

Table 2-1. TL and TLX command operands (Page 4 of 6)

Operand mnemonic Field
width Description

cl_rd_resp.ow
A singe read request for a data block greater than 32 bytes results in multiple responses
when cl_rd_resp.ow is used to return the data. The granularity of a host tag is 64 bytes.
For multiple cl_rd_resp.ow responses to a single command, the value of the host_tag
and EF field shall be the same for dPart field values of {0, 1}, {2, 3}, {4, 5}, and {6, 7}.

Engineering Note

cl_rd_resp.ow
A singe read request for a data block greater than 32 bytes results in multiple responses
when cl_rd_resp.ow is used to return the data. The granularity of a host tag is 64 bytes.
For multiple cl_rd_resp.ow responses to a single command, the value of the host_tag
field shall be the same for dPart field values of {0, 1}, {2, 3}, {4, 5}, and {6, 7}.

Engineering Note

Engineering note
The width of the host_tag is a capability specified by the OpenCAPI device.
The device specifies the width of host_tag supported and the host constrains the host_tag
based on the host’s proxy cache implementation and the device’s capability.
The configuration space specification of the host_tag run-length-capability is found in the
OpenCAPI Discovery and configuration specification. The description of the capability is
found in Section 1.5.1 host_tag run-length-capability on page 41.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 52 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

log2_page_size 6

Log2 value of the page size determined by the host when executing xlate_touch. The value of the
page size touched in bytes is specified as 2bin2dec(log

2
_page_size). The values supported by the

host and the attached OpenCAPI device are capabilities determined during configuration. Table
8-9 Profile specifications supported page size on page 217 contains the recommended support
for the host and the OpenCAPI device. Only the intersection of the host and the OpenCAPI
device’s supported page sizes are used during operation.
A value of ‘00 0000’ is used in a touch_resp when an age out ATC request results in a miss to
the ATC. That is, the field is reserved. See Figure 2-1 Address translation sequence: xlate_touch
on page 108.
A minimum page size of 4KB shall be supported by all implementations. Additional page sizes
may be supported and are included in the capability specifications of the host and the attached
OpenCAPI device. See Table 8-9 Profile specifications supported page size on page 217. Values
corresponding to a page size of 1-byte to 2K-bytes are reserved.

MAD 8
Memory access directive. Specifies host directives when accessing OpenCAPI memory devices
(AFUM). The specification of this field is found in the host’s platform architecture.
The AFUM may ignore this field.

Meta 7

Metadata. This 7-bit field specifies the metadata for a data block held in memory. The size of the
data block is implementation dependent. The TL architecture specifications provides for 7 bits of
metadata for 8-, 32- and 64-byte data blocks.
The specification of the metadata is outside the scope of this architecture and is found in the host
and OpenCAPI device’s documentation.
An implementation shall transform the metadata, if necessary, when 8- and 32-byte naturally
aligned data blocks are aggregated into 64-byte naturally aligned data blocks.

mem_hit 1 MEM hit (mh). Used in touch_resp.t. When this field is set to ‘1’, the host is indicating that during
address translation it was determined that the requester is the MEM owner of the page.

Object_handle 64/68

Used by message class commands.
For TL commands, the object handle is specified by the OpenCAPI device manufacturer and is
loaded into a table maintained by the device software. It is accessed by the host based on a
method specified by the host’s OpenCAPI platform architecture.
For TLX commands, the object handle is specified by the host architecture and is loaded into a
table held in the device’s MMIO space. The OpenCAPI device manufacturer specifies the location
of the MMIO space, and it is provided to the host through the device software.

Os 1

Ordered segment. Controls ordering between segments for 128 or 256 byte write operations. This
bit has no affect when the write command indicates a 64 byte transfer.

• When the ordered segment bit is set to 0, there is no ordering guarantee for the data seg-
ments written.

• When the ordered segment bit is set to 1, each segment is written atomically and increasing
address order.

PA 58, 59,
64

Physical address. Translation from the host RA to the AFUM PA is performed by the host and con-
figured during device initialization.
The AFU’s configuration space provides the information about the topology of the physical
address space held by the OpenCAPI device. Types of address spaces are:

• Address space shared with the system. This excludes MMIO space.
• MMIO space.
• Configuration address space. This address space may be directly memory mapped and use

a simple load/store model, or it may be accessed using indirect address methods. The
choice is host dependent and is transparent to the OpenCAPI device and TL protocol.

PASID 20 This term identifies the user process associated with a request. In OpenCAPI, a request is a TLX
command. See acTag on page 48 for additional details.

Table 2-1. TL and TLX command operands (Page 5 of 6)

Operand mnemonic Field
width Description

 The specification of touch_resp.t is dependent on this minimum page size since the
command format does not have enough bits to specify a smaller page size.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 53 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.1 Handling multiple responses to a single command

As noted in the description of some responses, a single command may receive multiple responses. This
might be due to a mismatch between the host’s and OpenCAPI device’s maximum data length specification.

For example, the host’s or the device’s internal bus protocol might be limited to atomically accessing 64 bytes
of data. Read and write cases are examined in the following sections.

pLength 3

(pL) Partial length. Specifies the number of data bytes specified for a partial write command. The
address specified shall be naturally aligned based on the pLength specified. The data may be
sent in a data flit, or an 8- or 32-byte data field specified for some control flits.
000 1 byte. Reserved when the command is an amo*.
001 2 bytes. Reserved when the command is an amo*.
010 4 bytes. Reserved when the command is amo_rw and the operation is specified as a

Fetch and swap. That is the command flag is {x‘8’..x‘A’}.
011 8 bytes. Reserved when the command is amo_rw and the operation is specified as a

Fetch and swap. That is the command flag is {x‘8’..x‘A’}.
100 16 bytes. Reserved when the command is an amo*.
101 32 bytes. Reserved when the command is an amo*.
110 Specifies 4-byte operands when the command is amo_rw and the operation is specified

as a Fetch and swap. That is, the command flag is {x‘8’..x‘A’}. Otherwise, this field is
reserved.

111 Specifies 8-byte operands when the command is amo_rw and the operation is specified
as a Fetch and swap. That is, the command flag is {x‘8’..x‘A’}. Otherwise, this field is
reserved.

Resp_code 4

Response code. On a failed transaction, this field is found in a response packet reporting the rea-
son the transaction failed. See the response packet for encoding and specifications. “Done” is not
typically an included encoding because the response packet used is different for a failed transac-
tion. For example, in response to a rd_wnitc AP command, the read_failed (TL response) is sent
when the read is not able to complete successfully. The read_response (TL response) is used to
indicate a successful completion and that data is associated with the response. A response code
of “done” is implied with the read_response.

stream_id 4 Stream identifier used by the AP. This is used as part of the virtual channel, virtual queue, service
queue specification.

T 1

Configuration read or write command type.
0 Indicates a type 0 configuration read or write command. A config_write, T=0 shall be used

by the AFU to learn its bus number. For config_read with TL=0, the bus number is
unchecked.

1 The operation shall result in a mem_wr_fail or mem_rd_fail TLX response with a
Resp_code = Failed.

TA 52, 58,
59, 64

Translated Address. The AFU has obtained a translated address and shall use it with TLX com-
mands that have a dot-t format. The translated address is associated with a specific page in mem-
ory and the size of the page is known. See Section 1.8.2 Translated addresses, AFU ATC, and
dot-t commands on page 45.
A translated address and page size is obtained using xlate_touch.

W 1 Write permission. Returned with touch_resp and touch_resp.t. When asserted indicates that
write authorization is granted for the specified page.

Table 2-1. TL and TLX command operands (Page 6 of 6)

Operand mnemonic Field
width Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 54 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.1.1 TLX Read request getting multiple TL responses

A 128-byte read request by the OpenCAPI device may be broken into two 64-byte read requests on the host
protocol bus. This results in two TL responses returning data to the OpenCAPI device. The responses are not
returned in any specified order. After all the responses are returned to the requester (the OpenCAPI device in
this example), the requester examines the responses.

• When all responses indicate success, the command has completed successfully. In this example, each
response provides 64 bytes of data, fulfilling the OpenCAPI device’s request for 128 bytes.

• When all responses indicate failure, the command has failed. In this example, no data has been returned.

• When one response indicates success and the other indicates a failure, a non-cacheable command has
failed. In this example, only 64 bytes of the requested 128 bytes have been returned. When this is a non-
cacheable read request, the data may be discarded. Depending on the Resp_code and the TL response,
the entire operation or just the failing portion may be retried. Refer to the specification of the TL response
for when the operation may be retried.

When this is a cacheable read request, the AFU protocol is more complex and is discussed in
Section 1.3.5 Design considerations when the AFUC2 and host cache line sizes are different on
page 38.

The following TLX read commands may receive multiple responses.

• rd_wnitc, rd_wnitc.n, rd_wnitc.t, rd_wnitc.t.s, upgrade_state, upgrade_state.t, read_me,
read_me.t, read_mes, read_mes.t, read_s, read_s.t

These read commands, when receiving multiple TL responses, shall see only the following responses14:

• synonym_detected, read_response, read_response.ow, upgrade_resp, cl_rd_resp,
cl_rd_resp.ow, read_failed

2.1.2 TLX Write request getting multiple TL responses

A 128-byte write request by an OpenCAPI device may be broken into two 64-byte operations on the host
protocol bus. When the write request is non-posted, This results in two TL responses indicating the status of
the write operation in the host. The responses are not returned in any specified order. After all the responses
are returned to the device, the device examines the responses.

• When all responses indicate success, the command has completed successfully. The write operation has
completed and the changes to the specified memory locations are globally visible.

• When all responses indicate failure, the command has failed. The locations in memory specified by the
command may have been modified by the failed operation. That is, the data at the locations may be
unmodified, may contain undefined data, or may contain SUE data. The Resp_code field in the fail
response indicates what might have occurred at the memory location specified by the write command.

• When one response indicates success and the other indicates failure, the command has failed. Only the
data corresponding to the 64-byte block specified by the successful response has completed its opera-
tion in the host and the changes to the specified memory location are globally visible. The data corre-
sponding to the 64-byte block specified by the failed response shall contain SUE data. Depending on the
Resp_code and the TL response, the failing portion may be retried and the successful portion shall not be
retried. Refer to the specification of the TL response for when the operation may be retried.

14.Not all responses apply to all commands. See the command descriptions for applicable responses.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 55 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The following TLX write commands may receive multiple responses:

• dma_w, dma_w.n

These write commands, when receiving multiple TL responses, shall see only the following responses.

• write_response, write_failed

2.1.3 TL read request getting multiple TLX responses.

A 128-byte read request by the host to an OpenCAPI device may be broken into two 64-byte read requests at
the OpenCAPI device. This results in two TLX responses returning data to the host. Further, the responses
are not returned in any specified order. After all responses are returned to the host, the host examines the
responses.

• When all responses indicate success, the command has completed successfully. In this example, each
response provides 64-bytes of data, fulfilling the host’s request for 128 bytes.

• When all responses indicate failure, the command has failed. No data has been returned.

• When one response indicates success and the other indicates failure, the command has failed. In this
example, only 64-bytes of the requested 128 bytes have been returned. The data obtained may be dis-
carded. Depending on the Resp_code and the TLX response, the entire operation or just the failing por-
tion may be retried.

The following TL read commands may receive multiple responses:

• rd_mem

These read commands, when receiving multiple TLX responses, shall see only the following responses:

• mem_rd_response, mem_rd_response.ow, mem_rd_fail

2.1.4 TL write request getting multiple TLX responses

A 128-byte write request by the host to an OpenCAPI device may be broken into two 64-byte write requests
at the OpenCAPI device. This results in two TLX responses indicting the completion status of the write opera-
tion in the OpenCAPI device. Further, the responses are not returned in any specified order. After all the
responses are returned to the host, the host examines the responses.

• When all responses indicate success, the command has completed successfully. The write operation has
completed and the changes specified by the memory locations are globally visible,

• When all responses indicate failure, the command has failed. The locations in memory specified by the
command may have been modified by the failed operation. That is, the data at the locations may be
unmodified, may contain undefined data, or may contain SUE data. The Resp_code field in the fail
response indicates what might have occurred at the memory location specified by the write command.

• When one response indicates success and the other indicates failure, the command has failed. Only the
data corresponding to the 64-byte block specified by the successful response has completed its opera-
tion in the OpenCAPI device and the changes to the specified memory location are globally visible. The
data corresponding to the 64-byte block specified by the failed response may be unmodified, may contain
undefined data, or may contain SUE data. The contents of the data block is dependent on the address of
the command. Depending on the Resp_code and the TLX response, the entire operation or just the fail-
ing portion may be retried. Refer to the specification of the TL response for when the operation may be
retried and the state of the data block when the response indicates a failure.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX command and response specifications
Page 56 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The following TL write commands may receive multiple responses:

• write_mem

These commands, when receiving multiple TLX responses, shall see only the following responses:

• mem_wr_response, mem_wr_fail.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 57 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.2 TL CAPP command packets

TL commands are sent from the host to the AFU. An alphabetical list of the TL commands follows; each
command is hyperlinked to its specification. In this section, the TL command specifications are in opcode
order.

This command has no operands and performs no action. It is discarded at the TLX.

The host is sending an asynchronous notification that an address translation requested by a prior TLX
command has completed with the indicated response code. The remaining fields of the command identify the
prior TLX command.

The TL is required to maintain the order of the matching read_failed, write_failed, or touch_resp response
packets carrying the AFUTag and the Resp_code = intrp_pending when loading the VC. That is, the TL shall
ensure that the response packets precede the xlate_done command in the VC.

The following illustrates how xlate_done is used:

1. The device issues a command that requires an address translation that the host is unable to complete.

2. The host responds with

amo_rd amo_rw amo_w config_read

config_write disable_atc disable_cache

enable_atc enable_cache force_evict intrp_rdy

kill_xlate mem_cntl nop pad_mem

pr_rd_mem pr_wr_mem rd_mem rd_pf

write_mem write_mem.be xlate_done

No operation nop ‘0000 0000’

NA NA 1

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address translation completed xlate_done ‘0001 1000’

async notification TL.vc.0 2

Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 58 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

a. a read_failed response with a Resp_code = xlate_pending. See Table 2-23 read_failed Resp_code
use by TLX command on page 136 for a list of the commands the device might have issued in step 1.

b. a write_failed response with a Resp_code = xlate_pending. See Table 2-25 write_failed Resp_code
use by TLX command on page 143 for a list of the commands the device might have issued in step 1.

c. a touch_resp response with a Resp_code = xlate_pending. See Table 2-20 touch_resp Resp_code
use by TLX command on page 124 for a list of the commands the device might have issued in step 1.

3. Once the host has completed the address translation, the host issues xlate_done indicating if the device
should retry or abort the operation.

The Resp_code field is specified in Table 2-2.

This command is posted.

The host is sending an asynchronous status notification for a previously attempted interrupt. The AFU deter-
mines its actions based on the Resp_code received. The AFUTag field of the command identifies the prior
TLX command.

The TL is required to maintain the order of the matching intrp_resp or wake_host_resp carrying the
AFUTag and the Resp_code = intrp_pending when loading the VC. That is, the TL shall ensure that the
response packets precede the intrp_rdy command in the VC.

This command is used by two protocol sequences with the following events.

1. Use by intrp_req:

a. The device issues an intrp_req using the cmd_flag and Object_handle specified in the device’s
MMIO space.

Table 2-2. The Resp_code specification for xlate_done

Resp_code encode Description

‘0000’ Completed. Address translation completed successfully

‘0001’ Reserved.

‘0010’
Retry request (rty_req). Indicates that the address translation could not be completed at this time. The AFU
may make an address translation attempt at a later time. This is a long back-off event.

‘0011’ - ‘1110’ Reserved.

‘1111’ Translation address error (adr_error). Indicates that the address translation requested resulted in an address
translation error.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Interrupt ready intrp_rdy ‘0001 1010’

async notification TL.vc.0 2

Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 59 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

b. The host protocol, using the Object_handle for some form of address translation, is unable to com-
plete. The host returns an intrp_resp with a Resp_code of intrp_pending (4).

c. Once the host has completed the address translation, the host issues intrp_rdy indicating if the
device should retry or abort the intrp_req operation.

2. Used by wake_host_thread:

a. The device issues a wake_host_thread using the cmd_flag and Object_handle specified in the
device’s configuration space.

b. The host protocol using the Object_handle for some form of address translation, is unable to com-
plete. The host returns an wake_host_resp with a Resp_code of intrp_pending (4).

c. Once the host has completed the address translation, the host issues intrp_rdy indicating if the
device should retry or abort the wake_host_thread operation.

The Resp_code field is specified in Table 2-3.

This command is posted.

Table 2-3. The Resp_code specification for intrp_rdy

Resp_code encode Description

‘0000’ Ready to service the interrupt. The AFU may retry the prior intrp_req, intrp_req.d, or wake_host_thread
command.

‘0001’ Reserved.

‘0010’
Retry request (rty_req). Indicates that the host is unable to service the interrupt at this time. The AFU may retry
the prior interrupt request at a later time as specified by its long back off event timer. This is a long back-off
event.

‘0011’ - ‘1101’ Reserved.

‘1110’

Failed. The host is unable to service the interrupt specified by the prior command. Any future attempt specify-
ing the same interrupt parameters shall fail.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
Note that intrp_req is specified in a way that the cmd_flag and Object_handle are host
specific and the values used are found in the device’s configuration space. A device cor-
rectly using the cmd_flag and Object_handle should not normally see this Resp_code. A
malicious device using values other than those provided in its MMIO space may see a
failed Resp_code.
It is strongly recommended that an implementation provide error collection facilities to
indicate the reason for this Resp_code. The specification of the error collection facility
should be documented in the host’s platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 60 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is requesting data to be read from the AFU memory. The starting address specified by the PA,
supports a critical OW request. The data is a naturally aligned data block with a length specified by the
dLength field (dL). See the host’s platform architecture for the specification of the MAD field.

The response to this command is mem_rd_response, mem_rd_response.ow, or mem_rd_fail. The
mem_rd_fail response indicates the operation failed. See the response packet for encoding and specifica-
tions.

The host is requesting data to be prefetched by the AFU memory. The starting address, specified by the PA,
supports the critical OW request format. The data requested is a naturally aligned data block with a length
specified by the dLength field (dL). See the host’s platform architecture for the specification of the MAD field.
No data is returned. The AFUM, when provisioned, may hold data in temporary buffers. The command is
intended to provide hints to the AFUM to access data with long access times that might be required at a later
time. The host may or may not request the data at a later time.

Read memory rd_mem ‘0010 0000’

mem_read TL.vc.1 4

Reserved MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Read Prefetch rd_pf ‘0010 0010’

mem_read TL.vc.1 4

Reserved MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 61 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFUM may ignore the command’s prefetch hints. The architecture does not specify any errors for this
command. Any event occurring in the AFUM that prohibits the operation from completing is not reported and
the command execution is aborted.

The command is posted.

The host is requesting data to be read from the AFU memory. The number of bytes transfered is specified by
pLength field(pL), and the starting address shall be naturally aligned based on the number of bytes
requested. The pLength field limits the transfer size to 2n bytes where n = {0..5}.

The response to this command is mem_rd_response, mem_rd_response.ow, mem_rd_response.xw, or
mem_rd_fail. When a mem_rd_response is received, the data is found in the 64-byte data flit (only one is
returned for this command). The data is address aligned as specified in Section 5.1.3 Data transport, order,
and alignment on page 184. When a mem_rd_response.ow is received, the data is found in the 32-byte
data field specified by some control flits. The data is address aligned within the data field. The
mem_rd_response.xw response may be used only when the data length specified by pL is 8 or fewer bytes.
That is, when mem_rd_response.xw is used to return data, the data length specified by pL shall be 8 or
fewer bytes. The mem_rd_fail response indicates the operation failed. See the response packet for encoding
and specifications.

Partial memory read pr_rd_mem ‘0010 1000’

pr_mem_read TL.vc.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) R CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

A Posted command error is not specified for this command. If error checking were architected, the architecture
would specify the same errors defined for rd_mem. Since there is no architected mechanism for a posted
command to retry an operation, those types of Resp_code events specified by a response to a rd_mem are elim-
inated. Since data is not returned to the host, dError events are eliminated. This leaves only a Failed error.

Prefetch mechanisms tend to be somewhat inaccurate. Data that is not required by the application might be
requested for prefetch and is never demand fetched by the application. The architecture for rd_pf pushes any
error detection onto a subsequent demand fetch (rd_mem) using the same PA.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 62 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The Host is requesting an atomic memory operation specified by the cmd_flag. All operands for this request
are found in memory as specified by the PA.

A single response to this command is expected. The response to this command is mem_rd_response,
mem_rd_response.ow, mem_rd_response.xw, or mem_rd_fail. See the response specification for addi-
tional details.

Operation:

The operand length, as specified by the pLength field is restricted to 4 and 8 byte operands (pL = {‘010’, ‘011’}
all other values are reserved). There are two operands specified. The first operand “A” is found at the address
specified by the command. The second operand “A2” is found at the address specified with an offset speci-
fied by the width of the operands and the operation; that is, as specified by pLength and by the cmd_flag.

• For Fetch and increment bounded, Fetch and increment equal; that is, cmd_flag = {‘1100’, ‘1101’), A2 is
found at the address specified plus the width of the operand.

• For Fetch and decrement bounded; that is, cmd_flag = {‘1110’}, A2 is found at the address specified
minus the width of the operand.

The specification of the address shall be naturally aligned and

• shall not target locations at 32n-2bin2dec(pL), where n= 1,2, 3...(Fetch and increment bounded, Fetch and
increment equal; that is, cmd_flag = {‘1100’, ‘1101’)

• shall not target locations at 32n, when n = 0, 1, 2, 3... (Fetch and decrement bounded; that is, cmd_flag =
{‘1110’})

The original value from the memory location specified by the command, or the 4 or 8 byte minimum signed
integer value is returned with the response.The operation performed is specified by the cmd_flag.

AMO Read amo_rd ‘0011 0000’

mem_atomics.r TL.vc.1 4

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

This command is an in memory operation. Data returned, if any, is stale since the original contents of memory are
returned to the host. While the operations specified by this command could be replicated in the host’s cache, it
would be overly complicated to require the host to maintain a coherent copy in this fashion.

Developer note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 63 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The Host is requesting an atomic memory operation specified by the cmd_flag. For this request, operands are
provided with the command and are found in memory as specified by the PA.

This command is specified with immediate data. The data may be sent using data flits, 32-byte data carriers,
or 8-byte data carriers as described below. Credits for both the VC and DCP shall be obtained before this
commanded is serviced by the TL.

Table 2-4. The cmd_flag specification for amo_rd

cmd_flag Operation name and description

‘0000’ through ‘1010’ Reserved

‘1100’

Fetch and increment bounded
t ← A;
If A != A2 then {A <- A+1; return t}
else {return minimum signed integer value}

‘1101’

Fetch and increment equal
t ← A;
If A = A2 then {A <- A+1; return t}
else {return minimum signed integer value}

‘1110’

Fetch and decrement bounded
t ← A;
If A != A2 then {A <- A-1; return t}
else {return minimum signed integer value}

‘1111’ Reserved

AMO read write amo_rw ‘0011 1000’

mem_atomics.rw TL.vc.1, TL.dcp.1 4

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

This command is an in memory operation. Data returned, if any, is stale since the original contents of memory are
returned to the host. While the operations specified by this command could be replicated in the host’s cache, it
would be overly complicated to require the host to maintain a coherent copy in this fashion.

Developer note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 64 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The CAPP TL shall not service this command unless all data specified by pLength is available to be sent. A
single response to this command is expected. The response to this command is mem_rd_response,
mem_rd_response.ow, mem_rd_response.xw, or a mem_rd_fail. See the response specification for addi-
tional details.

Operation:

The command’s address specified shall be naturally aligned based on the operand length. The operand
length is restricted to 4 and 8 byte operands. The specification of pLength shall be specified as {‘010’, ‘011’}
for all cmd_flag operations with the exception of fetch and swap operations where the cmd_flag is specified
as {x’8’...x’A’} and pLength shall be specified as {‘110’, ‘111’}. Refer to the specification of pLength on page
53.

Operations specified by the cmd_flag use either two or three operands; additional classification of the oper-
ands can be found in the description of the operation in Table 2-5. The command’s address specifies the
location of a first operand, “A” which is operated on the second operand, “V”, which is provided as the
command’s write data. V is aligned within

• the 64-byte data flit based on address bits 5:0 specified by the command.

• the 32-byte data field carried in a control flit based on address 4:0 specified by the command.

• an 8 byte data field carried in a control flit based on address 2:0 specified by the command. This shall not
be used for fetch and swap operations where the cmd_flag is specified as {x’8’...x’A’}.

A third operand “W” is provided for compare and swap operations. “W” is placed in the same data carrier as
“V”. “W” is aligned within

• the 64-byte data flit based on the following equation:

alignment (5:0) <- PA(5:4) || (PA(3:0) + ‘1000’)
Any carryout from bit 3 is ignored.

• the 32-byte data field carried in a control flit based on the following equation:

alignment(4:0) ← PA(4) || (PA(3:0) + ‘1000’)
Any carryout from bit 3 is ignored.

The original value from the memory location specified by the command is returned with a
mem_rd_response, mem_rd_response.ow, or mem_rd_response.xw.

The endianness of the operands is specified by the E bit. The value of E may not affect the result of the oper-
ation specified by the cmd_flag. This is noted in the operation description found in Table 2-5.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 65 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-5. The cmd_flag specification for amo_rw

cmd_flag Operation name and description

‘0000’

Fetch and Add
Operands are unsigned integers.
t ← A; A ← A + V; return t
Overflow conditions are not reported.

‘0001’
Fetch and XOR
Operands are bit-vectors. E has no affect on the operation.
t ← A; ; return t

‘0010’
Fetch and OR
Operands are bit-vectors. E has no affect on the operation.
t ← A; ; return t

‘0011’
Fetch and AND
Operands are bit-vectors. E has no affect on the operation.
t ← A; ; return t

‘0100’

Fetch and maximum unsigned.
Operands are unsigned integers.
t ← A; A ← Max(A, V); return t
A is not modified when A is greater than or equal to V.

‘0101’

Fetch and maximum signed
Operands are signed 2’s complement integers.
t ← A; A ← Max(A, V); return t
A is not modified when A is greater than or equal to V.

‘0110’

Fetch and minimum unsigned
Operands are unsigned integers.
t ← A; A ← Min(A, V); return t
A is not modified when A is less than or equal to V.

‘0111’

Fetch and minimum signed
Operands are signed 2’s complement integers.
t ← A; A ← Min(A, V); return t
A is not modified when A is less than or equal to V.

‘1000’
Fetch and swap
Operands are bit-vectors. E has no affect on the operation. V is not used.
t ← A;A ← W; return t

‘1001’
Fetch and swap equal
Operands are bit-vectors. E has no affect on the operation.
t ← A; When V = A, then A← W; return t

‘1010’
Fetch and swap not equal
Operands are bit-vectors. E has no affect on the operation.
t ← A; when , then A← W; return t

‘1011’ through ‘1111’ Reserved

A V← A⊕

A V A∨←

A V← A∧

V A≠

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 66 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The Host is requesting an atomic in-memory operation specified by the cmd_flag. For this request, operands
are provided with the command and are found in memory as specified by the PA.

This command is specified with immediate data; Credits for both the VC and DCP shall be obtained before
this commanded is serviced by the TL.

The CAPP TL shall not service this command unless all data specified by pLength is available to be sent.

mem_wr_response and mem_wr_fail are the responses to this command which indicates the status of the
write to memory operation. mem_wr_response indicates a successful completion of the operation.
mem_wr_fail indicates the operation failed. See the response packet for encoding and specifications.

Operation:

The command’s address specified shall be naturally aligned based on the operand length. The operand
length, as specified by the pLength field shall be restricted to 4 and 8 byte operands. That is, the pLength
shall be pL = {‘010’, ‘011’}, with all other values specified as reserved.

The number of operands specified by this command is determined by an examination of the cmd_flag. Two or
three operands may be specified as illustrated in Table 2-6. The operands are designated as “A”, “A2” and
“V”. The command’s address specifies the location of each operand as follows:

• “A” shall be located in memory at the address specified by the PA and shall be naturally aligned. When
the cmd_flag indicates the use of “A2”, the address of A is further constrained and shall not target loca-
tions at 32n-2bin2dec(‘pL’), where n = 1,2,3...

• “A2” is located in memory at the address specified by the PA plus an offset specified by the width of the
operands.

AMO write amo_w ‘0100 0000’

mem_atomics.w TL.vc.1, TL.dcp.1 4

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

This command is an in memory operation. While the operations specified by this command could be replicated in
the host’s cache, it would be overly complicated to require the host to maintain a coherent copy in this fashion.

Developer note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 67 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

• “V” is provided as the command’s write data. V is aligned within

– a 64 byte data flit based on PA bits 5:0 specified by the command, or

– a 32-byte data field found within a control flit based on PA bits 4:0 specified by the command, or

– an 8-byte data field found within a control flit based on PA bits 2:0 specified by the command.

Table 2-6. The cmd_flag specification for amo_w

cmd_flag Operation name and description

‘0000’

Store and Add
Operands are unsigned integers.
A ← A + V;
Overflow conditions are not reported.

‘0001’
Store and XOR
Operands are bit-vectors. E has no affect on the operation.

‘0010’
Store and OR
Operands are bit-vectors. E has no affect on the operation.

‘0011’
Store and AND
Operands are bit-vectors. E has no affect on the operation.

‘0100’

Store and maximum unsigned.
Operands are unsigned integers.
A ← Max(A, V)
A is unchanged when A is greater than or equal to V.

‘0101’

Store and maximum signed
Operands are signed 2’s complement integers.
A ← Max(A, V)
A is unchanged when A is greater than or equal to V.

‘0110’

Store and minimum unsigned
Operands are unsigned integers.
A ← Min(A, V)
A is unchanged when A is less than or equal to V.

‘0111’

Store and minimum signed
Operands are signed 2’s complement integers.
A ← Min(A, V)
A is unchanged when A is less than or equal to V.

‘1000 through ‘1011’ Reserved

‘1100’
Store and compare twin
Operands are bit-vectors. E has no affect on the operation.
When A=A2, then (A ← V, A2 ← V)

‘1101’ through ‘1111’ Reserved

A V← A⊕

A V A∨←

A V← A∧

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 68 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is issuing a request to load memory using a data pattern set during the configuration of the device.
The configuration of the data pattern in the device is device implementation dependent and is beyond the
scope of this architecture. The pattern is used to fill a 32-, 64-, 128- or 256-byte naturally aligned block of data
in the AFU memory. The starting address is specified by the PA field and shall be naturally aligned based on
the length of the data as specified by the dLength (dL) field15.

The mem_wr_response and mem_wr_fail responses to this command indicate the status of the pad
memory operation. The mem_wr_response indicates a successful completion of the operation. The
mem_wr_fail response indicates that the operation failed. See the response packet description for encoding
and specifications.

Pad memory pad_mem ‘1000 0000’

mem_write TL.vc.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:5) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

15.A dLength value of ‘00’ specifies a 32-byte data block.

Engineering Note
The pattern is expected to be found through the device’s configuration space and may be located in the device’s
MMIO space. The width of the pattern shall be a power of 2 number of bits. The pattern is applied starting at
offset 0 (bit 0, byte 0) of the data block. When the pattern is smaller than the operation width specified by the
dLength field, the pattern is repeated. When the pattern is larger than the operation width specified by the
dLength field, the pattern starting at offset 0 is applied and as space permits offset 1 is applied and so on.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 69 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is writing a 64-, 128-, or 256-byte block of data to the AFU memory. The starting address is specified
by the PA field and shall be naturally aligned based on the length of the data as specified by the dLength (dL)
field.

When the data length field specifies 128 or 256 bytes, the Os bit controls ordering between the data
segments.

This command is specified with immediate data. The data may be transfered using data flits or 32-byte data
fields found within a control flit. Credits for both the VC and DCP shall be obtained before this command is
serviced by the TL.

The mem_wr_response and mem_wr_fail responses to this command indicate the status of the write to
memory operation. The mem_wr_response indicates a successful completion of the operation. The
mem_wr_fail response indicates that the operation failed. See the response packet description for encoding
and specifications.

Write memory write_mem ‘1000 0001’

mem_write TL.vc.1, TL.dcp.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:6) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) R Os CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 70 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is writing a 64-byte data block to the AFU memory using a 64-bit byte-enable field. Each bit corre-
sponds to one byte of the 64-byte aligned data block specified by the PA, where bit 0 of the BE determines if
byte 0 of the data is written. When BE(n) is set to 1, byte n is written where n={0..63}.

This command is specified with immediate data. The data shall be sent using a single 64-byte data flit.
Credits for both the VC and DCP shall be obtained before this command is serviced by the TL.

The mem_wr_response and mem_wr_fail responses to this command indicate the status of the write to
memory operation. The mem_wr_response indicates a successful completion of the operation. The
mem_wr_fail response indicates that the operation failed. See the response packet for encoding and specifi-
cations.

Byte enable memory write write_mem.be ‘1000 0010’

pr_mem_write TL.vc.1, TL.dcp.1 6

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:6) Reserved Byte_enable(3:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Byte_enable(7:4) CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
Byte_enable(35:8)

139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
Byte_enable(63:36)

167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 71 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is writing the data to the AFU memory. The starting address is specified by the PA and shall be
naturally aligned based on the length of the data as specified by the pLength (pL) field. The combination of
the address and the pLength shall not cross a 64-byte address boundary.

This command is specified with immediate data. The data may be sent in a data flit, or it may be sent in a 32-
byte data carrier. When the pL field indicates a length of 8 bytes or less, the data may be sent in an 8-byte
data carrier. The data is address aligned as specified in Section 5.1.3 Data transport, order, and alignment on
page 184. Credits for both the VC and DCP shall be obtained before this command is serviced by the TL.

The mem_wr_response and mem_wr_fail responses to this command indicate the status of the write to
memory operation. The mem_wr_response indicates a successful completion of the operation. The
mem_wr_fail response indicates that the operation failed. See the response packet for encoding and specifi-
cations.

The host is requesting that the AFUC2 evict one, two, or four 64 byte cache block segments held in its cache.

The AFU shall evict the cache block segments specified by the host_tag using one or more castout or
castout.push TLX commands specifying the cache_state as Invalid (I) within the time period specified by the
host’s platform architecture. This action shall invalidate all synonyms held by the AFUC2 pointed to by the
host_tags specified by the command. The AFUC2 shall invalidate the host_tag entries specified by the
command when completing the command.

Partial cache line memory write pr_wr_mem ‘1000 0110’

pr_mem_write TL.vc.1, TL.dcp.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) R CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Force eviction force_evict ‘1101 0000’

cache management TL.vc.0 2

dL(1:0) Reserved CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved host_tag(23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 72 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The dLength field indicates the number of cache block segments by specifying the length of the block that the
host is requesting the AFU cache to evict. A difference between the host’s cache line size and the AFU’s
cache line size may result in one or more castout* commands. All castout* commands for the specified
cache block segments must be received at the host prior to the expiration of the time out period. See the
descriptions of host_tag, host_tag arithmetic on page 20 and cl_rd_resp.

This is a posted command.

force_evict AFU collision rules
1. A force_evict(host_tag) from the host hits a running TLX read_me/read_mes/read_s (acTag, EA) in the

AFU.

The AFU may detect the collision by converting host_tag to EA across all address contexts. The AFU
shall service the force_evict regardless of the collision. The host determines the order and services the
read_me/read_mes/read_s command.

Engineering Note
A host implementation may choose to take down the link or otherwise disable the AFU when the AFU does not
respond to the force_evict command within the host specified time period.

See TL response timer expired on page 206 for the specification of the error class and error signature.

Developer note
The intent of this command is provide the host with a mechanism to force the AFU’s cache to evict the line speci-
fied by the host_tag.

The AFU is expected to respond with either a castout or castout.push command indicating a transition to an I
state within a host specified time-out period. force_evict is a posted command.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 73 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is requesting that the AFU kill one or more address translation ATC entries corresponding to the
page specified by the EA, log2_page_size, address context as specified by the PASID and BDF, and
cmd_flag directive that is passed in this command. The address translation was obtained by the AFU using
xlate_touch with a command flag indicating that a translated address (TA) was required. See Section 1.8.2.2
Host initiated AFU ATC entry invalidation on page 47.

The cmd_flag is specified in Table 2-7.

The architectural model requires that the AFU shall invalidate one or more entries of the AFU ATC corre-
sponding to the command’s operands. An implementation may choose to provide an alternative to an AFU
ATC. Since the architecture assumes the existence of these ATC based on the AFU’s use of xlate_touch,
alternative implementations shall be constructed in such a manner that the differences are not externally
observable.

Kill address translation entry kill_xlate ‘1101 0010’

address translation management TL.vc.2 6

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:12) Reserved log2_page_size

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
BDF(7:0) Reserved

139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
PASID(19:0) BDF(15:8)

167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140

Table 2-7. The cmd_flag specification for kill_xlate

cmd_flag Operation description

‘0000’ The host is requesting that the AFU kill ATC entries corresponding to the page specified by the EA,
log2_page_size and address context as specified by the PASID and BDF fields. Support of this code point
by the TLX is optional.,When not supported, the TLX shall treat this code point as either ‘0001’ or ‘1111’.

‘0001’ The host is requesting that the AFU kill ATC entries corresponding to the address context specified by the
PASID and BDF. The EA and log2_page_size fields are reserved. Support of this code point by the TLX is
optional. When not supported the TLX shall treat this code point as x‘1111’.

‘0010’ - ‘1110’ Reserved

‘1111’ The host is requesting that the AFU kill all ATC entries. The EA, log2_page_size, PASID and BDF fields are
reserved. All TLX shall support this code point.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 74 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

An AFUC2 holding lines in its cache using this address translation shall no longer modify or reference those
lines until it obtains the address translation again. This applies to all the lines contained within the page spec-
ified by the address translation.

An AFUC1 shall stop using the TA in all TLX dot-t commands until it obtains the address translation again.

The EA shall be naturally aligned based on the page size specified by the log2_page_size field when the
cmd_flag is ‘0000’.

Once the AFU has taken actions to ensure that the address translation is no longer used as described above,
the AFU may release one or more TA to the host using one or more TLX xlate_release commands. The AFU
shall ensure that xlate_release is added to the TLX.vc.3 after all dot-t commands using the translation have
been added to the VC. The AFU shall respond to the completion of all actions to kill the ATC entries
corresponding to the command’s operands by issuing a kill_xlate_done. The AFU shall ensure the
kill_xlate_done is added to the TLX.vc.3 after all dot-t commands using the translations killed have been
added to the VC.

See Figure A-8. xlate_touch TLX and TL interaction on page 229.

The host is requesting that the AFU disable its processing element’s access to the AFUC2 cache. Access to
the cache and cache miss actions are requested to be suspended based on the address context criteria
specified in the command flag (cmd_flag) field. It is expected that this will suspend most processing element
operations using the address context specified.

The AFUC2 shall continue to serviced all TL commands and responses including those that may cause
updates to the AFU ATC and AFUC2 cache.

The cmd_flag is specified in Table 2-8.

Disable AFUC2 cache disable_cache ‘1101 0100’

address translation management TL.vc.2 1

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BDF(7:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PASID(19:0) BDF(15:8)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) Reserved

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 75 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU responds to this command with cache_disabled. The host shall wait for the AFU response before
issuing a second disable_cache.

disable_cache actions are accumulative. If a disable_cache command finds that the specified cache and
address context combination is already disabled, cache_disabled is returned and no error is indicated.

Support for cmd_flag x‘1’ and x‘3’ which specifies address context granularity, is optional16 and when not
supported these values shall be treated as x‘0’ (disable_all). That is, an implementation shall support
cmd_flag values of x‘0’ and may support x‘1’ and x‘3’.

The host is requesting that the AFU enable its processing element’s access to the AFUC2 cache based on the
address context criteria specified in the command flag (cmd_flag) field. This command is expected to be used
only when a disable_cache command has been previously issued.

Table 2-8. The cmd_flag specification for disable_cache

cmd_flag Operation name and description

‘0000’ (disable_all) Disable access to the cache and miss actions regardless of address context. The BDF and
PASID fields are undefined.

‘0001’ (disable_by_BDF). Disable access to the cache and miss actions based on address context using the BDF
specified in the command. The BDF field is valid. The PASID field is undefined.

‘0010’ Reserved.

‘0011’ (disable_by_ac). Disable access to the cache and miss actions based on the full address context using the
BDF and PASID specified in the command. The BDF and PASID field are valid.

‘0100’ - ‘1111’ Reserved.

16.Device support is found the device’s configuration space.

Enable AFUC2 cache enable_cache ‘1101 0101’

address translation management TL.vc.2 1

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BDF(7:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PASID(19:0) BDF(15:8)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) Reserved

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Developer note
This enables a host to disable the AFUC2 cache. Not all host protocols require the use of this
command.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 76 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU responds to this command with cache_enabled.

The cmd_flag is specified in Table 2-9.

The AFU responds to this command with cache_enabled. The host shall wait for the AFU response before
issuing a second enable_cache.

enable_cache actions are accumulative. If an enable_cache command finds that the specified cache and
address context combination is already enabled, cache_enabled is returned and no error is indicated.

Support for cmd_flag x‘1’ and x‘3’ which specifies address context granularity, is optional17 and when not
supported these values shall be treated as x‘0’ (enable_all). That is, an implementation shall support
cmd_flag values of x‘0’ and may support x‘1’ and x‘3’.

The host is requesting that the AFU disable its processing element’s access to the AFU’s ATC. Access to the
ATC and ATC miss actions are requested to be suspended based on the address context criteria specified in
the command flag (cmd_flag) field. It is expected that this will suspend most processing element operations
using the address context specified.

Table 2-9. The cmd_flag specification for enable_cache

cmd_flag Operation name and description(

‘0000’ (enable_all) Enable access to the cache and miss actions regardless of address context. The BDF and
PASID fields are undefined.

‘0001’ (enable_by_BDF). Enable access to the cache and miss actions based on address context using the BDF
specified in the command. The BDF field is valid. The PASID field is undefined.

‘0010’ Reserved.

‘0011’ (enable_by_ac). Enable access to the cache and miss actions based on the full address context using the
BDF and PASID specified in the command. The BDF and PASID field are valid.

‘0100’ - ‘1111’ Reserved.

17.Device support is found the device’s configuration space.

Disable AFUC2 cache disable_atc ‘1101 0110’

address translation management TL.vc.2 1

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BDF(7:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PASID(19:0) BDF(15:8)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) Reserved

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 77 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU shall continue to serviced all TL commands and responses including those that may cause updates
to the AFU ATC.

The cmd_flag is specified in Table 2-10.

The AFU responds to this command with atc_disabled. The host shall wait for the AFU response before
issuing a second disable_atc.

disable_atc actions are accumulative. If a disable_atc command finds that the specified ATC and address
context combination is already disabled, atc_disabled is returned and no error is indicated.

Support for cmd_flag x‘1’ and x‘3’, which specifies address context granularity, is optional18 and when not
supported these values shall be treated as x‘0’ (disable_all). That is, an implementation shall support
cmd_flag values of x‘0’ and may support x‘1’ and x‘3’.

Table 2-10. The cmd_flag specification for disable_atc

cmd_flag Operation name and description

‘0000’ (disable_all) Disable access to the AFU’s ATC and miss actions regardless of address context. The BDF
and PASID fields are undefined.

‘0001’ (disable_by_BDF). Disable access to the AFU’s ATC and miss actions based on address context using the
BDF specified in the command. The BDF field is valid. The PASID field is undefined.

‘0010’ Reserved.

‘0011’ (disable_by_ac). Disable access to the AFU’s ATC and miss actions based on the full address context using
the BDF and PASID specified in the command. The BDF and PASID field are valid.

‘0100’ - ‘1111’ Reserved.

18.Device support is found the device’s configuration space.

Developer note
This enables a host to disable the AFU ATC. Not all host protocols require the use of this command.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 78 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is requesting that the AFU enable its processing element’s access to the AFU’s ATC based on the
address context criteria specified in the command flag (cmd_flag) field. This command is expected to be used
only when a disable_atc command has been previously issued.

The AFU responds to this command with atc_enabled.

The cmd_flag is specified in Table 2-11.

The AFU responds to this command with atc_enabled. The host shall wait for the AFU response before
issuing a second enable_atc.

enable_atc actions are accumulative. If an enable_atc command finds that the specified AFU’s ATC and
address context combination is already enabled, atc_enabled is returned and no error is indicated.

Support for cmd_flag x‘1’ and x‘3’, which specifies address context granularity, is optional19 and when not
supported these values shall be treated as x‘0’ (enable_all). That is, an implementation shall support
cmd_flag values of x‘0’ and may support x‘1’ and x‘3’.

Enable AFUC2 cache enable_atc ‘1101 0111’

address translation management TL.vc.2 1

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BDF(7:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PASID(19:0) BDF(15:8)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) Reserved

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Table 2-11. The cmd_flag specification for enable_atc

cmd_flag Operation name and description(

‘0000’ (enable_all) Enable access to the AFU’s ATC and miss actions regardless of address context. The BDF and
PASID fields are undefined.

‘0001’ (enable_by_BDF). Enable access to the AFU’s ATC and miss actions based on address context using the
BDF specified in the command. The BDF field is valid. The PASID field is undefined.

‘0010’ Reserved.

‘0011’ (enable_by_ac). Enable access to the AFU’s ATC and miss actions based on the full address context using
the BDF and PASID specified in the command. The BDF and PASID field are valid.

‘0100’ - ‘1111’ Reserved.

19.Device support is found the device’s configuration space.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 79 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host is issuing a read to the AFU’s configuration address space. The number of bytes transfered is spec-
ified by pLength (pL) field. The starting address shall be naturally aligned based on the number of bytes
requested. For this command, the pLength value is limited to a transfer size of 1, 2, or 4 bytes. That is, the
specification of pLength shall limit the transfer size to 2n bytes where n = {0..2}.

The PA field is defined as follows:

The T field, defined in Table 2-1 on page 48, specifies the configuration type of the command.

The response to this command is mem_rd_response, mem_rd_response.ow, mem_rd_response.xw, or
mem_rd_fail. When a mem_rd_response is received, the data is found in the 64-byte data flit (only one is
returned for this command). The data is address aligned as specified in Section 5.1.3 Data transport, order,
and alignment on page 184. When a mem_rd_response.ow is received, the data is found in the 32-byte
data field found in a control flit (only one is returned for this command). The data is address aligned. When a
mem_rd_response.xw is received, the data is found in the 8-byte data field found in a control flit and is
address aligned.

Neither metadata or extended-metadata are specified for this command. If the template used when returning
the response specifies metadata or extended-metadata for the data carrier used, the metadata and extended-
metadata is discarded by the host, an error shall not be reported, and the operation completes successfully.

Configuration read config_read ‘1110 0000’

configuration TL.vc.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) T CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

PA bits Description

63:32 Reserved. Shall be set to 320.

31:24 Bus number (7:0).

23:19 Device number (4:0).

18:16 Function number (2:0).

15:12 Reserved. Shall be set to 40.

11:2 Register number.

1:0 Byte offset within the register.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 80 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The mem_rd_fail response indicates the operation failed. If the device or function number are not recognized
by the AFU, the operation shall fail with a Resp_code = Failed. See the response packet for encoding and
specifications.

The host is issuing a write to the AFU’s configuration address space. The number of bytes transfered is spec-
ified by pLength (pL) field. The starting address shall be naturally aligned based on the number of bytes
requested. For this command, pLength is limited to a transfer size of 1, 2, or 4 bytes. That is, the specification
of pLength shall limit the transfer size to 2n bytes where n = {0..2}.

The PA field is defined as follows:

The T field, defined in Table 2-1 on page 48, specifies the configuration type of the command. When T is set
to 0, the AFU learns its bus number located in the PA field.The device and function number are assigned by
the attached OpenCAPI device and are not modified by any configuration actions. If the device or function
numbers are not recognized, the operation shall fail and the data is discarded. The failure shall be reported
using a TLX mem_wr_fail response with a Resp_code= Failed.

This command is specified with immediate data. The data is address aligned as specified in Section 5.1.3
Data transport, order, and alignment on page 184. The data may be sent in a data flit, or it may be sent in a
32- or 8-byte data carrier. Credits for both the VC and DCP shall be obtained before this command is serviced
by the TL.

Configuration write config_write ‘1110 0001’

configuration TL.vc.1, TL.dcp.1 4

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
PA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) T CAPPTag(15:0) PA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

PA bits Description

63:32 Reserved. Shall be set to 320.

31:24 Bus number (7:0).

23:19 Device number (4:0).

18:16 Function number (2:0).

15:12 Reserved. Shall be set to 40.

11:2 Register number.

1:0 Byte offset within the register.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP command packets
Page 81 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Neither metadata or extended-metadata are specified for this command. If the template used when issuing
this command specifies metadata or extended-metadata for the data carrier used, the metadata shall be
discarded by the AFU, an error shall not be reported, and the operation completes successfully.

The mem_wr_response and mem_wr_fail responses to this command indicate the status of the write to
memory operation. The mem_wr_response indicates a successful completion of the operation. The
mem_wr_fail response indicates that the operation failed. See the response packet for encoding and specifi-
cations.

This command is used for device defined functions specified by the device manufacturer. The cmd_flag and
object_handle are defined by the device manufacturer. Any errors in the host’s specification of these fields
results in the operation failing.

The response to this command is a mem_cntl_done.

Memory control mem_cntl ‘1110 1111’

message TL.vc.0 4

Reserved cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
object_handle(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
object_handle(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved CAPPTag(15:0) Object_handle(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 82 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.3 TLX AP command packets

TLX commands are sent from the AFU to the host. An alphabetical list of the TLX commands follows; each
command is hyperlinked to its specification. In this section, the TLX command specifications are in opcode
order.

This command has no operands and performs no action. It is discarded at the TL.

amo_rd amo_rd.n amo_rd.t amo_rd.t.s

amo_rw amo_rw.n amo_rw.t amo_rw.t.s

amo_w amo_w.n amo_w.t.p amo_w.t.p.s

assign_actag castout castout.push

dma_pr_w dma_pr_w.n dma_pr_w.t.p dma_pr_w.t.p.s

dma_w dma_w.be dma_w.be.n dma_w.be.t.p

dma_w.be.t.p.s dma_w.n dma_w.t.p dma_w.t.p.s

intrp_req intrp_req.d nop

pr_rd_wnitc pr_rd_wnitc.n pr_rd_wnitc.t pr_rd_wnitc.t.s

rd_wnitc rd_wnitc.n rd_wnitc.t rd_wnitc.t.s

read_me read_me.t read_mes read_mes.t

read_s read_s.t sync synonym_done

upgrade_state upgrade_state.t wake_host_thread xlate_release

xlate_touch xlate_touch.n

No operation nop ‘0000 0000’

NA NA 1

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 83 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting to read data with no intent to cache. The starting address specified by the EA supports
a critical OW request. The data is a naturally aligned data block with a length specified by the dLength field
(dL). See the host’s platform architecture for the specification of the MAD field.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

The response to this command is read_response, read_response.ow, or read_failed. Multiple responses
to a single rd_wnitc may occur. The read_failed response indicates the operation failed. See the response
packet for additional details.

Read with no intent to cache rd_wnitc
rd_wnitc.n

‘0001 0000’
‘0001 0100’

dma_read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 84 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting to read a partial cache line of data with no intent to cache at the address specified by
the EA. The starting address shall be naturally aligned based on the length of the data specified by the
pLength field. The pLength restricts this command to lengths of powers of 2 ranging from 1 to 32 bytes.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

The response to this command is read_response, read_response.ow, or read_failed. When a
read_response is received, the data is address aligned (address bits 5:0) in the 64-byte data flit (only one is
returned for this command). When a read_response.ow is received, the data is address aligned (address
bits(4:0)) in the 32-byte data carrier (only one is returned for this command). The read_failed response indi-
cates the operation failed. See the response packet for additional details.

Partial read with no intent to cache pr_rd_wnitc
pr_rd_wnitc.n

‘0001 0010’
‘0001 0110’

pr_dma_read TLX.vc.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pLength(2:0) R AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 85 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting to write data at the address specified by the EA.The starting address is specified by
the EA and shall be naturally aligned based on the length of the data as specified by the dLength field.

When the data length field specifies 128 or 256 bytes, the Os bit controls ordering between the data
segments.

This command is specified with immediate data. The data may be sent in a data flit, or it may be sent in
multiple 32-byte data carriers. Credits for both the VC and DCP shall be obtained before this command is
serviced by the TLX.

The AFU TLX shall not service this command unless all data specified by dLength is available to be sent.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

The host shall respond with either a write_response or a write_failed response packet. The write_failed
response indicates that the operation failed. See the response packet description for additional details.

DMA Write dma_w
dma_w.n

‘0010 0000’
‘0010 0100’

dma_write TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:6) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) R Os AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

The line may be held in the AFU’s EA L1 cache and not be aware of it if the address used by the dma_w turns out
to be an synonym.

• The host’s coherency protocol could require that the proxy cache be checked after address translation of the
EA presented with the dma_w to determine if the line (RA determined by translation) is already in the proxy
cache. If the line is already in the proxy cache, a synonym has been detected.

If a synonym is detected, the host’s coherency protocol might require that the AFU push the line (issue a
force_evict command).

Developer note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 86 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is writing data at the address specified by the EA using a 64-bit byte-enable field. Each bit corre-
sponds to one byte of the 64-byte aligned data block specified by the EA, where bit 0 of the BE determines if
byte 0 of the data is written. When BE(n) is set to 1, byte n is written where n={0..63}.

This command is specified with immediate data. The data shall be sent in a 64-byte data flit. Credits for both
the VC and DCP shall be obtained before this command is serviced by the TLX.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

The host shall respond with either a write_response or a write_failed response packet. The write_failed
response indicates that the operation failed. See the response packet description for additional details.

Byte enable DMA Write dma_w.be
dma_w.be.n

‘0010 1000’
‘0010 1100’

pr_dma_write TLX.vc.3, TLX.dcp.3 6

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:6) Reserved Byte_enable(3:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Byte_enable(7:4) AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
Byte_enable(35:8)

139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
Byte_enable(63:36)

167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 87 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting to write data starting at the address specified by the EA. The starting address shall be
naturally aligned based on the length of the data as specified by the pLength (pL) field. The pLength restricts
this command to lengths of powers of 2 ranging from 1 to 32 bytes. The combination of the EA and the
pLength shall not cross a 64-byte address boundary.

Only a single data carrier is associated with this command.

This command is specified with immediate data. The data is address aligned as specified in Section 5.1.3
Data transport, order, and alignment on page 184. The data may be sent in a data flit, or it may be sent in a
32-byte data carrier. When the length specified by pL is 8 or less bytes, the data may be sent in an 8-byte
data carrier. Credits for both the VC and DCP shall be obtained before this command is serviced by the TLX.

The AFU TLX shall not service this command unless all data specified by pLength is available to be sent.

The dot-n form indicates that the results of the address translation may not be installed into the host’s ATC as
part of ATC miss handling.The host shall respond with either a write_response or a write_failed response
packet. The write_failed response indicates that the operation failed. See the response packet description
for additional details.

DMA parital write dma_pr_w
dma_pr_w.n

‘0011 0000’
‘0011 0100’

pr_dma_write TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) R AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 88 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting an atomic memory operation specified by the cmd_flag. All operands for this request
are found in memory as specified by the EA.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

There shall be a single response to this command. The response to this command shall be one of the
following TL responses: read_response, read_response.ow, read_response.xw, or read_failed. The
read_failed response indicates that the operation failed. See the response packet specification for additional
details.

Operation:

The operand length, as specified by the pLength (pL) field is restricted to 4- and 8-byte operands. That is, the
pLength shall be specified as {‘010’, ‘011’}; all other values are reserved. Two signed integer operands are
specified. The first operand “A” is found at the address specified by the command. The second operand “A2”
is found at the address specified with an offset specified by the width of the operands and the operation; that
is, as specified by pLength and by the command flag.

• For Fetch and increment bounded and Fetch and increment equal (that is, cmd_flag = {‘1100’, ‘1101’)),
A2 is found at the address specified plus the width of the operand.

• For Fetch and decrement bounded (that is, cmd_flag = {‘1110’}), A2 is found at the address specified
minus the width of the operand.

The specification of the address is constrained to be naturally aligned. In addition:

• It cannot target locations at 32n-2bin2dec(pL), where n= 1, 2, 3... (Fetch and increment bounded and Fetch
and increment equal; that is, cmd_flag = {‘1100’, ‘1101’}).

• It cannot target locations at 32n, where n = 0, 1, 2, 3... (Fetch and decrement bounded; that is, cmd_flag
= {‘1110’}).

The original value from the memory location specified by the command, or the 4- or 8-byte minimum signed
integer value, is returned with read_response.

AMO read amo_rd
amo_rd.n

‘0011 1000’
‘0011 1100’

atomics.r TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 89 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The operation performed is specified by the cmd_flag. The endianness of the operands is specified by the E
bit.

The AFU is requesting an atomic memory operation specified by the cmd_flag. For this request, operands are
provided with the command and are found in memory as specified by the EA.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

This command is specified with immediate data. The data may be sent using data flits, 32-byte data carriers,
or 8-byte data carriers as described in the following operation description. Use of 8-byte data carriers is
restricted as specified below. Credits for both the VC and DCP shall be obtained before this command is
serviced by the TLX.

Table 2-12. The cmd_flag specification for amo_rd

cmd_flag Operation name and description

‘0000’ through ‘1010’ Reserved

‘1100’

Fetch and increment bounded
t ← A;
If A != A2 then {A ← A+1; return t}
else {return minimum signed integer value}

‘1101’

Fetch and increment equal
t ← A;
If A = A2 then {A ← A+1; return t}
else {return minimum signed integer value}

‘1110’

Fetch and decrement bounded
t ← A;
If A != A2 then {A ← A-1; return t}
else {return minimum signed integer value}

‘1111’ Reserved

AMO read write amo_rw
amo_rw.n

‘0100 0000’
‘0100 0100’

atomics.rw TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 90 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU TLX shall not service this command unless all data specified by pLength is available to be sent.

There shall be a single response to this command. The response to this command shall be one of the
following TL responses: read_response, read_response.ow, read_response.xw, or read_failed. The
read_failed response indicates that the operation failed. See the response packet specification for additional
details.

Operation:

The command address specified shall be naturally aligned based on the operand length. The operand length
is restricted to 4- and 8-byte operands. The pLength (pL) shall be specified as {‘010’, ‘011’} for all cmd_flag
operations with the exception of fetch and swap operations where the cmd_flag is specified as {x‘8’...x‘A’} and
pLength shall be specified as {‘110, ‘111’}. Refer to the specification of pLength on page 53.

Operations specified by the cmd_flag use either two or three operands; additional classification of the oper-
ands can be found in the description of the operation in Table 2-13. The command’s address specifies the
location of a first operand, “A”.

Operand A is operated on by the second operand, “V”, which is provided as the command’s write data.
Operand V is aligned within one of the following:

• a 64-byte data flit based on address bits 5:0 specified by the command.

• a 32-byte data field carried in a control flit based on address bits 4:0 specified by the command.

• an 8-byte data field carried in a control flit based on address 2:0 specified by the command. This option
shall not be used for fetch and swap operations where the cmd_flag is specified as {x‘8’...x‘A’}.

A third operand “W” is provided for fetch and swap operations. Operand W is placed in the same data carrier
as operand V. Operand W shall be aligned within one of the following:

• the 64-byte data flit based on the following equation:

alignment (5:0) ← EA(5:4) || (EA(3:0) + ‘1000’)
Any carryout from bit 3 is ignored.

• the 32-byte data field carried in a control flit based on the following equation:

alignment (4:0) ← EA(4) || (EA(3:0) + ‘1000’)
Any carryout from bit 3 is ignored.

The original value from the memory location specified by the command shall be returned with a
read_response, read_response.ow, or read_response.xw.

The endianness of the operands is specified by the E bit. The value of E might not affect the result of the
operation specified by the cmd_flag. This is noted in the operation description found in Table 2-13.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 91 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-13. The cmd_flag specification for amo_rw

cmd_flag Operation name and description

‘0000’

Fetch and Add
Operands are unsigned integers.
t ← A; A ← A + V; return t
Overflow conditions are not reported.

‘0001’
Fetch and XOR
Operands are bit vectors. E has no effect on the operation.
t ← A; ; return t

‘0010’
Fetch and OR
Operands are bit vectors. E has no effect on the operation.
t ← A; ; return t

‘0011’
Fetch and AND
Operands are bit vectors. E has no effect on the operation.
t ← A; ; return t

‘0100’

Fetch and maximum unsigned
Operands are unsigned integers.
t ← A; A ← Max(A, V); return t
A is unchanged when A is greater than or equal to V.

‘0101’

Fetch and maximum signed
Operands are signed two’s complement integers.
t ← A; A ← Max(A, V); return t
A is unchanged when A is greater than or equal to V.

‘0110’

Fetch and minimum unsigned
Operands are unsigned integers.
t ← A; A ← Min(A, V); return t
A is unchanged when A is less than or equal to V.

‘0111’

Fetch and minimum signed
Operands are signed two’s complement integers.
t ← A; A ← Min(A, V); return t
A is unchanged when A is less than or equal to V.

‘1000’
Fetch and swap
Operands are bit vectors. E has no effect on the operation. V is not used.
t ← A; A ← W; return t

‘1001’
Fetch and swap equal
Operands are bit vectors. E has no effect on the operation.
t ← A; When V = A, then A ← W; return t

‘1010’
Fetch and swap not equal
Operands are bit vectors. E has no effect on the operation.
t ← A; when , then A ← W; return t

‘1011’ through ‘1111’ Reserved

A V← A⊕

A V A∨←

A V← A∧

V A≠

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 92 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is requesting an atomic memory operation specified by the cmd_flag. For this request, operands are
provided with the command and are found in memory as specified by the EA.

This command is specified with immediate data. Credits for both the VC and DCP shall be obtained before
this command is serviced by the TLX.

The AFU TLX shall not service this command unless all data specified by pLength (pL) is available to be sent.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

There shall be a single response to this command. The host shall respond with either a write_response or a
write_failed response packet. The write_failed response indicates that the operation failed. See the
response packet description for additional details.

Operation:

The command’s address shall be naturally aligned based on the operand length. The operand length, as
specified by the pLength (pL) field, is restricted to 4- and 8-byte operands. That is, the pLength shall be {‘010’,
‘011’}. All other values of pLength are reserved.

The number of operands specified by this command is determined by an examination of the cmd_flag. Two or
three operands may be specified as shown in Table 2-14 on page 93. The operands are designated as “A,”
“A2,” and “V”. The command’s address specifies the location of each operand as follows:

• Operand A is located in memory at the address specified by the EA and shall be naturally aligned. When
the cmd_flag indicates the use of operand A2, the address of operand A is further constrained and shall
not target locations at 32n-2bin2dec(‘pL’), where n = 1, 2, 3...

• Operand A2 is located in memory at the address specified by the EA plus an offset specified by the width
of the operands.

AMO write amo_w
amo_w.n

‘0100 1000’
‘0100 1100’

atomics.w TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 93 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

• Operand V is provided as the command’s write data. Operand V shall be aligned within one of the follow-
ing:

– a 64-byte data flit based on address bits 5:0 specified by the command

– a 32-byte data field carried in a control flit based on address bits 4:0 specified by the command

– an 8-byte data field carried in a control flit based on address 2:0 specified by the command

The endianness of the operands is specified by the E bit. The value of E might not affect the result of the
operation specified by the cmd_flag. This is noted in the operation description found in Table 2-14.

Table 2-14. The cmd_flag specification for amo_w

cmd_flag Operation name and description

‘0000’

Store and Add
Operands are unsigned integers.
A ← A + V
Overflow conditions are not reported.

‘0001’
Store and XOR
Operands are bit vectors. E has no effect on the operation.

‘0010’
Store and OR
Operands are bit vectors. E has no effect on the operation.

‘0011’
Store and AND
Operands are bit vectors. E has no effect on the operation.

‘0100’

Store and maximum unsigned.
Operands are unsigned integers.
A ← Max(A, V)
A is unmodified when A is greater than or equal to V.

‘0101’

Store and maximum signed
Operands are signed two’s complement integers.
A ← Max(A, V)
A is unmodified when A is greater than or equal to V.

‘0110’

Store and minimum unsigned
Operands are unsigned integers.
A ← Min(A, V)
A is unmodified when A is less than or equal to V.

‘0111’

Store and minimum signed
Operands are signed two’s complement integers.
A ← Min(A, V)
A is unmodified when A is less than or equal to V.

‘1000 through ‘1011’ Reserved.

‘1100’
Store and compare twin
Operands are bit vectors. E has no effect on the operation.
When A = A2, then (A ← V, A2 ← V)

‘1101’ through ‘1111’ Reserved.

A V← A⊕

A V A∨←

A V← A∧

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 94 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is used by the attached OpenCAPI device to assign an acTag value to a BDF and PASID
combination. The OpenCAPI device uses this command to manage the contents of the acTag table. See
Section 4 The acTag table on page 180 for the use of this command, the acTag table, and the management
requirements placed on the OpenCAPI device.

This command is serviced when it reaches the head of the VC in the TL. It is not added to a service queue.

This command is posted. No response is sent for this command.

This command is used to return an address translation to the host. All commands using this translation shall
precede the xlate_release command in the TLX.vc.3 virtual channel. This command is used by the AFU to
manage its ATC as described in Section 1.8.2 Translated addresses, AFU ATC, and dot-t commands on
page 45.

The acTag must point to the BDF and PASID used when the address translation was obtained. The
stream_id is used to ensure that the TLX commands using the translation are in the same service queue as
the xlate_release.

This command is assigned to TLX.vc.3 which is the same VC used by all TLX read and write commands. This
command requires the AFU push all commands using this translated address into the VC before removing
the AFU ATC entry. That is, all commands using this translation must be dispatched to the host before the

acTag Assignment assign_actag ‘0101 0000’

acTag mgmt TLX.vc.3 2

BDF(7:0) acTag(11:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PASID(19:0) BDF(15:8)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Translation release xlate_release ‘0101 0001’

address translation management TLX.vc.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:12) Reserved log2_page_size

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 95 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

AFU ATC entry has been invalidated. To accomplish this the command shall be placed into the TLX.vc.3
virtual channel after all commands using the address translation have been committed to the TLX.vc.3 virtual
channel. The host shall ensure that all uses of the address translation have completed before invalidating the
AFU’s use of the translated address. That is, all non-posted commands, or any clean up that is required by
the host implementation with respect to the translated address being used by the AFU, shall complete before
the translated address becomes unrecognizable for-use-by-the-AFU by the host.

TLX commands using TLX.vc.3 specify a stream_id. When the host’s service queue hash includes the
stream_id, the commands using the ATC entry my be in different host service queues. Placing xlate_release
in only one service queue does not assure that all uses of the address translation have been serviced before
the xlate_release has been serviced. When the AFU is using multiple streams, the AFU shall either:

• Issue a sync(at_stream) command to each stream_id using the translation. Once all sync commands
have received a response20, the AFU sends xlate_release to any one of the stream_id to complete the
kill_xlate command.

• Issue a sync(all_stream) command. Once the AFU receives a sync_done response, the AFU sends
xlate_release to any one of the stream_id to complete the kill_xlate command.

An AFU that is using a single stream_id for all commands using the TLX.vc.3 virtual channel is not required to
issue a sync command. xlate_release shall be sent using the stream_id used by the AFU.

Once the AFU has released the address translation, the AFU shall not use the translation for any purpose.
Any lines held in an AFUC2 L1 cache using this translation shall not be updated or referenced by the AFUC2
processing element.

This command is posted. No response is sent for this command.

This command is issued after modification, if any, of the host_tag entry specified by a synonym_detected
command has completed and the host_tag entry is unlocked. See Section 1.5 Host tags on page 39 and
Section A.10 Host tag locking transactions on page 235.

20.sync_done

host_tag update on synonym done synonym_done ‘0101 0100’

Cacheable pushes TLX.vc.2 2

dL(1:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved host_tag(23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Developer note
The AFU needs to maintain the ATC entry until it has pushed all commands operations using it into TLX.vc.3.
This includes non-posted operations such as read_me.t. Updates to the cache are allowed since the responses
use host_tags and the host has ensured that the correct address translation is used when obtaining the data.

Note that once the cache has been updated and the ATC entry has been invalidated, the cache line is no longer
accessible by the AFU processor element since the address translation has been invalidated.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 96 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host has locked the host_tags associated with the specification of the synonym_detected sent by the
host. The AFU’s synonym_done command is used by the host to unlock the host_tags.

The command is posted, no response is sent due to this command.

castout is used by the AFU to update the Host’s cache directory of the line specified by the host_tag. The
cmd_flag field is specified in Table 2-15.

The combination of the host_tag and the dLength is used to determine the number of host directory entries
that are affected by the command. See host_tag arithmetic on page 20 for details.

The castout command does not move data and is used to update MRU information in the host’s cache direc-
tory, or update the host proxy cache directory’s state to the cache state specified by the cache state field
(cache_state). Legal host proxy directory cache state transitions can be found in Table 7-2 Cache state tran-
sition errors on page 208. See Section 1.3 AFUC2 on page 30 for cache states and Table 1-3 L1 EA Cache
state change request and notification on page 35 to determine when a cache state transition shall be reported
to the host.

A transition to a cache state of I shall only be specified when the host_tag entry or entries specified by the
host_tag field and dLength are invalidated. That is, when synonyms are fully supported, no synonym entries
pointed to by the host_tags specified are left in the AFUC2 cache when a transition to I is specified.

Cast out castout ‘0101 0101’

Cacheable pushes TLX.vc.2 2

dL(1:0) Reserved cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) R host_tag(23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Table 2-15. The command flag specification for castout

cmd_flag
bit Description

3 Reserved

2 Reserved

1
update_cache_state_flag. Indicates that the cache_state field contains the update value to
be applied to the Host directory entry found using the host_tag and the dLength. Only down-
grades from the current state are permitted. See Table 1-1 Cache state descriptions on
page 32 for legal state downgrades.

0
mru_update_flag. Indicates that the AFU has been using the cache entry specified by the
host_tag and dLength. The Host updates any MRU information it may have specified in its
directory to reflect that the cache entry specified has been used by the AFU.

cmd_flag encode specification:
0000 Reserved
0001 mru_update_flag; cache_state field is reserved.
0010 Reserved
0011 update_cache_state flag, mru_update_flag. The MRU update action is undefined on a cache

state transition to an I state.
All other encodes are reserved.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 97 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

castout is a posted operation, no response is sent due to this command.

castout.push is used by the AFU to update the Host’s cache directory of the line specified by the host_tag.

The combination of the host_tag and the dLength (dL) is used to determine the number of host proxy cache
directory entries that are affected by the command. See host_tag arithmetic on page 20 for details.

The castout.push command may modify the host’s proxy cache directory and it moves data to the Host’s
MEM. The command shall update the host proxy cache directory’s state to the cache state specified by the
cache state field (cache_state). Legal host proxy directory cache state transitions can be found in Table 7-2
Cache state transition errors on page 208. See Section 1.3 AFUC2 on page 30 for cache states and Table 1-3
L1 EA Cache state change request and notification on page 35 to determine when a cache state transition
shall be reported to the host.

A transition to a cache state of I shall only be specified when the host_tag entry or entries specified by the
host_tag field and dLength are invalidated. That is, when synonyms are fully supported, no synonym entries
pointed to by the host_tags specified are left in the AFUC2 cache when a transition to I is specified.

This command is specified with immediate data. The data shall be sent using either 32- or 64-byte data
carriers or a combination of both. Credits for both the VC and DCP shall be obtained before this commanded
is serviced by the TLX.

castout.push is a posted operation, no response is sent due to this command.

Cast out with data push castout.push ‘0101 0110’

Cacheable pushes TLX.vc.2, TLX.dcp.2 2

dL(1:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) R host_tag(23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 98 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is used to request interrupt service on the host. No data is transfered with this request. The
specification of the object handle and the cmd_flag is found in the host’s platform architecture.

The response to this command is intrp_resp.

Interrupt Request intrp_req
 intrp_req.s

‘0101 1000’
‘0101 1001’

message TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Obj_handle(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
Obj_handle(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved AFUTag(15:0) Obj_handle(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering Note
The AFUTag is passed back to the TLX in a response packet and has no control function in the TL as described
in Table 2-1 TL and TLX command operands on page 48. The intrp_resp’s response code specification of
intrp_pending indicates to the TLX that a subsequent intrp_rdy command is sent when the host is ready to
service the interrupt. The intrp_rdy command contains the AFUTag that is specified in the original intrp_req
command sent. While there are no requirements placed on the AFU to reserve the AFUTag used by the
intrp_req command until the intrp_rdy command is received by the TLX, it is strongly recommended that an
AFU implementation do so. It is an AFU implementation choice to use the AFUTag to precisely determine which
interrupt to retry.

Developer Note
Both the command flag and the object handle fields specified for this command are specified by the host’s plat-
form architecture.

The attached OpenCAPI device provides MMIO space where the combination of the object handle and the
command flag associated with this command are located. The manufacturer of the OpenCAPI device determines
the number of command-flag and object-handle combination entries supported based on what is supported by the
host and the function provided by the device.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 99 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is used to request interrupt service on the host. Data, with the length specified by the pLength
(pL) field, is transfered with this request. The data shall be sent in a 64-byte data flit.The alignment of the data
within the data flit is specified by the host’s platform architecture. The specification of the object handle and
the command flag is found in the host’s platform architecture.

The response to this command is intrp_resp.

Interrupt Request intrp_req.d
intrp_req.d.s

‘0101 1010’
‘0101 1011’

message TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Obj_handle(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
Obj_handle(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) R AFUTag(15:0) Obj_handle(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering Note
The AFUTag is passed back to the TLX in a response packet and has no control function in the TL as described
in Table 2-1 on page 48. The intrp_resp’s response code specification of intrp_pending indicates to the TLX that
a subsequent intrp_rdy command is sent when the host is ready to service the interrupt. The intrp_rdy
command contains the AFUTag that is specified in the original intrp_req.d command sent. While there are no
requirements placed on the AFU to reserve the AFUTag used by the intrp_req.d command until the intrp_rdy
command is received by the TLX, it is strongly recommended that an AFU implementation do so. It is an AFU
implementation choice to use the AFUTag to precisely determine which interrupt to retry.

Developer Note
The command flag, data, and the object handle fields specified for this command are specified by the host’s plat-
form architecture.

The attached OpenCAPI device provides MMIO space where the combination of the object handle, data, and the
command flag associated with this command are located. The manufacturer of the OpenCAPI device determines
the number of command-flag and object-handle combination entries supported based on what is supported by the
host and the function provided by the device.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 100 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is used to wake a thread on the host. The specification of the object handle and the command
flag is found in the host’s platform architecture.

This is a non-posted command. Results are returned to the AFU using wake_host_resp.

Wake host thread
wake_host_thread

wake_host_thread.s

‘0101 1100’
‘0101 1101’

message TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Obj_handle(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
Obj_handle(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Obj_handle(67:64) AFUTag(15:0) Obj_handle(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

See the Developer note found in the description of intrp_req for details on the specification of the object handle
and command flag and the requirements this specification places on the OpenCAPI device.

wake_host_resp indicates if the operation was successful, or if an interrupt is required.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 101 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU has determined that the state of the line held is insufficient for a write operation. The AFU is
requesting that the cache state held in the AFU L1 cache be upgraded without the need for a data transfer.
The address specified by the EA shall be naturally aligned based on the length of the data block as specified
by the dLength (dL) field. The cache state upgrade is specified in the cmd_flag field. Write permissions are
required for this request to be successful.

When the address translation in the host determines that the line is cache inhibited, the operation results in a
response indicating an I state. See Table 2-21 in the description of synonym_detected.

See the description of the cmd_flag in Table 2-16.

Upgrade State upgrade_state ‘0110 0000’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:6) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Table 2-16. The cmd_flag specification for upgrade_state (Page 1 of 2)

cmd_flag(3:0) Description

‘0000’ - 0111’ Reserved

‘1000’

I → M. Current cache state is I, request to upgrade to an M state. The data for the block is
set to an all 0 state (modified state of the line) in the AFU L1. All other cache holding the line
shall transition to an I state.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 102 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The responses to this command are upgrade_resp, synonym_detected and read_failed.

See Figure A-9. upgrade_state TLX and TL interaction on page 230.

‘1001’

I → EI. Current cache state is I, request to upgrade to an EI state. The data for the block is
marked invalid in the AFU L1. All cache holding the line shall transition to an I state. The host
shall insure that any cache holding the line in a dirty state (M) shall push the line back to
MEM.

‘1010’ - ‘1111’ Reserved

Table 2-16. The cmd_flag specification for upgrade_state (Page 2 of 2)

cmd_flag(3:0) Description

Developer Note
One use of this upgrade is to allow the AFU to warm up its L1 cache and replace
the full cache block.
A sparse update might be possible and is dependent on the host proxy and the lim-
itations of the host coherence protocol. For example, a sparse update could be
accomplished by first getting the line using a I->EI upgrade request and then issu-
ing a variation, not currently specified in the architecture, of dma_w.be or
dma_pr_w commands. The cache would need to maintain byte marks to track
which bytes are held in cache and which are still retained in MEM. The host coher-
ence protocol would have to be written to allow sparse updates in this fashion.
The variation on the dma_w.be or dma_pr_w commands would be needed to
relax synonym checking by the host proxy as described in the developer note
included in the description of dma_w.

Engineering note
When there is a hit in the host’s ATC and write permission is not granted, a read_failed response with a
Resp_code of rty_req or xlate_pending occurs. In the case of a rty_req, the AFU may retry the operation since
the Resp_code may have been due to insufficient resources in the host to initiate an interrupt to obtain write
permission. A Resp_code of xlate_pending causes the AFU to wait for the results of the address translation
found in a xlate_done.

During address translation it might be determined that the address has a memory attribute of cache inhibited. In
this case upgrade_resp indicates a cache state of I. The AFU is responsible to take any corrective actions to
ensure its application operates correctly.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 103 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Request by the AFU to obtain a cacheable copy of the line specified in an exclusive (E) or modified (M) state
with write permissions. The starting address specified by the EA supports a critical OW request. The data is a
naturally aligned data block with a length specified by the dLength field (dL(1:0)). The dLength specifies the
length of the AFU’s cache line. See the host’s platform architecture for the specification of the MAD field.

The responses to this command are cl_rd_resp, cl_rd_resp.ow, synonym_detected, and read_failed.

When write authority is not granted, the host might attempt to re-translate the address to obtain write permis-
sions. If write permission is not authorized for this address and address context combination, the results are
seen in read_failed responses and xlate_done commands.

When the address translation in the host determines that the line is cache inhibited, the operation results in a
response indicating an I state. See Table 2-21 in the description of synonym_detected.

The state the line is returned is determined by the host’s coherency protocol and is specified in the
cl_rd_resp, cl_rd_resp.ow, or synonym_detected response packet.

Read to store read_me ‘0110 1000’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering note
When there is a hit in the host’s ATC and write permission is not granted, a read_failed response with a
Resp_code of rty_req or xlate_pending occurs. In the case of a rty_req, the AFU may retry the operation since
the Resp_code may have been due to insufficient resources in the host to initiate an interrupt to obtain write
permission. A Resp_code of xlate_pending causes the AFU to wait for the results of the address translation
found in a xlate_done.

It is strongly recommended that an AFU wait for the xlate_done before retrying the command. However, using a
retry back off mechanism is permitted to determine when to retry the command. Such an implementation shall
examine xlate_done for the results of the address translation and take action based on those results.

During address translation it might be determined that the address has a memory attribute of cache inhibited. In
this case the Host bus shall obtain the data and return the data to the AFU indicating a cache state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 104 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Request by the AFU to obtain a cacheable copy of the line specified in M, E or S state. The state returned is
dependent on the permissions granted by the address context for the specified data which is determined
during address translation.

• If write permission is not granted, then the highest cache state returned is S.

• If write permission is granted, then a cache state of M, E, or S may be returned. The state returned is
dependent on the host’s coherence protocol.

When the address translation in the host determines that the line is cache inhibited, the operation results in a
response indicating an I state. See Table 2-21 in the description of synonym_detected.

The starting address specified by the EA supports a critical OW request. The data is a naturally aligned data
block with a length specified by the dLength field (dL(1:0)). The dLength specifies the length of the AFU’s
cache line. See the host’s platform architecture for the specification of the MAD field.

The responses to this command are cl_rd_resp, cl_rd_resp.ow, synonym_detected, and read_failed.

The state the line is returned is determined by the host’s coherency protocol and the returned state may not
be the state requested. The state returned is specified in the cl_rd_resp, cl_rd_resp.ow, or
synonym_detected response packet.

Read to load read_mes ‘0110 1001’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Developer note
To store into a line that an AFUC2 is holding in an S state, the AFUC2 could issue a read_me to obtain the line
with write permissions (M or E state).

The AFUC2 is not required to evict the line prior to issuing the read_me command. The AFU must be able to
handle the synonym_detected response that will occur by changing the state of the line as specified by the
cache_state returned.

Engineering Note
During address translation it might be determined that the address has a memory attribute of cache inhibited. In
this case the Host bus shall obtain the data and return the data to the AFU indicating a cache state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 105 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Request by the AFU to obtain a cacheable copy of the line specified in a shared (S) state. The starting
address specified by the EA supports a critical OW request. The data is a naturally aligned data block with a
length specified by the dLength field (dL(1:0)). The dLength specifies the length of the AFU’s cache line. See
the host’s platform architecture for the specification of the MAD field.

The responses to this command are cl_rd_resp, cl_rd_resp.ow, synonym_detected, and read_failed.

When the address translation in the host determines that the line is cache inhibited, the operation results in a
response indicating an I state. See Table 2-21 in the description of synonym_detected.

The state the line is returned is determined by the host’s coherency protocol and the returned state may not
be the state requested. The state returned is specified in the cl_rd_resp, cl_rd_resp.ow, or
synonym_detected response packet.

Read to reference read_s ‘0110 1010’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering Note
During address translation it might be determined that the address has a page attribute of cache inhibited. In this
case the Host bus shall obtain the data and return the data to the AFU indicating a cache state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 106 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is used to request address translation prefetch for the address (EA) specified. The address
can specify any 64-byte aligned address (EA). The log2_page_size field specifies the page size for an age-
out ATC entry request and is reserved for an address translation request. See the specification of the
command flag, bit 0, in Table 2-17.

• The dot-n form indicates that the results of the address translation may not be installed into the host’s
ATC as part of ATC miss handling.

Table 2-17 provides the specification of the cmd_flag field. Figure 2-1 on page 108 provides the architectural
description of the command’s operation.

Address translation prefetch xlate_touch
xlate_touch.n

‘0111 1000’
0111 1100’

address translation managment TLX.vc.3 4

stream_id acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EA(27:6) log2_page_size

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
EA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Reserved AFUTag(15:0) EA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Table 2-17. The cmd_flag specification for xlate_touch (all forms) (Page 1 of 2)

cmd_flag bit Description

3

0 Address translation request returns without a translated address (TA) (no_ta). The
address translation cache is updated after a successful address translation

1 Translated address (TA) request (ta_req). Translation requested with the return of a
translated address.

2

0 Light-weight touch (lwt). Address translation stops and returns status if software
intervention is required to complete the address translation request. Software inter-
vention shall not be initiated.

1 Heavy-weight touch (hwt). Address translation invokes software intervention if
required to complete the address translation request. Status is returned immedi-
ately. The result of the software intervention is reported to the AFU using
xlate_done.

1

0 Read-only access requested (ro). Read permission is requested by this address
translation request. Write permission may be obtained.

1 Write access requested (w). Write permission is requested by this address transla-
tion request.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 107 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

0

0 Address translation request (xlate). log2_page_size is reserved.
1 Age-out ATC entry request (age_out). log2_page_size specifies the page size of

the entry to be aged out.

cmd_flag encode specification:

0000 xlate, lwt.ro, no_ta
0001 age out
0010 xlate, lwt_w, no_ta
0011 Reserved
0100 xlate, hwt.ro, no_ta
0101 Reserved
0110 xlate, hwt.w, no_ta
0111 Reserved

1000 xlate, lwt.ro, ta_req
1001 Reserved
1010 xlate, lwt.w, ta_req
1011 Reserved
1100 xlate, hwt.ro, ta_req
1101 Reserved
1110 xlate, hwt.w, ta_req
1111 Reserved

The use of reserved code points results in fatal errors. See Table 7-1 Error event specification on page 199.
The use of a dot-n form and age out is an error. See Age out specified for xlate_touch.n on page 199 for details.
The use of a dot-n form and ta_req is an error. See ta_req specified for xlate_touch.n on page 205 for details.

Table 2-17. The cmd_flag specification for xlate_touch (all forms) (Page 2 of 2)

cmd_flag bit Description

Engineering note
xlate_touch can be used to update the LRU mechanism of the host’s ATC.
cmd_flag(0) can be used to provide hints to the host.
0 Address translation is invoked. If an entry is found in the ATC, or one is

added, that entry is marked MRU
1 Address translation is invoked. If an entry is found in the ATC, that entry is

marked as LRU.
It is determined by the host implementation if early aging causes immediate invalida-
tion of the matching ATC entries, the entries are marked as LRU, or no action is
taken. A host implementation may chose to ignore the LRU hints described above.
The page size associated with an EA is provided in the touch_resp of a previous
xlate_touch. The OpenCAPI device shall retain this information when making an
age-out request.

Developer Note
 Figure 2-1 on page 108 does not show validation of the addressContext or the impacts of other hardware-driven
events that might terminate this operation. See the specification of touch_resp for details of the result specifica-
tion.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 108 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure 2-1. Address translation sequence: xlate_touch (Page 1 of 3)

YN ATC hit?

ATC_lookup(EA, addressContext)

Y

N

cmd_flag
indicates lwt.ro?

Y

N

cmd_flag indicates
hwt.ro?

N

Y

cmd_flag indicates
hwt.w?

Y

N

ATC entry
indicates write
permission?

EA = xlate_touch.EA
addressContext = acLookUp(xlate_touch.acTag)
ageout_page_size = 2bin2dec(xlate_touch.log

2
_page_size)

Start

1.3.A

page_size =
ATC.page_size

1.2.A

Y

N

cmd_flag
indicates lwt.w?

Y

N

cmd_flag =
age_out 1.3.B

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 109 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure 2-1. Address translation sequence: xlate_touch (Page 2 of 3)

queue(nMMU, EA, addressContext, RO)

Y

N

nMMU_response
.status= 0?

2.3.A

queue(touch_resp, response_code=xlate_pending)

Y

N

cmd_flag
indicates lwt?

Set interrupt pending.
Issue interrupt(nMMU_response.status)

page_size =
nMMU_response.page_size

1.2.A

Y

N

cmd_flag
indicates ro?

queue(nMMU, EA, addressContext, W)

Y

N

maximum
interrupts
pending?

/* ACT miss or ATC hit, hwt.w and ATC does not provide write permission

queue(touch_resp,Resp_code=rty_hwt)

queue(touch_resp,Resp_code=rty_req)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 110 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure 2-1. Address translation sequence: xlate_touch (Page 3 of 3)

1.3.A

log2_page_size <- log2(ATC.page_size)
queue(touch_resp, Resp_code = Completed, W,
log2_page_size)

2.3.A

/* Successful address xlate;

YN ATC hit?

1.3.B

ATC_lookup(EA, addressContext)

queue(touch_resp, Resp_code = Completed,
log2_page_size);

log2_page_size <- ‘00 0000’

Mark ATC entry for age out
log2_page_size <- log2(ATC.page_size)

/* cmd_flag indicates age_out

Y

N

ageout_page_size
< ATC.page_size

log2_page_size <- log2(ATC.page_size)

Y

N

cmd_flag indicates
ta_req

log2_page_size <- log2(ATC.page_size)
queue(touch_resp.t, Resp_code = Completed,
TA(63:12), W, mem_hit, log2_page_size)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 111 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Results are returned to the AFU using touch_resp or touch_resp.t.
• touch_resp is used when a translated address has not been requested and the translation is successful,

or when the Resp_code is not indicating complete.

• touch_resp.t is used when a translated address is requested and the translation is successful. The TA is
being provided to the requester.

This command is identical to rd_wnitc with the exception of the address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA). The starting
address specified by the TA supports a critical OW request as described in the rd_wnitc description.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

See the command description of rd_wnitc on page 83 for the operation of these commands.

Read with no intent to cache rd_wnitc.t
rd_wnitc.t.s

‘1001 0000’
‘1001 0001’

dma_read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering Note
The AFUTag is passed back to the TLX in a response packet and has no control function in the TL as
described in Table 2-1 on page 48. The touch_resp’s response code specification of xlate_pending indicates
to the TLX that a subsequent xlate_done command is sent when the host is ready to service the translation
request.

• The xlate_done command contains the AFUTag that is specified in the original xlate_touch command
sent. While there are no requirements placed on the AFU to reserve the AFUTag used by the xlate_touch
command until the xlate_done command is received by the TLX, it is strongly recommended that an AFU
implementation do so. It is an AFU implementation choice to use the AFUTag to precisely determine
which address translation to retry. The alternative is likely to be less efficient.

• xlate_done uses TL.vc.0. The implementation shall ensure that the touch_resp carrying the response
code of xlate_pendng is added to the VC prior to the xlate_done.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 112 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is identical to pr_rd_wnitc with the exception of the address specification. These commands
use the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned based on the pLength (pL) field.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

See the command description of pr_rd_wnitc on page 84 for the operation of these commands.

This command is identical to dma_w with the exception of the address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned based on the length of the data as specified by the dLength (dL) field.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

Partial read with no intent to cache pr_rd_wnitc.t
pr_rd_wnitc.t.s

‘1001 0010’
‘1001 0011’

pr_dma_read TLX.vc.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pLength(2:0) R AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

DMA write dma_w.t.p
dma_w.t.p.s

‘1010 0010’
‘1010 0011’

dma_write TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:6) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) R Os AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 113 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

See the command description of dma_w on page 85 for the operation of these commands.

This command is identical to dma_w.be with the exception of the address specification. These commands
use the dot-t format which specifies the use of a previously obtained translated address (TA).

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

Byte enable DMA Write dma_w.be.t.p
dma_w.be.t.p.s

‘1010 1010’
‘1010 1011’

pr_dma_write TLX.vc.3, TLX.dcp.3 6

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:6) Reserved Byte_enable(3:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
Byte_enable(7:4) AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84
Byte_enable(35:8)

139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112
Byte_enable(63:36)

167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140

Engineering note
Without a response, a posted command cannot directly indicate to the AFU that an error has occurred.The
following errors might be detected for this command:

• At the host, the received data suffered an uncorrectable error, or might have been marked bad in the control
flit associated with the data transfer, or might have been damaged in some other fashion while being trans-
ferred within the host. In this case, the host might mark the data as bad allowing the subsequent consumer of
the data to detect the error.

• The TA specified by the command is not naturally aligned or is not recognized by the host or does not have
the necessary write permission. This is a fatal error. See the description of a Posted command error on page
204.

• The operation failed due to an unspecified reason. See the description of a Posted command error on page
204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 114 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

See the command description of dma_w.be on page 86 for the operation of these commands

This command is identical to dma_pr_w with the exception of the address specification. These commands
use the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned based on the length of the data as specified by the pLength (pL) field.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

DMA parital write dma_pr_w.t.p
dma_pr_w.t.p.s

‘1011 0010’
‘1011 0011’

pr_dma_write TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) R AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering note
Without a response, a posted command cannot directly indicate to the AFU that an error has occurred.The
following errors might be detected for this command:

• At the host, the received data suffered an uncorrectable error, or might have been marked bad in the control
flit associated with the data transfer, or might have been damaged in some other fashion while being trans-
ferred within the host. In this case, the host might mark the data as bad allowing the subsequent consumer of
the data to detect the error.

• The TA specified by the command is not recognized by the host or does not have the necessary write per-
mission. This is a fatal error. See the description of a Posted command error on page 204.

• The operation failed due to an unspecified reason. See the description of a Posted command error on page
204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 115 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

See the command description of dma_pr_w on page 87 for the operation of these commands

This command is identical to amo_rd with the exception of the address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned as specified in the Operation section of the amo_rd command description.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

See the command description of amo_rd on page 88 for the operation of these commands

AMO read amo_rd.t
amo_rd.t.s

‘1011 1000’
‘1011 1001’

atomics.r TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering note
Without a response, a posted command cannot directly indicate to the AFU that an error has occurred.The
following errors might be detected for this command:

• At the host, the received data suffered an uncorrectable error, or might have been marked bad in the control
flit associated with the data transfer, or might have been damaged in some other fashion while being trans-
ferred within the host. In this case, the host might mark the data as bad allowing the subsequent consumer of
the data to detect the error.

• The TA specified by the command is not naturally aligned, or is not recognized by the host, or does not have
the necessary write permission. This is a fatal error. See the description of a Posted command error on page
204.

• The operation failed due to an unspecified reason. See the description of a Posted command error on page
204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 116 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is identical to amo_rw with the exception of the address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned. Operands are located in data carriers as described in the Operation section of the amo_rw
command description.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

See the command description of amo_rw on page 89 for the operation of these commands

AMO read write amo_rw.t
amo_rw.t.s

‘1100 0000’
‘1100 0001’

atomics.rw TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 117 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is identical to amo_w with the exception of the address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA). The TA shall be
naturally aligned based on the operand length specified by the pLength (pL) field.

• The dot-s form indicates that a presync is required prior to the execution of the command at the Host.

• The dot-p form indicates that the command is posted. That is, no response shall be returned for this com-
mand.

See the command description of amo_w on page 92 for the operation of these commands

AMO write amo_w.t.p
amo_w.t.p.s

‘1100 1010’
‘1100 1011’

atomics.w TLX.vc.3, TLX.dcp.3 4

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
pL(2:0) E AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering note
Without a response, a posted command cannot directly indicate to the AFU that an error has occurred.The
following errors might be detected for this command:

• At the host, the received data suffered an uncorrectable error, or might have been marked bad in the control
flit associated with the data transfer, or might have been damaged in some other fashion while being trans-
ferred within the host. In this case, the host might mark the data as bad allowing the subsequent consumer of
the data to detect the error.

• The TA specified by the command is not naturally aligned, or is not recognized by the host, or does not have
the necessary write permission. This is a fatal error. See the description of a Posted command error on page
204.

• The operation failed due to an unspecified reason. See the description of a Posted command error on page
204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 118 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is identical to upgrade_state with the exception of the address specification. This command
use the dot-t format which specifies the use of a previously obtained translated address (TA). The address
specified by the TA shall be naturally aligned based on the length of the data block as specified by the
dLength field.

If write authority is not granted, the operation shall fail with a read_failed response and a Resp_code of
TA_adr_error.

See the command description of upgrade_state on page 101 for the operation of this command.

Upgrade State upgrade_state.t ‘1110 0000’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) cmd_flag(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:6) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Engineering note
When a {TA, address context} is specified where write permission is not granted, a read_failed response with a
Resp_code of TA_adr_error is returned. Since the {TA, address context} was not obtained with sufficient
authority, the AFU might retry the operation after obtaining a new TA using xlate_touch and indicate that write
permission is requested.

During address translation it might be determined that the address has a memory attribute of cache inhibited. In
this case the Host bus shall obtain the data and return the data to the AFU indicating a cache state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 119 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This command is identical to read_me with the exception of address specification. These commands use the
dot-t format which specifies the use of a previously obtained translated address (TA).

The starting address specified by the TA supports a critical OW request. The data is a naturally aligned data
block with a length specified by the dLength field (dL(1:0)). The dLength specifies the length of the AFU’s
cache line.

If write authority is not granted, the operation shall fail with a read_failed response and a Resp_code of
TA_adr_error.

See the command description of read_me on page 103 for the operation of this command.

This command is identical to read_mes with the exception of address specification. These commands use
the dot-t format which specifies the use of a previously obtained translated address (TA).

Read to store read_me.t ‘1110 1000’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Read to load read_mes.t ‘1110 1001’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 120 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The starting address specified by the TA supports a critical OW request. The data is a naturally aligned data
block with a length specified by the dLength field (dL(1:0)). The dLength specifies the length of the AFU’s
cache line.

See the command description of read_mes on page 104 for the operation of this command.

This command is identical to read_s with the exception of address specification. These commands use the
dot-t format which specifies the use of a previously obtained translated address (TA).

See the command description of read_s on page 105 for the operation of this command.

This command is used as a synchronization barrier applied at the head of either a TLX.vc.3 service queue or
at the VC (TLX.vc.3) queue. The command is not removed from the head of the queue until all prior
commands issued from the queue have completed. See Section 3.3 TL Virtual channel and service queues
on page 168 for a description of head of queue blocking and Section 3.4 TL Presync queues on page 171 for
a description of the prior command tracking function.

The acTag is not used for address translation or authorization. The acTag is used to determine the BDF and
PASID that are used when assigning the command to a TLX.vc.3 service queue21. The acTag shall be valid
and correctly formed, otherwise a fatal acTag error as described in Section 7.1 Error events on page 198 is
reported.

Read shared read_s.t ‘1110 1010’

cacheable read TLX.vc.3 4

stream_id(3:0) acTag(11:0) MAD(3:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:5) R MAD(7:4)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
dL(1:0) Reserved AFUTag(15:0) TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Sync barrier sync ‘1110 1111’

barrier TLX.vc.3 2

stream_id(3:0) acTag(11:0) cmd_flag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved AFUTag(15:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP command packets
Page 121 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-18 provides a specification of the cmd_flag field.

The response to this command is sync_done.

21.The sync command is assigned to a service queue when the cmd_flag is set to sync(at_stream). See the description of
the handling of the command when the cmd_flag is set to sync(all_stream) in Section 3.3.1 Host TLX command handling
on page 168.

Table 2-18. The cmd_flag specification for sync

cmd_flag Description

‘0000’ sync(at_stream)
The synchronization barrier occurs at the head of the TLX.vc.3 service queue.

‘1000’ sync(all_stream)
The synchronization barrier occurs at the head of the VC (TLX.vc.3) queue.
The acTag is not used for this command to determine the TLX.vc.3 service queue since the command
blocks at the head of the TLX.vc.3 queue and does not enter a TLX.vc.3 service queue. The command
shall specify a valid entry.

all other values Reserved

Developer Note
It is noted that the acTag field could have been specified as invalid if the cmd_flag is set to
sync(all_stream). It was not specified in this way to simplify the implementation. That is, it sim-
plified the implementation by not requiring a test of the cmd_flag to determine if the acTag
should be checked.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 122 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.4 TL CAPP response packets

TL responses are sent from the host to the AFU. An alphabetical list of the TL responses follows; each
response is hyperlinked to its specification. In this section, the TL response specifications are in opcode
order.

This response has no operands and performs no action. It is discarded at the TLX.

This response packet is used by the TL to return VC and DCP credits to the TLX. There is no VC associated
with this response, and credits are not required to service this response. Each TLX.* field contains the
number of credits being returned.

This response packet shall be placed only in slots 1 to 0 of any control flit using a template which specifies
those slots as a 2-slot or larger location.

TLX.vc.{0, 2, 3} and TLX.dcp.{0, 2, 3} credits are returned. TLX credits are for resources owned by the TL that
the TLX consumes. The TL controls the total number of credits for each of the VC and DCP it provisions the
TLX with.

cl_rd_resp cl_rd_resp.ow intrp_resp

nop read_failed

read_response read_response.ow read_response.xw return_tlx_credits

sync_done synonym_detected touch_resp touch_resp.t

upgrade_resp wake_host_resp write_response write_failed

No operation nop ‘0000 0000’

NA NA 1

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return TLX credits return_tlx_credits ‘0000 0001’

credit return NA 2

reserved TLX.vc.3 TLX.vc.2 reserved TLX.vc.0 Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TLX.dcp.3 TLX.dcp.2 reserved TLX.dcp.0 reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 123 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This is a response to an xlate_touch command with no address translation return requested (no_ta), a
xlate_touch with a request for a TA (ta_req) and the address translation fails. log2_page_size and write
permission (W) are valid only when the Resp_code = Completed, and when xlate_touch specifies address
translation (xlate), otherwise the fields are reserved. The Resp_code field is specified in Table 2-19.

touch response touch_resp ‘0000 0010’

address translation management TL.vc.0 2

W Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved log2_page_size

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Table 2-19. The Resp_code specification for touch_resp

Resp_code encode Description

‘0000’ Completed. Address translation completed successfully.

‘0001’ Retry using the heavy-weight touch specification (rty_hwt). The translation could not be completed using
the light-weight touch (lwt) specified by the xlate_touch command.

‘0010’ Retry request (rty_req). Indicates that the address translation could not be completed at this time. An
address translation attempt may be made a later time. This is a long back-off event.

‘0011’

Light-weight retry request (lw_rty_req). Use of this code point might be due to the lack of hardware
resources in the host to service the command, or a transient error condition that the hardware is able to
clear out on its own. The retry back off timer is specified in the devices configuration space and should be
set to a value that allows the hardware recovery mechanism to complete before the device attempts to retry
the operation. The operation may be retried by the device. This is a short back-off event.

‘0100’

Translation pending (xlate_pending). Indicates that the address translation could not be completed. The
ATC did not contain the translation, and software was invoked. An asynchronous xlate_done TL command
shall be sent when software actions have completed. It is strongly recommended that the device wait for
xlate_done to be received before retrying the operation. However, using a retry back off mechanism is per-
mitted to determine when to retry the command. Such an implementation shall examine xlate_done for the
results of the address translation and take action based on those results.

• xlate_done uses TL.vc.0. The implementation shall ensure that the touch_resp carrying the
response code of xlate_pendng is added to the VC prior to the xlate_done.

‘0101’ - ‘1011’ Reserved.

‘1100’ Reserved.

‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be recovered.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indicate the
reason for the Resp_code = Failed. The specification of the error collection facility should be doc-
umented in the host’s platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 124 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

touch_resp responds to the TLX commands found in Table 2-20. For each command only the Resp_codes
indicated with a Y may be used. Resp_code with N shall not be used.

In response to a cacheable read22 or upgrade_state command from the AFU, the Host is reporting that the
data associated with the command has been previously provided to the requester. This is a synonym case.
The requester can access the data using the host_tag provided. When the command is a cacheable read and
the AFU determines that the host_tag is no longer valid, the AFU may retry the operation23.The AFU locks
the host_tags specified by the host_tag field and the dLength(dL) field and host_tag arithmetic with the
synonym_detected response. Additional actions are taken by the AFU to complete the TLX command that
was originally issued. synonym_done shall be issued as part of the actions taken.

The dLength field indicates the amount of data referenced by this response. Multiple read response packets
may be received for a single cacheable read or upgrade_state command. When the dLength field in the
response does not match the full amount of data requested by the command, the dPart field is used to indi-
cate the offset within the naturally aligned data block specified by the address in the command. For multiple
responses to a single command, the AFUTag is unchanged. That is, only the dLength and dPart may vary
when multiple responses are returned for a single command. For multiple responses to a single command,
there is no order requirement placed by the architecture. That is, the TLX may see the values of dPart
returned in any order.

• When multiple responses are received for a cacheable read command, a combination of cl_rd_resp,
cl_rd_resp.ow, synonym_detected, and read_failed responses may be received.

• When multiple responses are received for a upgrade_state command, a combination of upgrade_resp,
synonym_detected, and read_failed responses may be received.

Taken together, all responses shall contain a combination of implied length, dLength and dPart to cover the
command's dLength specification.

Table 2-20. touch_resp Resp_code use by TLX command

TLX command Completed (0) rty_hwt (1) rty_req (2) lw_rty_req (3) xlate_pending (4) Failed (14)

xlate_touch Y Y Y Y Y Y

xlate_touch.n Y Y Y Y Y Y

Synonym detected synonym_detected ‘0000 0011’

Read data return TL.vc.0 2

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) R host_tag (23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

22.read_me, read_mes or read_s and the dot-t variants of these commands are cacheable read commands.
23.This case might occur when the AFU is casting out the line referenced by the host_tag, making the host_tag invalid, while

a read operation using a different address context and EA has responded with synonym_detected because the host has
not yet seen the castout or castout.push from the AFU.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 125 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The AFU is not required to fully support synonyms. The minimum support an AFU shall provide on receipt of
a synonym_detected response is waiting until all responses for the current operation have been received
and scheduling a castout or castout.push of the data block specified by the host tag followed by a
synonym_done. Once synonym_done has been issued, the AFU may re-issue the original request.

A synonym_done shall be issued for each synonym_detected received from the host24.

The cache_state indicates the state the cache line has been granted to the AFU. When the AFU finds the
host_tag state is valid, the AFU shall take the line to the state specified by the cache_state field. When a
cache state of I or EI is indicated by this field, the data shall be marked invalid for the {EA, address context}
specified in the original command. See Table 2-21 synonym_detected formation and actions on page 127 for
details.

Data is not returned with this response. The AFU uses the host_tag to locate the data previously sent to the
AFU. An AFU is unaware of a synonym until it receives a synonym_detected response. The following cases
might result:

• The AFU might find the host_tag invalid. This might occur when the AFU has casted out the host_tag due
to a force_evict TL command. This is not an error condition. To complete the operation, the AFU retries
the original command.

• The AFU might find that the host_tag is valid and the data held in the AFU data cache is invalid. This is
not an error condition. To complete the transaction, the AFU shall cast out the host_tag to an I state and
then retry the transaction.

Table 2-21 specifies the synonym_detected response to all TLX commands that might receive a
synonym_detected TL response. For completeness, the case where cl_rd_resp and upgrade_resp is also
shown. The abbreviation of “sd” is used in the table to indicate synonym_detected. The final state of the
host proxy cache is shown for the cases where write authority has been granted during address translation,
where read only authority has been granted, and in the case where address translation indicates that the
address specified by the command is not cacheable.

24.For example, consider when a device sends a read_me with a dLength of 256 bytes and the host cache line is 128 bytes.
If both 128-byte segments of the AFUC2 line hit the host proxy cache, there would be two synonym_detected responses.

Engineering note
Implementations that choose to provide the minimum support for synonyms should consider the case where a
line is held in a read-only state, for example S, and a write to the line is requested by the AFUC2.

The minimum synonym support would work, that is, the line would be evicted using a castout command due to
the synonym_detected response and the operation, for example a read_me, would be retried. An implementa-
tion could instead detect this situation and evict the line before issuing the read_me. It should be noted that the
castout and the read_me are not in the same VC, therefore, ordering at the host is not assured and the AFUC2
may still see a synonym_detected response. The AFU would see it’s host_tag entry as invalid, so the informa-
tion from the synonym_detected is discarded and the read_me would have to be reissued.

This operation could be shortened if the implementation supported upgrading an S state to an E state. The
read_me getting a synonym_detected with an E state completes the operation since the S state can be
upgraded to E and the data is already held in the AFUC2 data cache.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 126 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

As noted in the header, the contents of the columns shows the value of the cache_state in the response and
the final L2 cache state25. Actions taken when Write authority is required by the command and the line is
found to be cache inhibited are specified in the comments and footnotes found in Table 2-21. The order in
which these actions are taken by the host determines which indication is provided to the device. Regardless
of the order taken, the state of the L2 shall not be modified.

25.The final cache state of the host proxy cache is bounded by parenthesis. An X indicates the operation has failed and the
response does not contain a cache state. See the footnote specified in the table for details.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 127 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 1 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

read_me
read_me.t

I cl_rd_resp M/E
(M/E)3

X (I)1 I (I)

S sd E (E)3 X (S)1 I (S)2 (E (E)): When data is dirty with respect to the POC, the host
shall clean the data passed to the AFUC2.

E sd E (E)3 X (E)1 I (E)2 The clean/dirty state of the cache line is known only to the
AFUC2 which may have modified the line without informing
the host.

EI sd E (EI)3 X (EI)1 I (EI)2 The AFU is being directed to go to a state with valid data,
with a response where no data is supplied.
The AFU may have created data for the line. That is, the
AFUC2 may be holding the line in an E state with the data
marked as dirty, or may be in an M state. If the line is held in
an EI state by the AFUC2 EA L1 cache, it shall evict the line
from the AFUC2. That is, the host tag must be freed in order
for the host to be able to send data in response to the com-
mand. The AFUC2 may then retry the operation until it
obtains the data requested.

M sd E/M (M)3 X (M)1 I (M)2 The AFUC2 holds the data in a dirty state and shall issue a
castout.push when invalidating the host tag’s use. When
write authority is granted, the host may respond with a
cache_state field value of either E or M.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 128 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

read_mes
read_mes.t

I cl_rd_resp M/E/S
(M/E/S)3

S (S)3 I (I) M/E/S (M/E/S): The cache state held by the host proxy
cache at the conclusion of the host’s coherence protocol
actions to obtain the line is the state reported to the AFUC2.

S sd E/S
(E/S)3

S (S)3 I (S)2 E/S (E/S): The cache state held by the host proxy cache at
the conclusion of the host’s coherence protocol actions to
obtain the line is the state reported to the AFUC2.
When a response of E (E) is returned, and when the data
held by the AFUC2 is dirty with respect to the POC, the host
shall clean the data prior to the response.

E sd E (E)3 S (E)3 I (E)2 The clean/dirty state of the cache line is known only to the
AFUC2 which may have modified the line without informing
the host.

EI sd E (EI)3 S (EI)3 I (EI)2 The AFU is being directed to go to a state with valid data,
with a response where no data is supplied.
The AFU may have created data for the line. That is, the
AFUC2 may be holding the line in an E state with the data
marked as dirty, or may be in an M state. If the line is held in
an EI state by the AFUC2 EA L1 cache, it shall evict the line
from the AFUC2. That is, the host tag must be freed in order
for the host to be able to send data in response to the com-
mand. The AFUC2 may then retry the operation until it
obtains the data requested.

M sd E/M (M)3 S (M)3 I (M)2 The AFUC2 holds the data in a dirty state and shall issue a
castout.push when invalidating the host tag’s use. When
write authority is granted, the host may respond with a
cache_state field value of either E or M.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 2 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 129 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

read_s
read_s.t

I cl_rd_resp S (S)3 S (S)3 I (I)

S sd S (S)3 S (S)3 I (S)2

E sd S (E)3 S (E)3 I (E)2

EI sd S (EI)3 S (EI)3 I (EI)2 The AFU is being directed to go to a state with valid data,
with a response where no data is supplied.
The AFU may have created data for the line. That is, the
AFUC2 may be holding the line in an E state with the data
marked as dirty, or may be in an M state. If the line is held in
an EI state by the AFUC2 L1 cache, it shall evict the line
from the AFUC2. That is, the host tag must be freed in order
for the host to be able to send data in response to the com-
mand. The AFUC2 may then retry the operation until it
obtains the data requested.

M sd S (M)3 S (M)3 I (M)2 The AFUC2 holds the data in a dirty state and shall issue a
castout.push when invalidating the host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 3 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 130 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

upgrade_state
upgrade_state.t

(I → M)
(continue on next

page)

I upgrade_resp M (M)3 X (I)4 I (I) M (M): Data cache set to all 0. The host shall not update the
POC to an all 0 state since the host does not know if the
operation has completed in the AFU. On completion of the
operation, the AFUC2 holds the data in a dirty state and shall
issue a castout.push when invalidating the host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

S sd M (E)3 X (S)4 I (S)5 M (E): Data cache set to all 0. The host shall not update the
POC to an all 0 state since the host does not know if the
operation has completed in the AFU. On completion of the
operation, the AFUC2 holds the data in a dirty state and shall
issue a castout.push when invalidating the host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

E sd M (E)3 X (E)4 I (E)5 M (E): Data cache set to all 0. The host shall not update the
POC to an all 0 state since the host does not know if the
operation has completed in the AFU. On completion of the
operation, the AFUC2 holds the data in a dirty state and shall
issue a castout.push when invalidating the host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

EI sd M (E)3 X (EI)4 I (EI)5 M (E): Data cache set to all 0. Even though the data cache
state started as invalid, the final data state is known based
on the specification of the operation. The host shall not
update the POC to an all 0 state since the host does not
know if the operation has completed in the AFU. On comple-
tion of the operation, the AFUC2 holds the data in a dirty
state and shall issue a castout.push when invalidating the
host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 4 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 131 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

(continued from
previous page)
upgrade_state

upgrade_state.t
(I → M)

M sd M (M)3 X (M)4 I (M)5 M (M): Data cache set to all 0. The host shall not update the
POC to an all 0 state since the host does not know if the
operation has completed in the AFU. On completion of the
operation, the AFUC2 holds the data in a dirty state and shall
issue a castout.push when invalidating the host tag’s use.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

upgrade_state
upgrade_state.t

(I → EI)
(continue on next

page)

I upgrade_resp EI (EI)3 X (I)4 I (I) EI (EI):The host shall ensure that the data held in the POC
has been updated to the current coherent data state.

S sd EI (EI)3 X (S)4 I (S)5 EI (EI): Data cache is unchanged. Using an unspecified
implementation method, pointers to the valid data shall be
retained by all existing synonym entries in the AFUC2 L1
cache.
Using an unspecified implementation method, synonym
entries in the AFUC2 EA L1 cache holding the line in an S
state can continue to access the data. Synonym entries in
the AFUC2 L1 cache holding the line in an EI state shall view
the data cache for the cache line to be invalid.
Alternatively an implementation shall invalidate all other
synonym entries in the AFUC2 EA L1 cache that are held in
an S state and mark the data cache as invalid.
The host shall ensure that the data held in the POC has
been updated to the current coherent data state.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 5 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 132 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

(continued from
previous page)
upgrade_state

upgrade_state.t
(I → EI)

(continue on next
page)

E sd EI (E)3 X (E)4 I (E)5 EI (E): Data cache is unchanged and might be marked dirty
by the AFUC2. Using an unspecified implementation
method, pointers to the valid data shall be retained by all
existing synonym entries in the AFUC2 L1 cache.
Using an unspecified implementation method, synonym
entries in the AFUC2 EA L1 cache holding the line in any
valid-data-cache-state can continue to access the data.
Synonym entries in the AFUC2 EA L1 cache holding the line
in an EI state shall view the data cache for the cache line to
be invalid.
Alternatively an implementation shall invalidate all other
synonym entries in the AFUC2 EA L1 cache that are held in
any valid-data-cache-state and mark the data cache as
invalid. When the cache block is marked as dirty, the AFUC2
shall clean the dirty state of the line, by issuing a
castout.push with a final state indicating EI. That is, the
host tag is not invalidated by this action.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 6 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 133 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

(continued from
previous page)
upgrade_state

upgrade_state.t
(I → EI)

EI sd EI (EI)3 X (EI)4 I (EI)5 EI (EI): Data cache is unchanged and might be marked dirty
by the AFUC2. Using an unspecified implementation
method, pointers to the valid data shall be retained by all
existing synonym entries in the AFUC2 L1 cache.
Using an unspecified implementation method, synonym
entries in the AFUC2 L1 cache holding the line in any valid-
data-cache-state can continue to access the data. Synonym
entries in the AFUC2 L1 cache holding the line in an EI state
shall view the data cache for the cache line to be invalid.
Alternatively an implementation shall invalidate all other
synonym entries in the AFUC2 L1 cache that are held in any
valid-data-cache-state and mark the data cache as invalid.
When the cache block is marked as dirty, the AFUC2 shall
clean the dirty state of the line, by issuing a castout.push
with a final state indicating EI. That is, the host tag is not
invalidated by this action.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

M sd EI (M)3 X (M)4 I (M)5 EI (M): Data cache is unchanged and is dirty. Using an
unspecified implementation method, pointers to the valid
data shall be retained by all existing synonym entries in the
AFUC2 L1 cache.
Using an unspecified implementation method, synonym
entries in the AFUC2 L1 cache holding the line in any valid-
data-cache-state can continue to access the data. Synonym
entries in the AFUC2 L1 cache holding the line in an EI state
shall view the data cache for the cache line to be invalid.
Alternatively an implementation shall invalidate all other
synonym entries in the AFUC2 L1 cache that are held in any
valid-data-cache-state and mark the data cache as invalid.
Since the cache block is marked as dirty, the AFUC2 shall
clean the dirty state of the line, by issuing a castout.push
with a final state indicating EI. That is, the host tag is not
invalidated by this action.
The AFUC2 shall track the clean/dirty state of the cache
block associated with all valid host tags.

Table 2-21. synonym_detected formation and actions Cache state field values and final host proxy states due to
starting states and address translation (Page 7 of 7)

Command Starting
L2 state Response

Address translation indi-
cated access writes: Entry

shows: Response
cache_state (final L2 cache

state)
Comments

Write
Authority

RO
Authority

cache
inhibited

1. For read_me, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting to
obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For read_me.t, a read_failed is returned with a Resp_code of TA_adr_error.

2. Synonyms might not be detected by the host implementation when the {EA, address_context} address translation results in a stor-
age attribute of cache inhibited. A host implementation might not examine the L2 and shall leave the L2 state unchanged. When
the host does not examine the L2, the resulting response shall be cl_rd_resp with a cache state of I once the host has completed
its non-cacheable read operation.

3. For cache inhibited cases, see the cache inhibited column.
4. For upgrade_state, a read_failed response is returned with a Resp_code of xlate_pending or rty_req while the host is attempting

to obtain Write authority. If only RO authority is granted, the host informs the device using xlate_done and a Resp_code of
adr_error. For upgrade_state.t, a read_failed is returned with a Resp_code of TA_adr_error.

5. Finding the line in the L1 when the host’s address translation results in cache inhibited appears to be an error with either the L1,
the host's translation mechanism, or a combination of the two. When the host’s address translation results in cache inhibited, syn-
onyms might not be detected by the host implementation. Regardless of the host implementation’s examination of the L2, the host
implementation shall leave the L2 state unchanged. When the host does not examine the L2, the resulting response shall be
upgrade_resp with a cache_state of I.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 134 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a non-cacheable read command initiated by the AFU, the host is returning data. The data may
be returned in a data flit, or may be returned in multiple 32-byte data fields carried in control flits. The AFU
can determine which command to associate the data with by using the AFUTag provided with the command
and returned with the response.

The dLength (dL) field indicates the amount of data contained in this response. Multiple read response
packets may be received for a single read command. When the dLength field in the response does not match
the full amount of data requested by the command, the dPart (dP) field is used to indicate the offset within the
naturally aligned data block specified by the address in the read command. For multiple responses to a single
command, the AFUTag is unchanged. That is, the dLength may vary and the dPart shall vary when multiple
responses are returned for a single command. For multiple responses to a single command, there is no order
requirement placed by the architecture. That is, the TLX may see the values of dPart returned in any order.
When multiple responses are received for a read command, a combination of read_response,
read_response.ow, and read_failed responses may be received. Taken together, all responses shall
contain a combination of dPart and implied length or dLength to cover the command's dLength specification.

The dLength and dPart fields shall be specified as 64 bytes and offset at 0 for pr_rd_wnitc and any of the
commands classified as mem_atomics that return data. A single response covers the entire operation. Data
is aligned within the data flit based on the command’s address bits 5:0.

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TL.

In response to a read command initiated by the AFU, the host is indicating that the read failed. The AFU
determines which command to associate the failure with by using the AFUTag provided with the command
and returned with the response.

The dLength and dPart fields specify how much of the read operation is being reported. Multiple read
response packets may be received for a single read command. When the dLength field in the response does
not match the full amount of data requested by the command, the dPart field is used to indicate the offset
within the naturally aligned data block specified by the address in the read command. For multiple responses

Read response read_response ‘0000 0100’

Read data return TL.vc.0, TL.dcp.0 1

dL(1:0) dP(1:0) AFUTag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read failed response read_failed ‘0000 0101’

Read data return TL.vc.0 2

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 135 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

to a single command, the AFUTag is unchanged. That is, the dLength may vary and the dPart shall vary
when multiple responses are returned for a single command. For multiple responses to a single command,
there is no order requirement placed by the architecture. That is, the TLX may see the values of dPart
returned in any order.

• When multiple responses are received for rd_wnitc, a combination of read_response,
read_response.ow, synonym_detected, and read_failed responses may be received. Taken together,
all responses shall contain a combination of dPart and implied length or dLength to cover the command's
dLength specification.

• When multiple responses are received for read_me, read_mes, or read_s and their dot-t variants, a
combination of cl_rd_resp, cl_rd_resp.ow, synonym_detected, and read_failed responses may be
received. Taken together, all responses shall contain a combination of dPart and implied length or
dLength to cover the command's dLength specification.

• When multiple responses are received for upgrade_state or upgrade_state.t, a combination of
upgrade_resp, synonym_detected, and read_failed responses may be received. Taken together, all
responses shall contain a combination of dPart and implied length or dLength to cover the command's
dLength specification.

The dLength and dPart fields shall be specified as 64 bytes and offset at 0 for pr_rd_wnitc, amo_rd,
amo_rw, and all dot variants of these commands. A single response shall be returned for these commands.

The Resp_code field indicates the type of failure being reported. The Resp_code field is specified in
Table 2-22.

Table 2-22. The Resp_code specification for read_failed (Page 1 of 2)

Resp_code encode Description

‘0000’ - ‘0001’ Reserved.

‘0010’
Retry request (rty_req). Use of this code point might be due to an event in the host that may require soft-
ware intervention, or may indicate that address translation could not be completed for the command at this
time, or may be due to a hardware recovery mechanism that exceeds the programmability of the devices
long back off event timer. The operation may be retried by the device. This is a long back-off event.

‘0011’

Light-weight retry request (lw_rty_req). Use of this code point might be due to the lack of hardware
resources in the host to service the command, or a transient error condition that the hardware is able to
clear out on its own. The retry back off timer is specified in the devices configuration space and should be
set to a value that allows the hardware recovery mechanism to complete before the device attempts to
retry the operation. The operation may be retried by the device. This is a short back-off event.

‘0100’

Translation pending (xlate_pending). Indicates that the address translation could not be completed. The
ATC did not contain the translation, and software was invoked. An asynchronous xlate_done TL com-
mand shall be sent when software actions have completed. It is strongly recommended that an AFU wait
for the xlate_done before retrying the command. However, using a retry back off timer is permitted to
determine when to retry the command. Such an implementation shall examine xlate_done for the results
of the address translation and take action based on those results.

• xlate_done uses TL.vc.0. The implementation shall ensure that the read_failed carrying the
response code of xlate_pendng is added to the VC prior to the xlate_done.

‘0101’ Reserved

‘0110’ Reserved.

‘0111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 136 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

read_failed responds to the TLX commands found in Table 2-23. For each command only the Resp_codes
indicated with a Y may be used. Resp_code indicated with an N shall not be used.

‘1000’

Data error (dError). The host’s protocol stack operation has completed.The data obtained by the host has
been corrupted and is not correctable. This may be a recoverable error by retrying the operation. See the
device documentation and Section 2.1.1 for additional information.

‘1001’ Unsupported operand length. The operation specifies an operand length that is not supported by the
device. A retry of the operation shall not be successful.

‘1010’ Reserved.

‘1011’
Bad address specification. The address specified, an EA,TA or PA, by the command is not naturally
aligned on a boundary specified by the operand length. Additional restrictions for address specification are
specified in the operation descriptions of the TLX command amo_rd on page 88. A retry of the operation
shall not be successful.

‘1100’
For dot-t commands only. The {TA, address context} is not recognized. A retry of the operation shall not be
successful.

‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be recovered. This code point indicates that the state of the
host due to the error occurrence does not allow a successful retry of the operation.

‘1111’

TA_adr_error. For dot-t commands only. The {TA, address context} specified by the command does not
have write permission as required by the command (upgrade_state.t and amo_rw.t). A retry of the oper-
ation shall not be successful.

Table 2-23. read_failed Resp_code use by TLX command (Page 1 of 2)

TL
X

co
m

m
an

d

rty
_r

eq
 (2

)

lw
_r

ty
_r

eq
 (3

)

xl
at

e_
pe

nd
in

g
(4

)

dE
rro

r (
8)

U
ns

up
po

rte
d

op
er

an
d

le
ng

th
 (9

)

Ba
d

ad
dr

es
s

sp
ec

ifi
ca

tio
n

(1
1)

TA
 n

ot
 re

co
gn

iz
ed

(1

2)

Fa
ile

d
(1

4)

TA
_a

dr
_e

rro
r (

15
)

rd_wnitc Y Y Y Y N N N Y N

pr_rd_wnitc Y Y Y Y N Y N Y N

rd_wnitc.n Y Y Y Y N N N Y N

pr_rd_wnitc Y Y Y Y N Y N Y N

Table 2-22. The Resp_code specification for read_failed (Page 2 of 2)

Resp_code encode Description

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering note
A dError condition may also be reported using cl_rd_resp, cl_rd_resp.ow, read_response,
read_response.ow, or read_response.xw, as appropriate for the TLX command, and shall indi-
cate that the data is bad using the bad data indication in the control flit as specified for the data
carrier used.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the host’s platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 137 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

amo_rd Y Y Y Y N Y N Y N

amo_rd.n Y Y Y Y N Y N Y N

amo_rw Y Y Y Y N Y N Y N

amo_rw.n Y Y Y Y N Y N Y N

mem_pa_flush N Y N N N Y N Y N

upgrade_state Y Y Y N N Y N Y N

read_me Y Y Y Y N N N Y N

read_mes Y Y Y Y N N N Y N

read_s Y Y Y Y N N N Y N

rd_wnitc.t N Y N Y N N Y Y N

rd_wnitc.t.s N Y N Y N N Y Y N

pr_rd_wnitc.t N Y N Y N Y Y Y N

pr_rd_wnitc.t.s N Y N Y N Y Y Y N

amo_rd.t N Y N Y Y Y Y Y N

amo_rd.t.s N Y N Y Y Y Y Y N

amo_rw.t N Y N Y Y Y Y Y Y

amo_rw.t.s N Y N Y Y Y Y Y Y

upgrade_state.t N Y N N N Y Y Y Y

read_me.t N Y N Y N Y Y Y Y

read_mes.t N Y N Y N Y Y Y N

read_s.t N Y N Y N Y Y Y N

Table 2-23. read_failed Resp_code use by TLX command (Page 2 of 2)
TL

X
co

m
m

an
d

rty
_r

eq
 (2

)

lw
_r

ty
_r

eq
 (3

)

xl
at

e_
pe

nd
in

g
(4

)

dE
rro

r (
8)

U
ns

up
po

rte
d

op
er

an
d

le
ng

th
 (9

)

Ba
d

ad
dr

es
s

sp
ec

ifi
ca

tio
n

(1
1)

TA
 n

ot
 re

co
gn

iz
ed

(1

2)

Fa
ile

d
(1

4)

TA
_a

dr
_e

rro
r (

15
)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 138 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a cacheable read from the AFU, the Host is returning data and the state of the line
(cache_state). The data may be returned in a data flit, or may be returned in multiple 32-byte data carriers.
The AFU can determine which command to associate the data with by using the AFUTag provided with the
command and is returned with the response.

The dLength field indicates the amount of data contained in this response. Multiple read response packets
may be received for a single read command. When the dLength field in the response does not match the full
amount of data requested by the command, the dPart field is used to indicate the offset within the naturally
aligned data block specified by the address in the read command. For multiple responses to a single
command, the AFUTag, and cache_state is unchanged. That is, the dLength, dPart, EF and host_tag may
vary when multiple responses are returned for a single command. For multiple responses to a single
command, there is no order requirement placed by the architecture. That is, the TLX may see the values of
dPart returned in any order. When multiple responses are received for a cacheable read command, a combi-
nation of cl_rd_resp, cl_rd_resp.ow, synonym_detected, and read_failed responses may be received.
Taken together, all responses shall contain a combination of implied length, dLength and dPart to cover the
command's dLength specification.

The cache_state indicates the state the cache line has been granted to the AFU. When a cache state of I is
indicated by this field, the host_tag field is reserved and the data shall not be retained in the AFU’s cache.

The evict and fill directive (EF) indicates if the host_tag is being re-assigned. When asserted, the entry in the
L1 cache indicated by the current state of the host_tag database host_tag entry is to be evicted from the L1
cache before installing the new data and cache state specified by this response. See Section A.10 Host tag
locking transactions on page 235 for transaction examples.

This response is specified with immediate data; Credits for both the VC and DCP shall be obtained before this
response is serviced by the TL. The association between the immediate data and the host_tag field is found
in Section 5.1.3.1 beginning on page 186.

cachable read response cl_rd_resp ‘0000 0110’

Read data return TL.vc.0, TL.dcp.0 2

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) EF host_tag (23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 139 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to an upgrade_state or upgrade_state.t command, the Host provides the current state of the
line (cache_state) after an upgrade request. No data is returned.

The cache state specification is limited to the I, M, or EI encodes as specified in cache_state on page 49.

A cache state of EI or M indicates that address translation determined that write permissions are granted has
a page attribute of not-cache-inhibited.

A cache state of I indicates that address translation has determined that write permissions are granted and
has a page attribute of cache-inhibited.

The dLength field indicates the number of 64 byte segments of the requested upgrade specified by this
response. Multiple upgrade response packets may be received for a single upgrade request command. dPart
indicates the offset from the starting address specified in the upgrade request command.

The evict and fill directive (EF) indicates if the host_tag is being re-assigned. When asserted, the entry in the
L1 cache indicated by the current state of the host_tag database host_tag entry is to be evicted from the L1
cache before installing the new data and cache state specified by this response. See Section A.10 Host tag
locking transactions on page 235 for transaction examples.

The dLength and dPart fields specify how much of the upgrade_state operation is being reported. Multiple
upgrade_resp response packets may be received for a single upgrade_state command. When the dLength
field in the response does not match the full amount of data requested by the upgrade_state command, the
dPart field is used to indicate the offset within the naturally aligned data block specified by the address in the
upgrade_state command. For multiple responses to a single command, the AFUTag is unchanged. That is,
the dLength may vary and the dPart shall vary when multiple responses are returned for a single command.
For multiple responses to a single command, there is no order requirement placed by the architecture. That
is, the TLX may see the values of dPart returned in any order.

Upgrade response upgrade_resp ‘0000 0111’

Read data return TL.vc.0 2

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) EF host_tag (23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

When upgrade_resp returns with a cache state of I, the AFU shall treat this response as an error condition and
shall take any corrective actions necessary, including killing the running application. The method used by the
AFU to report or correct this condition is beyond the scope of this architecture.

Unlike a read_me read request, for example, there is no data returned to the AFU that could be examined and
operated on. The cache state of I does not allow an update to the AFUC2 cache.

Engineering note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 140 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

When multiple responses are received for upgrade_state or upgrade_state.t, a combination of
upgrade_resp, synonym_detected, and read_failed responses may be received. Taken together, all
responses shall contain a combination of dPart and implied length or dLength to cover the command's
dLength specification.

This packet is used in response to a non-posted write command (that is, dma_w, dma_w.be, dma_pr_w,
amo_w) operation that has succeeded. The AFU determines which command to associate with this response
by using the AFUTag provided with the command and returned with the response. Data specified by this
response is global visible. That is, a subsequent read shall see the new data.

For dma_w, the dLength (dL) and dPart (dP) fields specify how much of the write operation is being reported.
A single response may cover the entire operation. For a single response, the dLength must match the
dLength specified by the command, and dPart must indicate a starting offset of 0. Multiple write response
packets may be received for a single write command. When the dLength field in the response does not match
the full amount of data requested by the command, the dPart field is used to indicate the offset from the
starting address specified in the write command. For multiple responses to a single command, the AFUTag is
unchanged. That is, the dLength may vary and the dPart shall vary when multiple responses are returned for
a single command. For multiple responses to a single command, there is no order requirement placed by the
architecture. That is, the TLX may see the values of dPart returned in any order. When multiple responses
are received for a write command, a combination of write_response and write_failed responses may be
received. Taken together, all responses shall contain a combination of dLength and dPart to cover the
command's dLength specification.

For dma_pr_w and amo_w commands, only one response is expected; dLength and dPart shall be specified
as 64 bytes and offset at 0.

Write response write_response ‘0000 1000’

write response TL.vc.0 1

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Engineering note
A write_response is used in response to a dma_w regardless of how the data was transported to the TLX. The
response is on a multiple of 64-byte blocks even when the data might have been moved using 32-byte data
fields in control flits. The AFU shall gather the completion of the 32-byte transfers and report the results as if the
transfers occurred in 64-byte address-aligned data flits.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 141 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a write command initiated by the AFU, the host is indicating that the write failed. The AFU
determines which command to associate the failure with by using the AFUTag provided with the command
and returned with the response.

The dLength and dPart fields specify how much of the write operation is being reported. A single response
may cover the entire operation. For a single response, the dLength must match the dLength specified by the
command, and dPart must indicate a starting offset of 0. Multiple write response packets may be received for
a single write command. When the dLength field in the response does not match the full amount of data
requested by the command, the dPart field is used to indicate the offset from the starting address specified in
the write command. For multiple responses to a single command, the AFUTag is unchanged. That is, the
dLength may vary and the dPart shall vary when multiple responses are returned for a single command. For
multiple responses to a single command, there is no order requirement placed by the architecture. That is,
the TLX may see the values of dPart returned in any order. When multiple responses are received for a write
command, a combination of write_response and write_failed responses may be received. Taken together,
all responses shall contain a combination of dLength and dPart to cover the command's dLength specifica-
tion.

This response shall be returned when the operation fails and the write command is non-posted.

For dma_w.be, dma_pr_w, amo_w, and all dot variants of these commands, only one response shall be
returned; dLength and dPart shall be specified as 64 bytes and offset at 0.

The Resp_code field indicates the type of failure being reported. The Resp_code field is specified in
Table 2-24.

Write failed response write_failed ‘0000 1001’

write response TL.vc.0 2

dL(1:0) dP(1:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 142 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-24. The Resp_code specification of write_failed (Page 1 of 2)

Resp_code encode Description

‘0000’ - ‘0001’ Reserved.

‘0010’

Retry request (rty_req). Use of this code point might be due to an event in the host that may require soft-
ware intervention, or may indicate that address translation could not be completed at this time, or may be
due to a hardware recovery mechanism that exceeds the programmability of the device’s long back off
timer specified in the device’s configuration space. The operation may be retried by the device. This is a
long back-off event.

‘0011’

Light-weight retry request (lw_rty_req). Due to hardware congestion or other non-software event, the host
is unable to process the command at this time. This is a short back-off event. Use of this code point might
be due to the lack of hardware resources in the host to service the command, or a transient error condition
that the hardware is able to clear out on its own. The retry back off time is specified in the device’s config-
uration space and should be set to a value that allows the hardware recovery mechanism to complete
before the device attempts to retry the operation. The operation may be retried by the device.

‘0100’

Translation pending (xlate_pending). Indicates that the address translation could not be completed. The
ATC did not contain the translation, and software was invoked. An asynchronous xlate_done TL com-
mand shall be sent when software actions have completed. It is strongly recommended that an AFU wait
for the xlate_done before retrying the command. However, using a retry back off timer is permitted to
determine when to retry the command. Such an implementation shall examine xlate_done for the results
of the address translation and take action based on those results.

• xlate_done uses TL.vc.0. The implementation shall ensure that the write_failed carrying the
response code of xlate_pendng is added to the VC prior to the xlate_done.

‘0101’ - ‘0110’ Reserved.

‘0111’ Reserved.

‘1000’

Data error (dError). The host’s protocol stack operation completed. The received data was UE data, or
might have been marked bad in the control flit associated with the data transfer, or might have been dam-
aged in the host. Changes, if any, to the memory location specified by the response are globally visible.
The memory location shall contain SUE data.

‘1001’ Unsupported operand length. The operation specifies an operand length that is not supported by the
device. A retry of the operation shall not be successful.

‘1010’ Reserved.

‘1011’ Bad address specification. The address specified is not naturally aligned on a boundary specified by the
operand length. A retry of the operation shall not be successful.

‘1100’

Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering note
If an implementation is unable to modify the memory location specified by the command to contain
SUE data, the implementation shall not report a dError. The implementation shall report a Failed.

Engineering note
A dError condition may also be reported by the consumer of the data. That is, the reporting of the
dError condition may be delayed until the data is consumed by a read operation. This requires
that the actions taken when the error condition is detected either shall cause the memory location
to contain SUE data or shall use an alternate method to report the data is invalid prior to or when
it is consumed. When either of these methods are used, the host may response with
write_response instead of a write_failed.

Developer Note
{TA, address_context} error is not reported for this response since all dot-t write commands are
posted. Instead this condition is treated as a fatal error. See Posted command error on page 204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 143 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

write_failed responds to the TLX commands found in Table 2-25. For each command only the Resp_codes
indicated with a Y may be used. Resp_code indicated with an N shall not be used.

‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be recovered. This code point indicates that the state of the
host due to the error occurrence does not allow a successful retry of the operation. This includes the fol-
lowing:

• A dError event was detected and the implementation is unable to modify the memory location speci-
fied by the command to contain SUE data. Changes, if any to the memory location specified by the
response are globally visible. The memory location may be unmodified, or may contain undefined
data.

• Any other failure detected by the host that is not included in any of the specified response codes. The
failure may cause the modification of the memory location specified by the command. Changes, if any
to the memory location specified by the response are globally visible. The memory location may be
unmodified, may contain undefined data, or may contain SUE data.

‘1111’

Reserved.

Table 2-25. write_failed Resp_code use by TLX command

TLX command rty_req (2) lw_rty_req (3) xlate_pending
(4) dError (8)

Unsupported
operand length

(9)

Bad address
specification

(11)
Failed (14)

dma_w Y Y Y Y N Y Y

dma_w.n Y Y Y Y N Y Y

dma_w.be Y Y Y Y N N Y

dma_w.be.n Y Y Y Y N N Y

dma_pr_w Y Y Y Y N Y Y

dma_pr_w.n Y Y Y Y N Y Y

amo_w Y Y Y Y Y Y Y

amo_w.n Y Y Y Y Y Y Y

Table 2-24. The Resp_code specification of write_failed (Page 2 of 2)

Resp_code encode Description

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the host’s platform architecture.

Developer Note
{TA, address_context} specified by this command does not have the necessary write permission.
This error is not reported using this code point since all dot-t write commands are posted. Instead
this condition is treated as a fatal error See Posted command error on page 204.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 144 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a sync command. All commands prior to the sync command have completed in the TLX.vc.3
service queue. This response is sent once the sync command has been removed from the head of the
service queue and is placed after all the responses of prior commands of the service queue.

See TL Virtual channel and service queues on page 168 and TL Presync queues on page 171.

This packet is used in response to intrp_req, intrp_req.s,intrp_req.d, and intrp_req.d.s commands.

The response code indicates that the interrupt was successfully initiated or provides error status. The
Resp_code field is specified in Table 2-26.

Sync barrier done sync_done ‘0000 1011’

barrier TL.vc.0 1

Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt response intrp_resp ‘0000 1100’

message response TL.vc.0 2

Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

Table 2-26. The Resp_code specification for intrp_resp

Resp_code encode Description (Page 1 of 2)

‘0000’ Interrupt request accepted.

‘0001’ Reserved.

‘0010’

Retry request (rty_req). Use of this code point might be due to an event in the host that may require soft-
ware intervention, or may indicate that address translation could not be completed at this time, or may be
due to a hardware recovery mechanism that exceeds the programmability of the device’s long back off timer
specified in the device’s configuration space. The operation may be retried by the device. This is a long
back-off event.

‘0011’

Light-weight retry request (lw_rty_req). Use of this code point might be due to the lack of hardware
resources in the host to service the command, or a transient error condition that the hardware is able to
clear out on its own. The retry back off timer is specified in the devices configuration space and should be
set to a value that allows the hardware recovery mechanism to complete before the device attempts to retry
the operation. The operation may be retried by the device. This is a short back-off event.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 145 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

intrp_resp responds to the TLX commands found in Table 2-27. For each command only the Resp_codes
indicated with a Y may be used. Resp_code indicated with an N shall not be used.

‘0100’

Interrupt resources pending (intrp_pending). Indicates that the operation could not be completed at this time
requiring additional software intervention. Software intervention has been successfully invoked. An asyn-
chronous intrp_rdy TL command shall be sent when software actions have completed and the operation
can be retried. It is strongly recommended that an AFU wait for the intrp_rdy before retrying the command.
However, using a retry back off timer is permitted to determine when to retry the command. Such an imple-
mentation shall examine intrp_rdy for the results and take action based on those results.

• intrp_rdy uses TL.vc.0. The implementation shall ensure that the intrp_resp carrying the response
code of intrp_pending is added to the VC prior to the intrp_rdy.

‘0101’ - ‘0110’ Reserved.

‘0111’ Reserved.

‘1000’
Data error (dError). Used only in response to intrp_req.d. The received data was corrupted and not correct-
able, or might have been marked bad in the control flit associated with the data transfer, or might have been
damaged in the host. The operation is aborted.

‘1001’ Unsupported operand length. Used only in response to intrp_req.d. The operation specifies an operand
length that is not supported by the device. A retry of the operation shall not be successful.

‘1010’ Reserved.

‘1011’ Bad object handle specification. The object handle is specified by the platform architecture. A retry of the
operation shall not be successful.

‘1100’ Reserved.

‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be recovered.This code point indicates that the state of the host
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Table 2-27. intrp_resp Resp_code use by TLX command

TLX command rty_req (2) lw_rty_req (3) xlate_pending
(4) dError (8)

Unsupported
operand length

(9)

Bad address
specification

(11)
Failed (14)

intrp_req Y Y Y N N Y Y

intrp_req.d Y Y Y Y Y Y Y

Table 2-26. The Resp_code specification for intrp_resp

Resp_code encode Description (Page 2 of 2)

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the host’s platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 146 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a non-cacheable read command initiated by the AFU, the host is returning data using a
32-byte data field carried in control flits. The AFU can determine which command to associate the data with
by using the AFUTag provided with the command and returned with the response.

The response implies a data length of 32 bytes. Multiple read response packets may be received for a single
read command. The dPart (dP) indicates the offset within the naturally aligned data block specified by the
address in the read command. For multiple responses to a single command, the AFUTag is unchanged. That
is, the dPart shall vary when multiple responses are returned for a single command. For multiple responses to
a single command, there is no order requirement placed by the architecture. That is, the TLX may see the
values of dPart returned in any order. When multiple responses are received for a read command, a combi-
nation of read_response, read_response.ow, and read_failed responses may be received. Taken
together, all responses shall contain a combination of dPart and implied lengths or dLength to cover the
command's dLength specification.

The dPart field shall be specified as offset at 0 for pr_rd_wnitc and any of the commands classified as
mem_atomics that return data. A single response covers the entire operation. Data is aligned within the 32-
byte data carrier based on the command’s address bits 4:0.

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TL.

In response to a non-cacheable read command initiated by the AFU, the host is returning data using an
8-byte data field carried in a control flit. The AFU can determine which command to associate the data with by
using the AFUTag provided with the command and returned with the response.

The response implies a data length of 8 bytes. The full amount of the data requested by the command is
returned.

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TL.

Read response read_response.ow ‘0000 1101’

Read data return TL.vc.0, TL.dcp.0 1

R dP(2:0) AFUTag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read response read_response.xw ‘0000 1110’

Read data return TL.vc.0, TL.dcp.0 1

Reserved 0 AFUTag Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 147 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This is one of two possible responses to an xlate_touch command. This response provides a page size
aligned translated address (TA), log2_page_size, and write permission (W)

touch_resp is used when a translated address has not been requested, or when the Resp_code is not indi-
cating complete.

This packet is used in response to a wake_host_thread or wake_host_thread.s command. The operation in
the host was either successful in waking the thread specified by the command or it was not. The Resp_code
field and the reporting priority when multiple errors are detected is specified in Table 2-28.

touch response with TA touch_resp.t ‘0000 1111’

address translation management TL.vc.0 4

W Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TA(27:12) Reserved log2_page_size

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28
TA(55:28)

83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56
R Reserved TA(63:56)

111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84

Wake Host Thread Response wake_host_resp ‘0001 0000’

message response TL.vc.0 2

Reserved AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 148 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 2-28. The Resp_code specification for wake_host_resp

Resp_code encode Description

‘0000’ Thread found. Thread woken.

‘0001’ Reserved.

‘0010’ Retry request (rty_req). Indicates that the operation could not be completed at this time. The operation may
be retried at a later time. This is a long back-off event.

‘0011’

Light-weight retry request (lw_rty_req). Use of this code point might be due to the lack of hardware
resources in the host to service the command, or a transient error condition that the hardware is able to
clear out on its own. The retry back off timer is specified in the devices configuration space and should be
set to a value that allows the hardware recovery mechanism to complete before the device attempts to retry
the operation. The operation may be retried by the device. This is a short back-off event.

‘0100’

Interrupt resources pending. (intrp_pending). Indicates that the operation could not be completed at this
time requiring additional software intervention. Software intervention has been successfully invoked. An
asynchronous intrp_rdy TL command will be sent when software actions have completed and the opera-
tion can be retried. It is strongly recommended that an AFU wait for the intrp_rdy before retrying the com-
mand. However, using a retry back off timer is permitted to determine when to retry the command. Such an
implementation shall examine intrp_rdy for the results and take action based on those results.

• intrp_rdy uses TL.vc.0. The implementation shall ensure that the wake_host_resp carrying the
response code of intrp_pending is added to the VC prior to the intrp_rdy.

‘0101’ Thread not found. An interrupt is required to service the operation.

‘0110’ Reserved.

‘0111’ Reserved.

‘1000’ - 1010’ Reserved.

‘1011’ Bad object handle specification. The object handle is specified by the platform architecture. A retry of the
operation shall not be successful.

‘1100’ Reserved.

‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be recovered.This code point indicates that the state of the host
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indicate
the reason for the Resp_code = Failed. The specification of the error collection facility should be
documented in the host’s platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL CAPP response packets
Page 149 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a cacheable read from the AFU, the Host is returning data using a 32-byte data field carried in
control flits and the state of the line (cache_state). The AFU can determine which command to associate the
data with by using the AFUTag provided with the command and is returned with the response.

The response implies a data length of 32-bytes. Multiple read response packets may be received for a single
read command. The dPart (dP(2:0)) indicates the offset within the naturally aligned data block specified by
the address in the read command. For multiple responses to a single command, the AFUTag and
cache_state is unchanged. That is, the dPart, host_tag and EF fields may vary when multiple responses are
returned for a single command. For multiple responses to a single command, there is no order requirement
placed by the architecture. That is, the TLX may see the values of dPart returned in any order. When multiple
responses are received for a cacheable read command, a combination of cl_rd_resp, cl_rd_resp.ow,
synonym_detected, and read_failed responses may be received. Taken together, all responses shall
contain a combination of implied lengths, dLength and dPart to cover the command's dLength specification.

The cache_state indicates the state the cache line has been granted to the AFU. When a cache state of I is
indicated by this field, the data shall not be retained in the AFU’s cache.

The evict and fill directive (EF) indicates if the host_tag is being re-assigned. When asserted, the entry in the
L1 cache indicated by the current state of the host_tag database host_tag entry is to be evicted from the L1
cache before installing the new data and cache state specified by this response. See Section A.10 Host tag
locking transactions on page 235 for transaction examples.

This response is specified with immediate data; Credits for both the VC and DCP shall be obtained before this
response is serviced by the TL. The association between the immediate data and the host_tag field is found
in Section 5.1.3.1 beginning on page 186.

cachable read response cl_rd_resp.ow ‘0001 0110’

Read data return TL.vc.0, TL.dcp.0 2

R dP(2:0) AFUTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
cache_state(2:0) EF host_tag (23:0)

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 150 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2.5 TLX AP response packets

TLX responses are sent from the AFU to the host. An alphabetical list of the TLX responses follows; each
response is hyperlinked to its specification. In this section, the TLX response specifications are in opcode
order.

This response has no operands and performs no action. It is discarded at the TL.

In response to a memory read command initiated by the host, the AFU is returning data. The data may be
returned in a data flit, or may be returned in multiple 32-byte data carriers. The host can determine which
command to associate the data with by using the CAPPTag provided with the command and returned with
the response.

The dLength (dL) field indicates the amount of data contained in this response. Multiple response packets
may be received for a single memory read command. When the dLength field in the response does not match
the full amount of data specified by the command, the dPart (dP) field is used to indicate the offset within the
naturally aligned data block specified by the address in the memory read command. For multiple responses
to a single command, the CAPPTag is unchanged. That is, only the dLength and dPart fields may vary when
multiple responses are returned for a single command. For multiple responses to a single command, there is
no order requirement placed by the architecture. That is, the TL may see the values of dPart returned in any
order. When multiple responses are received for a memory read command, a combination of
mem_rd_response, mem_rd_response.ow, and mem_rd_fail responses may be received. Taken
together, all responses shall contain a combination of dPart and implied length or dLength to cover the
command's dLength specification.

For pr_rd_mem, amo_rd, amo_rw, and config_read, the dLength and dPart fields shall be specified as 64
bytes and offset at 0. A single response shall be returned.

atc_disabled atc_enabled cache_disabled cache_enabled

kill_xlate_done mem_cntl_done mem_rd_fail

mem_rd_response mem_rd_response.ow mem_rd_response.xw mem_wr_fail

mem_wr_response nop return_tl_credits

No operation nop ‘0000 0000’

NA NA 1

Reserved Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory read response mem_rd_response ‘0000 0001’

mem_response TLX.vc.0, TLX.dcp.0 1

dL(1:0) dP(1:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 151 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TLX.

In response to a memory read command initiated by the host, the AFU is indicating that the read failed. The
host determines which command to associate with the failure by using the CAPPTag provided with the
command and returned with the response.

For rd_mem, the dLength (dL) and dPart (dP) fields specify how much of the read operation is being
reported. A single response may cover the entire operation. For a single response, the dLength field must
match the dLength specified by the command, and the dPart field must indicate a starting offset of 0. Multiple
response packets may be received for a single memory read command. When the dLength field in the
response does not match the full amount of data specified by the command, the dPart field is used to indicate
the offset within the naturally aligned data block specified by the address in the memory read command. For
multiple responses to a single command, the CAPPTag is unchanged. That is, the dLength may vary and the
dPart shall vary when multiple responses are returned for a single command. For multiple responses to a
single command, there is no order requirement placed by the architecture. That is, the TL may see the values
of dPart returned in any order. When multiple responses are received for a memory read command, a combi-
nation of mem_rd_response, mem_rd_response.ow, and mem_rd_fail responses may be received.
Taken together, all responses shall contain a combination of dLength and dPart to cover the command's
dLength specification.

For the pr_rd_mem command, amo_rd, amo_rw, and config_read, the dLength and dPart fields shall be
specified as 64 bytes and offset at 0. A single response shall be returned. Violating this rule results in a Bad
response received error event.

The Resp_code field indicates the type of failure being reported. The Resp_code field is specified in
Table 2-29.

Memory read failure mem_rd_fail ‘0000 0010’

mem_response TLX.vc.0 2

dL(1:0) dP(1:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 152 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

mem_rd_fail responds to the TL commands found in Table 2-30. For each command only the Resp_codes
indicated with a Y may be used. Resp_code indicated with an N shall not be used.

Table 2-29. The Resp_code specification for mem_rd_fail

Resp_code encode Description

‘0000’ - ‘0001’ Reserved.

‘0010’
Retry request (rty_req). The read operation could not be serviced at this time. This is a long back off event.
Use of this code point might be due to an event in the device that may require software intervention, or may
be due to a hardware recovery mechanism that exceeds the programmability of the host’s short back off
event timer. The operation may be retried by the host.

‘0011’

Light-weight retry request (lw_rty_req). The read operation could not be serviced at this time. This
is a short back off event. Use of this code point might be due to the lack of hardware resources in
the device to service the command, or a transient error condition that the hardware is able to clear
out on its own. The retry back off timer is specified in the host and should be set to a value that
allows the hardware recovery mechanism to complete before the host attempts to retry the
operation.

‘0100’ - ‘0111’ Reserved

‘1000’

Data error (dError). The memory access completed. The data obtained by the AFU has been corrupted and
is not correctable. Data is not sent to the host. This may be a recoverable error by retrying the operation.
See the device documentation for additional information.

‘1001’ Unsupported operand length. The operation specifies an operand length that is not supported by the
device. A retry of the operation shall not be successful.

‘1010’ Reserved.

‘1011’ Bad address specification. The address specified is not naturally aligned on a boundary specified by the
operand length. A retry of the operation shall not be successful.

‘1100’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation. This includes the following:

• The device and function number specified in the address of a config_read is not recognized by the
AFU.

• config_read is issued with T=1.
• Any other failure detected by the AFU that is not included in any of the specified response codes.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering note
A dError condition may also be reported using mem_rd_response, mem_rd_response.ow, or
mem_rd_response.xw, as appropriate for the TL command, and shall indicate that the data is
bad using the bad data indication in the control flit as specified for the data carrier used.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 153 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a memory read command initiated by the host, the AFU is returning data using 32-byte data
carriers. The host can determine which command to associate the data with by using the CAPPTag provided
with the command and returned with the response.

This response implies a data length of 32 bytes. Multiple response packets may be received for a single
memory read command. The dPart (dP) indicates the offset within the naturally aligned data block specified
by the address in the memory read command. For multiple responses to a single command, the CAPPTag is
unchanged. That is, dPart shall vary when multiple responses are returned for a single command. For
multiple responses to a single command, there is no order requirement placed by the architecture. That is,
the TL may see the values of dPart returned in any order. When multiple responses are received for a
memory read command, a combination of mem_rd_response, mem_rd_response.ow, and mem_rd_fail
responses may be received. Taken together, all responses shall contain a combination of dPart and implied
lengths or dLength to cover the command's dLength specification.

For pr_rd_mem and any of the commands classified as mem_atomics that return data, the dPart field shall
be specified as an offset at 0. A single response covers the entire operation.

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TLX.

Table 2-30. mem_rd_fail Resp_code use by TL command

TL command rty_req (2) lw_rty_req (3) dError (8)
Unsupported

operand length
(9)

Bad address
specification (11) Failed (14)

rd_mem Y Y Y Y1 N Y

pr_rd_mem Y Y Y Y1 Y Y

amo_rd Y Y Y Y2 Y Y

amo_rw Y Y Y Y2 Y Y

config_read Y Y Y Y Y Y

1. May occur during MMIO space read access only.
2. May occur only when the pLength field did not specify 4 or 8 bytes using the encode defined. This type of error shall not be

reported as a Reserved field value used error.

Memory read response mem_rd_response.ow ‘0000 0011’

mem_response TLX.vc.0, TLX.dcp.0 1

R dP(2:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 154 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

This packet is used in response to a non-posted command that writes to memory. This response is used to
indicate the successful completion of all or a portion of the operation. Data specified by this response is global
visible. That is, a subsequent read shall see the new data.

For write_mem or pad_mem, the dLength (dL) and dPart (dP) fields specify how much of the write operation
is being reported. A single response may cover the entire operation. For a single response, the dLength must
match the dLength specified by the command, and dPart must indicate a starting offset of 0. Multiple
response packets may be received for a single memory write command. When the dLength field in the
response does not match the full amount of data specified by the command, the dPart field is used to indicate
the offset from the starting address specified in the memory write command. For multiple responses to a
single command, the CAPPTag is unchanged. That is, the dLength may vary and the dPart shall vary when
multiple responses are returned for a single command. For multiple responses to a single command, there is
no order requirement placed by the architecture. That is, the TL may see the values of dPart returned in any
order. When multiple responses are received for a memory write command, a combination of
mem_wr_response and mem_wr_fail responses may be received. Taken together, all responses shall
contain a combination of dLength and dPart to cover the command's dLength specification.

For the pr_wr_mem, amo_w, write_mem.be, and config_write commands a single response shall be
returned. The dLength and dPart fields shall be specified as 64 bytes and offset at 0.

In response to a write_mem or pad_mem command initiated by the host, the AFU is indicating that the write
failed. The host determines which command to associate with the failure by using the CAPPTag provided with
the command and returned with the response.

The dLength (dL) and dPart (dP) fields specify how much of the write operation is being reported. A single
response may cover the entire operation. For a single response, the dLength must match the dLength speci-
fied by the command, and dPart must indicate a starting offset of 0. Multiple response packets may be
received for a single memory write command. When the dLength field in the response does not match the full
amount of data specified by the command, the dPart field is used to indicate the offset from the starting
address specified in the memory write command. For multiple responses to a single command, the CAPPTag
is unchanged. That is, the dLength may vary and the dPart shall vary when multiple responses are returned

Memory write response mem_wr_response ‘0000 0100’

mem_response TLX.vc.0 1

dL(1:0) dP(1:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Memory write failed mem_wr_fail ‘0000 0101’

mem_response TLX.vc.0 2

dL(1:0) dP(1:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Resp_code(3:0) Reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 155 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

for a single command. For multiple responses to a single command, there is no order requirement placed by
the architecture. That is, the TL may see the values of dPart returned in any order. When multiple responses
are received for a memory write command, a combination of mem_wr_response and mem_wr_fail
responses may be received. Taken together, all responses shall contain a combination of dLength and dPart
to cover the command's dLength specification.

For amo_w, config_write, pr_wr_mem and write_mem.be, only one response shall be returned; dLength
and dPart shall be specified as 64 bytes and offset at 0.

The Resp_code field indicates the type of failure being reported. The Resp_code field is specified in
Table 2-31.

Table 2-31. The Resp_code specification for mem_wr_fail (Page 1 of 2)

Resp_code encode Description

‘0000’ - ‘0001’ Reserved.

‘0010’
Retry request (rty_req). The write operation could not be serviced at this time. This is a long back off event.
Use of this code point might be due to an event in the device that may require software intervention, or
may be due to a hardware recovery mechanism that exceeds the programmability of the host’s short back
off event timer. The operation may be retried by the host.

‘0011’

Light-weight retry request (lw_rty_req). The write operation could not be serviced at this time. This is a
short back off event. Use of this code point might be due to the lack of hardware resources in the device to
service the command, or a transient error condition that the hardware is able to clear out on its own. The
retry back off timer is specified in the host and should be set to a value that allows the hardware recovery
mechanism to complete before the host attempts to retry the operation.

‘0100’ - ‘0111’ Reserved

‘1000’

Data error (dError). The AFU’s operation has completed.The data sent by the TL was corrupted prior to the
completion of the operation.Changes, if any to the memory location specified by the response are globally
visible.

• Memory locations specified by the command’s PA and length that correspond to system memory
space shall contain SUE data.

• Memory locations specified by the command’s PA and length that correspond to either MMIO or con-
figuration space may be unmodified, may contain undefined data, or may contain SUE data.

The corruption of the data might have occurred anywhere in the AFU’s hardware or might have been
detected by a bad data indication.

‘1001’ Unsupported operand length. The operation specifies an operand length that is not supported by the
device. A retry of the operation shall not be successful.

‘1010’ Reserved.

‘1011’ Bad address specification. The address specified is not naturally aligned on a boundary specified by the
operand length. A retry of the operation shall not be successful.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering note
If an implementation is unable to modify the memory location specified by the command’s PA that
correspond to system memory space to contain SUE data, the implementation shall not report a
dError. The implementation shall report a Failed.

Engineering note
A dError condition may also be reported by the consumer of the data. That is, the reporting of the
dError condition may be delayed until the data is consumed by a read operation. This requires
that the actions taken when the error condition is detected either shall cause the memory location
to contain SUE data or shall use an alternate method to report the data is invalid prior to or when
it is consumed. When either of these methods are used, the AFU may response with
mem_wr_response, instead of a mem_wr_fail.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 156 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

mem_wr_fail responds to the TL commands found in Table 2-32. For each command only the Resp_codes
indicated with a Y may be used. Resp_code indicated with an N shall not be used.

‘1100 - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried.This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation. This includes the following:

• The device and function number specified in the address of a config_write is not recognized by the
AFU.

• config_write specified with T=1.
• A dError event was detected and the implementation is unable to modify the memory locations spec-

ified by the command’s PA and length that correspond to system memory space to contain SUE data.
Changes, if any to the memory location specified by the response are globally visible. The memory
location may be unmodified, or may contain undefined data.

• Any other failure detected by the AFU that is not included in any of the specified response codes.The
failure may cause the modification of the memory location specified by the command. Changes, if any
to the memory location specified by the response are globally visible. The memory location may be
unmodified, may contain undefined data, or may contain SUE data.

‘1111’ Reserved.

Table 2-32. mem_wr_fail Resp_code use by TL command

TL command rty_req (2) lw_rty_req (3) dError (8)
Unsupported

operand length
(9)

Bad address
specification (11) Failed (14)

amo_w Y Y Y Y Y Y

pad_mem Y Y N Y2 Y Y

write_mem Y Y Y Y2 Y Y

write_mem.be Y Y Y N Y Y2

pr_wr_mem Y Y Y Y1 Y Y

config_write Y Y Y Y Y Y

1. Unsupported operand length may occur only when target memory is defined as MMIO space and the command’s specified
pLength is not supported at the address specified.

2. May occur during MMIO address space write operation only.

Table 2-31. The Resp_code specification for mem_wr_fail (Page 2 of 2)

Resp_code encode Description

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 157 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a memory read command initiated by the host, the AFU is returning data using 8-byte data
fields found in some control flits. The host can determine which command to associate the data with by using
the CAPPTag provided with the command and returned with the response.

This response implies a data length of 8 bytes. A single response packet shall be received for a memory read
operation when results are returned using this response packet. The full amount of data specified by the
command is returned.

This response is specified with immediate data. Credits for both the VC and DCP shall be obtained before this
response is serviced by the TLX.

This response packet is used by the TLX to return VC and DCP credits to the TL. There is no VC associated
with this response, and credits are not required to service this response. Each TL.* field contains the number
of credits being returned.

This response packet shall be placed only in slots 1 to 0 of any control flit using a template which specifies
those slots as a 2-slot or larger location. The following exceptions apply:

• Control flits using template x’07’ may place a return_tl_credits response into slots 11 to 10.

• Control flits using template x’09’ may place a return_tl_credits response into slots 11 to 10.

• Control flits using template x’0B’ may place a return_tl_credits response into slots 13 to 12.

TL.vc.{0, 1, 2} and TL.dcp.{0, 1} credits are returned. TL credits are for resources owned by the TLX that the
TL consumes. The TLX controls the total number of credits for each of the VC and DCP it provisions the TL
with.

Memory read response mem_rd_response.xw ‘0000 0111’

mem_response TLX.vc.0, TLX.dcp.0 1

Reserved 0 CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Return TL credits return_tl_credits ‘0000 1000’

credit return NA 2

reserved reserved TL.vc.2 TL.vc.1 TL.vc.0 Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved reserved TL.dcp.1 TL.dcp.0 reserved

55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 158 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In response to a mem_cntl command. The operation specified by the mem_cntl has completed as specified
by the device manufacturer’s specification.

The Resp_code field specifies the type of error being reported. The Resp_code field is specified in
Table 2-33.

Used in response to kill_xlate. All commands using the address translations specified by the kill_xlate
command shall precede the kill_xlate_done response in the TLX.vc.3 virtual channel. That is, this response
requires that the AFU to push all commands using the translated addresses specified by the kill_xlate
command into the VC before removing the AFU entry or entries. All commands using the specified address
translations shall be dispatched to the host before the AFU ATC entry or entries have been invalidated. To
accomplish this, the response shall be placed into the TLX.vc,3 virtual channel after all commands using the
address translations have been committed to the TLX.vc.3 virtual channel. This response indicates to the
host that the address translation is no longer in use by the AFU and has been removed from its ATC. The

Memory control operation done mem_cntl_done ‘0000 1011’

message TLX.vc.0 1

Resp_code CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 2-33. The Resp_code specification for mem_cntl_done

Resp_code encode Description

‘0000’ Complete. The operation has completed successfully.

‘0010’ - ‘1101’ Reserved

‘1100’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried.This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

• The specification of the cmd_flag or object_handle fields in the mem_cntl command are invalid.
• The operation has failed and cannot be retried for any reason.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Memory check out response kill_xlate_done ‘0000 1100’

address translation management TLX.vc.3 1

Resp_code(3:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 159 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

host shall ensure that all uses of the address translations have completed before invalidating the AFU’s use
of the translated address. That is, all non-posted commands, or any clean up that is required by the host
implementation with respect to the translated addresses being used by the AFU, shall completed before the
addresses become unrecognizable for use-by-the-AFU by the host26.

Special queuing and servicing of kill_xlate_done is specified in Section 3.4.1 TL queuing and service of
kill_xlate_done on page 173.

The Resp_code field is specified in Table 2-34.

Used in response to a disable_cache command. The AFUC2 has disabled processing element access to its
cache, based on the address context specified, causing the processing element to stall waiting on responses
from its cache. Cache miss actions based on the address context specified normally taken by the AFUC2 shall
not occur until enable_cache is processed.

26.That is, the entries in the Host’s ATC are invalidated.

Table 2-34. The Resp_code specification for kill_xlate_done

Resp_code encode Description

‘0000’ Completed.

‘0001’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

AFUC2 cache disabled cache_disabled ‘0000 1101’

address translation management TLX.vc.0 1

Resp_code(3:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Developer note
The AFU needs to maintain the ATC entry until it has pushed all commands using it into TLX.vc.3. This includes
non-posted operations such as read_me.t. Updates to the cache are allowed since the responses use host_tags
and the host has ensured that the correct address translation is used when obtaining the data.

Note that once the cache has been updated and the ATC entry has been invalidated, the cache line is no longer
accessible by the AFU processor element since the address translation has been invalidated.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 160 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

TLX commands associated with cache and ATC transactions may be seen after this response has been
seen. These commands can either be serviced normally by the host or can be responded with a rty_req
Resp_code.

The Resp_code field is specified in Table 2-35.

Used in response to enable_cache command. The AFUC2 has enabled processing element access to its
cache based on the address context specified.

The Resp_code field is specified in Table 2-36.

Table 2-35. The Resp_code specification for cache_disabled

Resp_code encode Description

‘0000’ Completed.

‘0001’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

AFUC2 cache enbled cache_enabled ‘0000 1110’

address translation management TLX.vc.0 1

Resp_code(3:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Developer note
TLX Commands associated with cache transactions are read_me, read_mes, read_s and upgrade_state and
their dot-t variants: These are all TLX.vc.3 commands, and since there is no order between VC, the
cache_disabled response might pass these commands.

Failing these commands results in a TL read_failed response with the Resp_code = rty_req.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 161 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Used in response to a disable_atc command. The AFUC2 has disabled processing element access to its
ATC, based on the address context specified, causing the processing element to stall waiting on responses
from its ATC. ATC miss actions based on the address context specified normally taken by the AFU shall not
occur until enable_atc is processed.

This response requires the AFU to push all TLX.vc.3 commands using any translated address matching the
specification provided by the disable_atc command into the VC before responding to the disable_atc
command. That is, all commands using translations that are being disabled shall be dispatched to the host
before responding to the disable_atc command.

atc_disabled is assigned to TLX.vc.0 and is not in the TLX.vc.3 virtual channel, so order between the
TLC.vc.3 commands and the atc_disabled response cannot be assured using VC ordering rules. The AFU
shall issue a sync(all_stream) command once all the prior TLX.vc.3 commands have been pushed into the
TLX.vc.3 virtual channel. Once the AFU receives a sync_done response for the sync(all_stream), the AFU
sends atc_disabled to complete the operation.

Once the AFU has disabled the address translations matching the specification provided by the disable_atc
command, the AFU shall not use these translations for any purpose. Any lines held in an AFUC2 L1 cache
using these translations shall not be updated or referenced by the AFUC2 processing element.

The Resp_code field is specified in Table 2-37.

Table 2-36. The Resp_code specification for cache_enabled

Resp_code encode Description

‘0000’ Completed.

‘0001’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

AFUC2 cache disabled atc_disabled ‘1000 0000’

address translation management TLX.vc.0 1

Resp_code(3:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TLX AP response packets
Page 162 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Used in response to enable_atc command. The AFU has enabled processing element access to its ATC
based on the address context specified.

The Resp_code field is specified in Table 2-38.

Table 2-37. The Resp_code specification for atc_disabled

Resp_code encode Description

‘0000’ Completed.

‘0001’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

AFUC2 cache enbled atc_enabled ‘1000 0001’

address translation management TLX.vc.0 1

Resp_code(3:0) CAPPTag(15:0) Opcode(7:0)

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 2-38. The Resp_code specification for atc_enabled

Resp_code encode Description

‘0000’ Completed.

‘0001’ - ‘1101’ Reserved.

‘1110’

Failed. The operation has failed and cannot be retried. This code point indicates that the state of the device
due to the error occurrence does not allow a successful retry of the operation.

‘1111’ Reserved.

Note: The errors specified by Resp_code do not include the fatal error conditions described in Table 7-1 on page 199.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

Engineering Note
It is strongly recommended that an implementation provide error collection facilities to indi-
cate the reason for the Resp_code = Failed. The specification of the error collection facility
should be documented in the device documentation.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 163 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3. Virtual channel and data credit pool specification
Commands and responses are assigned to virtual channels (VCs) to allow ordering and the specification of
servicing service queues and virtual queues. Credits to use these VCs are managed by the destination
(where the resources are consumed) and are released to the source (where the command or response origi-
nates) when the resource is available. Each VC has its own credit pool, which may be varied by the destina-
tion. VCs in each direction are numbered; the value assigned is used only for differentiation between VC.
Each VC credit permits the sending of one command or response.

The following VC descriptions use the specific command or response or the classification of the command or
response. See the command and response descriptions in Section 2 TL and TLX command and response
specifications on page 48 for command and response VC classifications.

VCs are specified between the TL and TLX and between the TLX and the TL. Ordering is maintained within a
VC and is assured between these endpoints only. VCs cannot block each other; blocking within a VC may
occur due to ordering requirements (head of line blocking). With the exception of Command ordering on
page 39, any queuing or ordering occurring in the upper protocol layers (host bus and AFU) is not assured to
be retained. Synchronization points are managed at the interfaces between the TL and host bus protocol
stack and between the TLX and AFU protocol stack.

Data credit pool (DCP) credits are required when a command or response has immediate data; that is, data
that is associated with the sending of the command or response. For example, a write command has imme-
diate data while a read command does not. Commands and responses with immediate data shall obtain the
necessary credits for both the VC and DCP assigned in an atomic fashion.

For example, sending 128 bytes requires atomically obtaining two DCP credits when using 64-byte data flits.
See Section 5.1.3 Data transport, order, and alignment on page 184 for details on the relationship between
DCP credits and data carrier use. If the credits are not available, the command or response cannot be
serviced. That is, the command or response shall not be placed into a DL frame for transmission. See the
description of DCP on page 19.

The order of data sent to the destination is the same as the order of the data’s corresponding command or
response that is sent to its destination. This allows the destination to use the arrival order of commands and
responses with immediate data to associate the immediate data with its command or response.

Credits are released to the consumer of the credits by the owner of the resources that the credits represent.
That is, TLX credits represent TL resources that are consumed by the TLX. TL credits represent TLX
resources that are consumed by the TL. The responses used to return credits are return_tlx_credits and
return_tl_credits. A compliant implementation shall:

• Provide a 16-bit counter to track credits available for use for each DCP and VC specified in the following
sections.

• Provision a minimum of one and less than 64K credits for each VC specified in the following sections.

• Provision a minimum of four and less than 64K credits for each DCP specified in the following sections.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 164 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 3-3 on page 166 specifies the assignment of VC and DCP to commands and responses.

3.1 Virtual channel

Ordering shall be maintained between elements within a VC. Blocking between VCs shall not be permitted.

3.1.1 TLX command and response VC (TLX.vc)

The VC is directed from the AP to the host. Three VCs are specified {0, 2, 3}. VC credits are consumed by the
TLX and are returned by the TL using return_tlx_credits.

3.1.2 TL command and response VC (TL.vc)

The VC is directed from the host to the AP. Three VCs are specified {0..2}. VC credits are consumed by the
TL and are returned by the TLX using return_tl_credits.

Developer Note
• The host is required to release credits only for the VC/DCP that will be used by the AFU. Releasing credits

for VC/DCPs that are not going to be used might not be optimal because the released credits correspond to
resources in the host that could have been used for actual command/data/response traffic from the AFU.

• The AFU is required to release credits only for the VC/DCP that will be used by the host. Releasing credits
for VC/DCPs that are not going to be used might not be optimal because the released credits correspond to
resources in the AFU that could have been used for actual command/data/response traffic from the host.

The credits required can be determined by knowing the AFU capabilities as described in Section 1.2 Host oper-
ation modes on page 28, the commands and responses used, and the associated VC and DCP.

Developer Note
The architecture permits an implementation to release a minimum-total of four DCP credits. Releasing a
minimum-total of a single DCP credit was considered and discarded because this limits the data to a single 64-
byte transfer. This was considered too restrictive and might not easily enable implementations to optimize for the
data block size normally used by the implementation.

Engineering Note
TLX VC credits represent resources in the TL used for processing TLX commands and responses. Each credit
released by the TL represents a unique resource and shall not be shared with any other VC. Doing so would result
in breaking the accounting rules implied by this specification. For example, if the TL used the same resource for
two different VCs, the actual credit available for VCs using the shared resource would also be diminished, and the
TLX would be unaware of this change.

The ability of the TL to return TLX VC credits shall not be dependent on any action taken by the TLX, including the
return of TL credits.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 165 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3.1.3 VC credit count specification

Table 3-1 specifies the maximum number of VC credits supported by an OpenCAPI-compliant device. A
device is not required to release or support the maximum count. However, the consumer of the credit shall
provide a counter that supports the architected maximum count.

3.2 Data credit pool

3.2.1 TLX data DCP (TLX.dcp)

The data credit pool is used when moving immediate data from the AP to the host. Three DCPs are specified
{0, 2, 3}. DCP credits are consumed by the TLX and returned by the TL using return_tlx_credits.

Table 3-1. VC maximum credit count specification

VC Maximum credit count

TLX.vc.0 64K-1

TLX.vc.2 64K-1

TLX.vc.3 64K-1

TL.vc.0 64K-1

TL.vc.1 64K-1

TL.vc.2 64K-1

Engineering Note
TL VC credits represent resources in the TLX used for processing TL commands and responses. Each credit
released by the TLX represents a unique resource and shall not be shared with any other VC. Doing so would
result in breaking the accounting rules implied by this specification. For example, if the TLX used the same
resource for two different VCs, the actual credit available for VCs using the shared resource would also be dimin-
ished, and the TL would be unaware of this change.

The ability of the TLX to return TL VC credits shall not be dependent on any action taken by the TL, including the
return of TLX credits.

Engineering Note
TLX DCP credits represent resources in the TL used for accepting data from the TLX. Each credit released by the
TL represents a unique data resource and shall not be shared with any other DCP. Doing so would result in
breaking the accounting rules implied by this specification. For example, if the TL used the same resource for two
different DCPs, the actual credit available for DCPs using the shared resource would also be diminished, and the
TLX would be unaware of this change.

See Section 5.1.3 Data transport, order, and alignment on page 184 for the association between a DCP credit and
the immediate data associated with the command or response.

Resources for holding any meta-data associated with the data resource are accounted for by the DCP credit asso-
ciated with the data itself.

The ability of the TL to return TLX DCP credits shall not be dependent on any action taken by the TLX, including
the return of TL credits.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 166 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3.2.2 TL data DCP (TL.dcp)

This data credit pool is used when moving immediate data from the host to the AP. Two DCPs are specified
{0, 1}. DCP credits are consumed by the TL and are returned by using the TLX using return_tl_credits.

3.2.3 DCP credit count specification

Table 3-2 specifies the maximum number of DCP credits supported by an OpenCAPI-compliant device. A
device is not required to release or support the maximum count. However, the consumer of the credit shall
provide a counter that supports the architected maximum count.

Table 3-2. DCP maximum credit count specification

DCP Maximum credit count

TLX.dcp.0 64K-1

TLX.dcp.2 64K-1

TLX.dcp.3 64K-1

TL.dcp.0 64K-1

TL.dcp.1 64K-1

Table 3-3. Summary VC and DCP assignments (Page 1 of 2)

VC Classification/
command DCP Comments Command Response

TL.vc.0 Touch response X

TL.vc.0 Cacheable read
(response) TL.dcp.0 X

TL.vc.0 DMA read (response) TL.dcp.0 TL.dcp.0 is used only for read_response and is not used for
read_failed. X

TL.vc.0 Upgrade response X

TL.vc.0 Write response
(OK and failed) X

TL.vc.0
Interrupt and wake

host thread
responses

Message responses. X

Engineering Note
TL DCP credits represent resources in the TLX used for accepting data from the TL. Each credit released by the
TLX represents a unique data resource and shall not be shared with any other DCP. Doing so would result in
breaking the accounting rules implied by this specification. For example, if the TLX used the same resource for
two different DCPs, the actual credit available for DCPs using the shared resource would also be diminished, and
the TL would be unaware of this change.

See Section 5.1.3 Data transport, order, and alignment on page 184 for the association between a DCP credit and
the immediate data associated with the command or response.

Resources for holding any meta-data associated with the data resource are accounted for by the DCP credit asso-
ciated with the data itself.

The ability of the TLX to return TL DCP credits shall not be dependent on any action taken by the TL, including the
return of TLX credits.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 167 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

TL.vc.0 xlate_done
Asynchronous notification. Asynchronous command reporting the
status of a previously AFU-initiated action (address translation
touch).

X

TL.vc.0 return address tag Asynchronous notification X

TL.vc.0 Interrupt ready Asynchronous notification. X

TL.vc.1

MEM read both
multiples of 64 bytes
or partial commands;
includes only amo_rd

atomics

X

TL.vc.1 amo_rw and amo_w
atomic operations TL.dcp.1 X

TL.vc.1 MEM read An MMIO read operation uses a pr_rd_mem CAPP command. X

TL.vc.1 MEM write TL.dcp.1 An MMIO write operation uses a pr_w_mem CAPP command. X

TL.vc.1 Wake AFU thread message X

TL.vc.1 Configuration
register read X

TL.vc.1 Configuration
register write TL.dcp.1 X

TL.vc.2
cacheable retrievel

for example,
force_evict

X

TLX.vc.0
MEM read response;

for example,
mem_response

TLX.dcp.0 mem_rd_fail does not use TLX.dcp.0. X

TLX.vc.0 MEM write response X

TLX.vc.0 Wake AFU response Message response. X

TLX.vc.2 Cacheable push TLX.dcp.2 evicts M, E, S states or used to downgrade state. Data-less ver-
sion does not use TLX.dcp.2 X

TLX.vc.3
Non-cacheable read
and write operations

- all forms
X

TLX.vc.3 acTag management X

TLX.vc.3 address Tag man-
agement X

TLX.vc.3 Interrupts and wake
host thread TLX.dcp.3

Message commands.
TLX.dcp.3 is used only for intrp_req.d commands.

X

TLX.vc.3 Cacheable Read Includes upgrade_state command X

TLX.vc.3 xlate_touch - ATC
prefetch X

Table 3-3. Summary VC and DCP assignments (Page 2 of 2)

VC Classification/
command DCP Comments Command Response

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 168 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3.3 TL Virtual channel and service queues

3.3.1 Host TLX command handling

Figure 3-1 on page 169 illustrates the steps a TLX command follows from the VC queue in the TL to its
service queue. Commands are removed from the DL frame in slot order from a control flit and are loaded into
the VC queue specified by the command. After the command reaches the head of the VC queue, it is exam-
ined.

1. Any error found in the command entry is noted. Errors found at this point in the flow shall not be reported
until the command reaches the head of the service queue.

2. If the command is assign_actag, the command shall be removed from the VC queue and shall be ser-
viced at this time. This service results in the update of the acTag table. Subsequent commands shall see
the new state of the acTag table. The assign_actag command is removed from the head of the service
queue.

kill_xlate_done is a response that is assigned to the TLX.vc.3 queue. It is the only response assigned to
that VC. All other members of TLX.vc.3 are commands. Handling of kill_xlate_done is discussed in
Section 3.3.2 Host TLX response handling on page 170.

If the command is sync(all_stream), the command remains at the head of the TLX.vc.3 queue, blocking
subsequent commands, until the prior command list is {null}. See Section 3.4 for a description of the prior
command tracking function. Once the all prior command list is {null} the sync(all_stream) command is
dequeued and a sync_done response is sent to the AFU.

If the command is neither an assign_actag or sync(all_stream), the command shall be serviced as fol-
lows:

a. Commands with a dLength specified that is larger than the host’s maximum supported length for a
single operation are split into commands with dLength set equal to or less than the host’s maximum
supported length. The address is adjusted for each command to account for the dLength serviced.
The AFUTag, acTag, and stream_id are obtained from the original command. Split command entries
are noted with the dPart value to be used when returning responses. Split commands are serviced
based on increasing address order. All commands continue with the next step.

b. Using the acTag found in the command entry, the BDF and PASID are obtained. An error detected at
this step is fatal. See the description of Bad BDF and PASID combination on page 199 for additional
details.

c. A VC- and implementation-specific hash is used to determine the service queue to add the command
to. See the specification of the hash applied to the command in the definition of a service queue on
page 23.

The command is then added to the service queue determined in step c and removed from the head of the
VC queue.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 169 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

As defined in Terms on page 17, the difference between a virtual queue and a service queue is that a service
queue may contain multiple virtual queues.

The architectural model of a service queue specifies that the commands in the body of the service queue may
receive the following services in the following order:

1. Error checking of the command.

2. Address translation as required by the command’s specification.

Commands with EA or TA undergo address translation in order to determine the RA used by the host pro-
tocol. castout and castout.push are specified with a host_tag and perform a look up in the host proxy
directory to determine the RA used by the host protocol.

Errors occurring in either of these services shall be noted in the service queue entry and shall not be reported
until the command reaches the head of the service queue. The results of the address translation shall be
noted in the service queue entry.

The architectural model of a service queue specifies that the head of the service queue shall receive the
following services in the following order:

1. Error checking of the command. The check may occur here, or the error noted in the entry may be used
to determine the error checked state of the command.

Figure 3-1. TL command flow from the VC queue to the service queue TLX VC queues shown

VC Queue

Service Queues

Command is:
1. Split due to host dLength restrictions

3. Hashed into service queues

assign_actag serviced here

2. Obtain BDF and PASID from acTag Table

update table

BDF / PASID

acTag
Table acTag

prior command
tracking

Host Completed
commandsprior command

list

Dequeue check for sync(all_stream).
Head of line blocking until prior com-
mand list is {null}. sync_done issued
once dequeued.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 170 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

2. Address translation as required by the command’s specification. The translation may occur here, or may
have previously occurred. The results of the translation noted in the entry may be used at this time.

3. When the previous two services are completed, the command shall be removed from the head of the ser-
vice queue if

• The command is not a sync command.

• The command is a sync(at_stream) command and the prior command list is {null}. See Section 3.4 for a
description of the prior command tracking function.

Step 3 requires that a command at the head of the service queue be processed with the indicated prece-
dence as follows:

1. When the command is specified with a dot-s attribute, the command shall be enqueued to its designated
presync service queue, See Section 3.4.

Or

2. Failed due to an error, which may be due to either an error found with the command or failed address
translation attempt.

And

– That error shall result in either a response being returned to the requester, when the command is
non-posted, or an error event being asserted,

Or

3. The operation is completed27 and a response shall be returned to the requester when the command is
non-posted.

Or

4. Shall be dispatched to the host protocol layer.

3.3.2 Host TLX response handling

TLX responses are assigned to a VC and are removed from the DL frame in the same manner as TLX
commands. Handling of TLX responses is simpler in that TLX.vc.0 which is used for most TLX responses has
no hash involved when selecting a service queue. Responses assigned to TLX.vc.0 are passed directly to a
dedicated service queue and allowed to dispatch to the host interface.

The exception to the above is kill_xlate_done. This response is assigned to TLX.vc.3, the same VC as read
and write commands and due the nature of the protocol of invalidating ATC entries requires special handling.
This is described in Section 3.4.1 TL queuing and service of kill_xlate_done on page 173.

27.For example, the command required only an address translation action, such as xlate_touch, or the address translation
was not successful or is required to be retried.

The command is a sync command. The command is not sent to the host’s protocol layer. A sync_done response is sent to
the AFU.

Engineering Note
The architecture requires that the implementation of a service queue shall appear to behave as if the architec-
tural model of a service queue is implemented.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 171 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The host checks that responses are expected as described in Bad response received on page 201.

3.4 TL Presync queues

Figure 3-2 illustrates the architectural model of the steps taken by command with dot-s attributes moving from
its service queue to a presync queue before being dispatched to the host protocol layer.

For each command dequeued from the head of the service queue, the prior command function shown in
Figure 3-2 identifies all commands issued prior to the command at the head of the queue that have not
completed. As a command is dispatched to the host protocol layer or to a presync queue, the command is
added to a list of commands that have not completed. The content of the list of prior commands is associated
with the command that is being dequeued from the head of the service queue at the time when the command
is dequeued. Commands are removed from the list held in the prior command tracking function when the host
protocol layer indicates a command has completed.

To illustrate the prior command tracking function, consider a case where there are 4 commands in the service
queue labeled A, B, C, and D, where A is at the head of the service queue and D is at the tail.

1. At time T0, command A is dequeued. The prior command list is {null}.

2. At time T1, command B is dequeued. The prior command list is {A}.

3. At time T2, command C is dequeued. The prior command list is {A, B}.

4. At time T3, command D is dequeued. The host has reported that A has completed. The prior command
list is {B, C}

Once the prior command list is added to the dot-s command’s entry, it is dequeued from the head of its
service queue and is enqueued into a presync queue specified by a VC- and implementation-specific hash.
See the specification of the hash applied to the command in the definition of a service queue on page 23. The
implementation may add or remove hash terms when forming the presync queue.

The architectural model of a presync queue specifies that a command shall be dequeued only from the head
of the presync queue. While the command is in the presync queue, its prior command list shall be updated by
the host protocol layer when it indicates the completion of a command by removing the completed command
from the list. Once a command has reached the head of the presync queue, and its prior command list is
{null}, the command shall be dequeued from its presync queue and shall dispatched to the host protocol
layer.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 172 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 3-4 provides an example of how the service queue, presync queue and dot-s attributed commands
work together. The example shown has a group of commands that are allowed to complete in any order, then
a presync command to ensure that the prior commands have completed, followed by another set of
commands allowed to complete in any order and a final presync. The first group could be a data block write
and then a flag write to indicate the first data block had been written and then a second data block and a flag
to indicate that the second data block had been written.

Figure 3-2. TL command flow from a service queue with a designated presync queue

Table 3-4. Example sequence of 2 block writes and 2 flag writes (Page 1 of 2)

Time step Service queue
head Service queue tail Presync queue

head
Presync queue

tail
host dispatch

interface
host completed

command

0 null null null null - -

1 A A null null - -

2 A B null null - -

3 A C.s null null A -

4 B D null null B -

Service Queue

Y

N

dot-s?

prior command
tracking

Host Completed
commands

prior command
list

presync queues

Command is
1. Updated with prior command list
2. Hashed into per VC presync service queues

Host Completed
commands

Host dispatch interface

prior command
list

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 173 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

As shown in Table 3-4, the first data block write consists of commands {A, B} and the flag write is in command
C (noted as C.s to specify that it is issued with a presync attribute). The second block write consists of
commands {D, E} and the write flag is in command F (noted as F.s).

Note that dispatching C is dependent on A and B completing, while F dispatching is dependent on A through
E completing. Commands A, B, D, E are issued with no dependencies.

3.4.1 TL queuing and service of kill_xlate_done

kill_xlate_done handling is different from other TLX.vc.3 TLX packets because it is a response. Servicing
kill_xlate_done places requirements on the host’s behavior. That is, the host shall complete all previous TLX
command use of the translated addresses specified by the kill_xlate command, to purge cache entries in an
AFUC2 that use the specified address translations, and to clear address translations from ATC before
reporting back to the host protocol that the address translation is no longer in use.

Figure 3-3 illustrates the architectural model of the steps taken when processing a kill_xlate_done response.
The handling of this response is similar to the model described for the TL presync queues illustrated in
Figure 3-2 on page 172.

Commands are dequeued from the TLX.vc.3 queue as described in Section 3.3 TL Virtual channel and
service queues on page 168. kill_xlate_done is dequeued from the VC queue and is moved to the
xlate_kill_done service queue. The kill_xlate_done response is not released to the host for final processing
of the kill_xlate command actions until all commands in the TLX.vc.3 queue prior to the kill_xlate_done
response have been completed.

5 C.s E C.s {A,B} C.s {A, B} - -

6 D F.s C.s {A,B} C.s {A, B} D A

7 E F.s C.s {B} C.s {B} E -

8 F.s F.s C.s {B} F.S {B, C, D, E} - -

9 F.s F.s C.s {B} F.S {B, C, D, E} - -

10 null null C.s {B} F.S {B, C, D, E} - B

11 null null C.s {null} F.s {C, D, E} C.s -

12 null null F.s {C, D, E} F.s {C, D, E} - D

13 null null F.s {C, E} F.s {C, E} - -

14 null null F.s {C, E} F.s {C, E} - E

15 null null F.s {C} F.s {C} - -

16 null null F.s {C} F.s {C} - -

17 null null F.s {C} F.s {C} - C.s

18 null null F.s {null} F.s {null} - -

19 null null F.s {null} F.s {null} F.s -

20 null null null null - -

21 null null null null - -

22 null null null null - F.s

Table 3-4. Example sequence of 2 block writes and 2 flag writes (Page 2 of 2)

Time step Service queue
head Service queue tail Presync queue

head
Presync queue

tail
host dispatch

interface
host completed

command

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 174 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The architectural model uses the same technique introduced in the description of Figure 3-2 on page 172.
That is, a prior command list is maintained to determine when the xlate_kill_done response is released to
the host.

The architectural model of the xlate_kill_done service queue ensures that all prior commands that made use
of the address translations invalidated by the kill_xlate command have completed on the host without intro-
ducing head of line blocking at the TLX.vc.3 VC queue.

3.5 Device TL virtual channel queues

Figure 3-4 on page 176 shows the steps a TL VC queue entry follows from the time it is dequeued from the
TL VC queue until it is dispatched to the AFU protocol stack interface. The TL VC queue entry can be a TL
command- or response-packet. TL command- and response-packets are removed from the DLX frame in slot
order from a control flit. They are loaded as queue entries into the TL VC queue specified by the command or
response. After the queue entry reaches the head of the TL VC queue, it is examined.

1. Any error found in the queue entry shall be reported, and the entry shall be dequeued. If the TL VC queue
entry is a TL command-packet, the errors shall be reported either by a response returned or by an error

Figure 3-3. kill_xlate_done TL flow from TLX.vc.3 to host dispatch

TLX.vc.3

Y

N

kill_xtate_done ?

prior command
tracking

Host Completed
commands

prior command
list

xlate_kill_done

Command is update with prior command list

Host Completed
commands

Host dispatch interface

prior command
list

service queue

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 175 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

event. If the TL VC queue entry is a response-packet, errors shall be reported through error events such
as Bad response received on page 201. Other error events are described in Section 7.1 beginning on
page 198.

2. With error checking completed, the entry shall be dequeued.

For TL VC 1 and 2 queues, the dequeued entry shall be sent to the AFU protocol dispatch interface.

Entries in the TL VC 0 queue require additional examination before being dequeued. The TL packets
assigned to the TL VC 0 queue that are specified with a host_tag shall obtain the lock to the host_tag
entry before being sent to the AFU protocol dispatch interface28.

If an implementation cannot obtain the lock to the host_tag entry, there are two options:

– The queue entry may be dequeued from the VC queue to allow other commands to pass it.

– The queue entry may block the commands behind it from reaching the head of the queue.

Figure 3-4 shows a permitted implementation choice, where a TL VC 0 queue entry with a host_tag spec-
ified is unable to obtain a lock on the host tag. The TL VC 0 queue entry is dequeued and placed into the
host_tag locked queue. The entry is held in the host_tag locked queue until the lock is released and is
obtained by the waiting TL VC 0 queue entry. The implementation shall maintain TL VC 0 queue entry
ordering when obtaining locks for the same host_tag. This requires that entries in the host_tag locked
queue obtain host_tag locks before the entries in the TL VC 0 queue. Ordering between commands using
the same host_tag within the host_tag locked queue shall be retained.

At the dispatch interface, arbitration between VC queues is implementation dependent and beyond the scope
of this specification.

28.A command with a host_tag field may imply the specification of up to 4 host_tags per the definition of a host_tag.

Engineering note
When a command- or response-packet specifies multiple host_tag entries, the entry locks are accumulated until
all have been obtained. Once obtained the command is allowed to go to the dispatch interface.

Implementations are warned to ensure that deadlock scenarios are not possible when getting locks on multiple
host_tags for a single command- or response-packet.

Engineering note
The architecture requires that the implementation of the device’s TL VC queues appear to behave as if the
architectural model of the TL VC queue is implemented.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 176 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3.6 Virtual channel dependency rules

Commands and responses are assigned to virtual channels. AFU and host designs are cautioned not to
implement a design where there is a potential for a dead lock when forward progress of one command is
dependent on the forward progress of another.

The TL specification specifies natural VC dependencies. For example a TLX rd_wnitc using TLX.vc.3 is
dependent on a TL read_response using TL.vc.0 to complete the operation. Deadlock conditions can occur
when:

• The host cannot respond to a TLX command without issuing a TL command and the host design does not
allow the TL command to be issued.

• The AFU cannot respond to a TL command without issuing a TLX command and the AFU host design
does not allow the TLX command to be issued.

Figure 3-4. TLX command and response flow from the VC to the AFU protocol stack TL VC queues shown

VC 0 Queue

VC 1 Queue VC 2 Queue

Y

N

host_tag
specified?

Y

Nhost_tag lock
obtained?

host_tag locked
Queue

AFU protocol stack dispatch interface

host_tag lock tracking
host_tag unlocked

host_tag lock
tracking

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 177 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Since the implementation of the host and the AFU are beyond the scope of this specification, the designers of
the host and the AFU shall ensure that such dead lock conditions are prohibited by the implementation.

Figure 3-5 illustrates the interdependencies between VC that occur in the existing specification. An imple-
mentation, of either a host or device, shall not introduce dependencies not shown in Figure 3-5.

Graphically, the dependencies are shown as a line between two ovals. The ovals specify a virtual channel.
For illustrative purposes, consider two ovals connected by an arrow. The tail of the arrow is connected to the
oval indicating a TL- or TLX-packet using VC.a. The head of the arrow is connected to a TL- or TLX-packet
using VC.b. Reading the graphic becomes:

Servicing an incoming packet using VC.a requires issuing a packet using VC.b.

The intent of the architecture is to require implementations to insure that servicing an incoming packet using
VC.a does not require the use of the same resources that are required to issue a packet using VC.b. This
intent might restrict implementation choices.

Loops through the graph indicate potential deadlock scenarios where this specification provides behavioral
rules that the AFU and host implementation shall follow, or shall appear to follow to remove the potential for
deadlock conditions.

The dependency arcs shown in red place requirements on the implementation of the host and the AFU imple-
mentations.

1. See Dependency loop 1 resolution.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 178 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

3.6.1 Dependency loop 1 resolution

xlate_touch (TLX.vc.3) serviced by the host requires the host to issue a kill_xlate (TL.vc.2) and may issue
force_evict (TL.vc.0) when the host is required to evict a victim from the host’s ATC. The kill_xlate (TL.vc.2)
requires that the AFU to respond with a kill_xlate_done (TLX.vc.3). This is loop 1 illustrated in Figure 3-5
and annotated as [1], and in Figure 3-6 Loop 1 detail on page 179. The host shall victimize the ATC entry and
shall retry the xlate_touch operation (touch_resp, Resp_code=rty_req or lw_rty_req). The back off retry
indication used is determined by the host’s implementation.

The AFU shall release all resources, for example AFU ATC set locks, when the xlate_touch is retried by the
host. After the back off timer expiration, the AFU may retry the operation. Before starting a xlate_touch
(TLX.vc. 3) operation, the AFU shall ensure that there are no resource conflicts with servicing running opera-
tions, such as a kill_xlate (TL.vc.2) that has created an ATC set lock.

Figure 3-5. VC dependency graph

TL.vc.2

TLX.vc.3

TLX.vc.2

TL.vc.0

TL.vc.1
TLX.vc.0

[1][1]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Virtual channel and data credit pool specification
Page 179 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure 3-6. Loop 1 detail

AFU Host

xlate_touch
TLX.vc.3

kill_xlate
TL.vc.2

force_evict
TL.vc.0

castout.push
TLX.vc.2

xlate_release
TLX.vc.3

kill_xlate_done
TLX.vc.3

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

The acTag table
Page 180 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

4. The acTag table
The section provides the architectural specification of the acTag table. Implementations may choose to imple-
ment this table using any method. However, the externally observable behavior of the table and contents of
the table shall, at a minimum, comply to this architectural specification.

The acTag table shall be included in the host’s implementation and shall provide a minimum of one entry.

4.1 acTag table contents

Each entry of the acTag table (acTag entry) shall contain the following fields:

• 1-bit entry valid. Architected states are defined as {valid, invalid}

• 16-bit BDF

• 20-bit PASID

An implementation may choose to add additional fields to the acTag entry.

4.2 acTag table access

The OpenCAPI device maintains a copy of each acTag entry to determine the acTag value used in TLX
commands specified with an acTag field.

The acTag table is accessed using the acTag as follows:

• Read access uses the acTag provided in a TLX command specified with an acTag field as an index into
the table to locate the acTag entry to be read. Reading an acTag entry returns the entry valid indication
and, when valid, a BDF and PASID.

• Write access uses the acTag provided in the assign_actag command as an index into the table to locate
the acTag entry to be updated. The command provides a BDF and PASID, which are loaded into the
acTag entry. Successful completion of the write access sets the entry valid bit to the valid state.

4.2.1 Error cases when accessing the acTag table

4.3 acTag entry management

The entries of the acTag table are managed by the attached OpenCAPI device. The OpenCAPI device shall
maintain its own mapping between an acTag and the contents of the acTag entry held in the host’s acTag
table.

Error Action

acTag entry not valid This is a fatal error. See “acTag specified in the command points to an invalid entry” in
Table 7-1 on page 199.

Address context not valid
This is determined either at the time the acTag entry is created or when the acTag entry is
used to obtain the address context.
This is a fatal error. See “Bad BDF and PASID combination” in Table 7-1 on page 199.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

The acTag table
Page 181 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

During configuration, the host writes to the OpenCAPI device’s configuration space to indicate the maximum
size of the acTag, which indirectly specifies the size of the host’s acTag table. An acTag size of 0 indicates a
single entry acTag table, and the only valid acTag value is ‘0’. The OpenCAPI device may use any value
within the allowed range to specify an acTag entry and subsequently refer to that entry using a TLX command
specifying the acTag.

The OpenCAPI device learns its bus number from the address specified in a config_write, T=0 command.
Device and function numbers are assigned by the OpenCAPI device and discovered by the host during
configuration. See the specification of config_write for the format of the address field that contains the bus,
device and function numbers.

The OpenCAPI device is configured with one or more PASIDs during initialization and operation.

After an acTag entry is set to a valid state, it is set to an invalid state only by the host upon detection of a link
failure that requires resetting the OpenCAPI interface and the OpenCAPI device.

Engineering note
In a host implementation, a configuration register would be useful to vary the size of the acTag table, which
allows stress testing of the design. A proposed specification of the configuration register follows:

The register contains a value N where the size of the acTag table is 2N and the acTag range is limited, as
described previously, to a range of 0..2N-1.

Permitted access methods for this configuration register, as well as the register contents, are specified by the
platform architecture.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 182 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

5. DL frame format
The TL and TLX contain framer and parser functions that work with the DL frame format. The DL frame
format is specified as a set of 64-byte flits. There are two types of flits:

• Control flits. The control flit contains TL command/response content and DL content. The DL content con-
tains several DL-generated subfields including the CRC that covers the control flit and any preceding
data flits. There are fields in the DL content that are generated by the TL. For more information, see
Section 5.1.1 DL content on page 183.

• Data flits. There are 0 to 8 data flits between each control flit.

Table 5-1 uses color to illustrate the coverage of the CRC found in the DL content of the control flit. The CRC
covers the control flit that it is contained in and all previous, if any, data flits. The DL content found in the
control flit also contains “bad data flit indicators” for the previous data flits. The 32- and 8-byte data fields
carry bad data indicators for the associated data field in the control flit. A control flit specified by the TL shall
always follow data flits as shown in Table 5-1. The DL may insert DL-idle-control flits when the TL interface to
the DL is idle.

The transmit order in Table 5-1 is from right to left and top to bottom. That is, data flits are transmitted in
increasing address order. Control flits follow this convention.

Table 5-1. DL frame format showing CRC and “bad data flit” coverage

DL content TL command/response/32-, 8-byte data content

Data flit 0

Data flit 1

Data flit 2

Data flit 3

Data flit 4

Data flit 5

Data flit 6

Data flit 7

DL content TL command/response/32-, 8-byte data content

Data flit 0

Data flit 1

DL content TL command/response/32-, 8-byte data content

DL content TL command/response/32-, 8-byte data content

Bytes(63:0)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 183 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

5.1 DL frame control flit (64 bytes)

5.1.1 DL content

This field is bytes 63:56 of the DL frame control flit.

TL command/response content

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DL content TL command/response content

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Bytes Field name Description

55:0 TL command/response
content

This field contains information provided by the TL. This 448-bit field (447:0) is comprised of sixteen
28-bit slots. One or more slots comprise either a null entry, TL command packet, TL response
packet, metadata, extended metadata, or data with the location and length specified by the TL tem-
plate. See Section 5.1.2 TL command/response content on page 184 for slot layout information.

63:56 DL content This field contains information added by both the TL and the DL layer. See Section 5.1.1 DL content
for the specification of this field.

DL specified TL template Bad data flit Data run length

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DL specified

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Bit Field name Description (Page 1 of 2)

3:0 Data run length This 4-bit field indicates the number of data flits until the next control flit. A value of 0 indicates that
the next flit is a control flit. Valid values are {0...8}.

11:4 Bad data flit indication

This 8-bit field indicates that data flits received prior to this control flit contain bad data and shall not
be used without being marked as bad (for example, mark as SUE). Each bit corresponds to one data
flit (for example, bit 0 corresponds to data flit 0, which is the first data flit following the previous con-
trol flit). See Table 5-1 on page 182 to match up the data flit being reported to the bit in this field.
11 Data flit 7 is in error.
10 Data flit 6 is in error.
9 Data flit 5 is in error.
8 Data flit 4 is in error.
7 Data flit 3 is in error.
6 Data flit 2 is in error.
5 Data flit 1 is in error.
4 Data flit 0 is in error.

17:12 TL template
This 6-bit field specifies the locations of opcodes found in the 448-bit TL command and response
content field. SeeSection 6 TL and TLX template specifications on page 189 for the specification of
this field.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 184 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

5.1.2 TL command/response content

Slots are packed into the DL control flit as shown in the following figure. Each slot occupies 3.5 bytes (28
bits). The slot number and control flit byte are shown. The number of slots used by a command or response
can be found in the specification of the command or response.

5.1.3 Data transport, order, and alignment

Data is transported between the TL and TLX using data carriers, which are specified as 64-byte data flits, or
32- or 8-byte data fields in control flits. To transport data, one or more DCP credits shall be obtained atomi-
cally when obtaining the VC credit required to send a command or response. A DCP credit is associated with
at most 64 bytes of data and may be associated with 32- or 8-bytes of data.

1. When a single command or response specifies 64-bytes of immediate data, a single DCP credit is
required. Either a 64-byte data flit or 2 32-byte data carriers may be used.

2. When a single command or response specifies 128- or 256-bytes of immediate data, 2 and 4 DCP credits
are required. Multiple 64-byte data flits, or multiple 32-byte data carriers, or a combination of 64- and 32-
byte data carriers may be used.

3. When a single command or response specifies 32 or fewer bytes of immediate data, a single DCP credit
is required and a single data carrier shall be used. This applies to commands and responses with a
pLength field specified, dot-be commands, 8-byte data carrier use, and dot-ow responses.

A data carrier shall be associated with a single command or response. Multiple data carriers may be associ-
ated with a single command or response.

Within each control flit, there is an order to the commands and responses as shown in Section 5.1.2 TL
command/response content on page 184. Commands and responses loaded into lower numbered slots are
ordered before commands and responses loaded into higher numbered slots. Data shall be loaded into data
carriers by the TL in the same order as the commands and responses are specified in the control flits. Data
carried by control flits that are loaded into lower numbered slots are ordered before data carried by higher

63:18 DL specified The specification for this 46-bit field is found in the OpenCAPI DL specification. This field is expected
to contain the CRC, ACK, and ACK count information.

Slot 4 Slot 3 Slot 2 Slot 1 Slot 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sl
ot

 9

Slot 8 Slot 7 Slot 6 Slot 5 Slot 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Slot 13 Slot 12 Slot 11 Slot 10 Slot 9

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Slot 15 Slot 14 Slot 13

55 54 53 52 51 55 49 48

Bit Field name Description (Page 2 of 2)

https://members.opencapi.org/wg/DL_wg_discuss/document/194
https://members.opencapi.org/wg/DL_wg_discuss/document/194

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 185 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

numbered slots. Data carried in a control slot is ordered before the data carried in data flits that follow. In
control flits with data carriers, the commands or responses are treated as if they precede the data. For
example, a command or response that specifies immediate data may find the data in the same control flit as
the command or response.

For each command and response associated with data, there is an implied length or a dLength field and a
dPart field specified. These are used to pull the data out of the data carriers and associate the data with the
command or response. Each data carrier is examined using the length information and the data is associated
with a single command or response. (Additional association can be made using the AFU or CAPP tag
provided to locate the machine associated with the command or response.) In some cases (for example,
dma_pr_w), the dLength field is implicit and is specified as a single data carrier. The minimum size of the
data carrier is determined by the command’s pLength field.

Data shall be address aligned within a 64-, 32- and 8-byte data carrier. That is, this architecture treats a data
carrier as if it were a memory-mapped naturally aligned data block, where each byte of data is loaded into the
data carrier based on the address of the byte being loaded. When a command or response with immediate
data uses multiple data carriers, the data shall be loaded in increasing address order. That is, offset 0 from
the address specified by the command or response, and adjusted by the dPart field, shall be loaded first and
the remaining data is loaded in increasing address order.

When the data is not associated with an address, the data shall be placed starting at byte 0 of the data carrier
and increasing byte locations until all the data has been loaded into the data carrier. A command or response
with this type of data shall use only a single data carrier. Additional restrictions might be found in the
command and response description.

A 64-byte data flit may be used with any type of data that is specified for one of the following:

• Any command

• Responses not specified as dot-ow and dot-xw

One to four data flits may be used to provide data associated with an address. The number of data flits is
dependent on the number of bytes specified by the command or response associated with the immediate

There are naturally occurring cases when all bytes of a data carrier are not fully specified by the command or
response associated with the data. For example, the data associated with a dma_pr_w does not specify all bytes
within a 64-byte data flit. That is, there are bytes within the data carrier that are defined by the write operation
based on pLength and starting address, and there are bytes that are undefined by the architecture.

It is strongly recommended that the architecturally undefined data bytes found within a data carrier do not contain
information associated with any application other than the application associated with the command or response
and is limited to the permissions granted to the application.

The method used to ensure that the contents of undefined data locations within a data carrier are not from a
different process is determined by the implementation. Suggested methods include, but are not limited to the
following:

• Set all undefined byte locations to zero.
• Set all undefined byte locations to a fixed or random non-zero pattern of bits
• Replicate the content of defined byte locations to undefined byte locations.

The architecture does not provide architectural conformance statements regarding the contents of undefined byte
locations within a data carrier other than the conformance statement specified by the definition of the architectural
term “undefined”.

Engineering note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 186 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

data. When multiple data flits are used, the data flits shall be loaded in increasing address order based on
the dLength and dPart specified in the command or response.

A 32-byte data field found in a control flit shall be used to carry data associated with an address only. One or
more 32-byte data fields may be associated with a single command or response. When multiple 32-byte data
carriers are used, data shall be loaded in increasing address order based on the dLength and dPart specified
in the command or response.

• dot-ow responses are associated with a single 32-byte data field.

• dot-xw responses shall not use 32-byte data fields as a data carrier.

A combination of 64- and 32-byte data carriers may be used for commands and responses with 64- 128- or
256-bytes of immediate data specified. 64-byte carriers shall be loaded on aligned 64 byte boundaries. 32-
byte data carriers shall be loaded on aligned 32-byte boundaries. Note that this restricts when an implemen-
tation is allowed to switch between using 64- and 32-byte data carriers since the architecture requires that the
data be loaded in increasing address order regardless of the mix of data carriers used.

An 8-byte data field found in a control flit may be used to carry data associated with an address only. Only
one 8-byte data field shall be associated with a command or response.

• dot-xw responses shall use only 8-byte data fields as a data carrier.

Table 5-2 illustrates how a command and response stream’s data might be packed into a series of control
and data flits following the ordering rules for data.

5.1.3.1 Data alignment for commands and responses specifying a host_tag field.

castout.push, cl_rd_resp and cl_rd_resp.ow use a host_tag field and do not have an address directly
associated with the data.

Table 5-2. DL frame loading to illustrate data ordering

DL Content Slot(15) Slot(14) Slot(13) Slot(12) Slot(11) Slot(10) Slot(9) Slot(8) Slot(7) Slot(6) Slot(5) Slot(4) Slot(3) Slot(2) Slot(1) Slot(0)

DL Content write_mem(dL=128, dP=0) pr_wr_mem(pL=8) read_response.xw 8-Byte Data(1) 8-Byte Data (0)

64-Byte Data (2)

64-Byte Data (3)

DL Content read_response(dL=128) nop 32-Byte Data (4)

DL Content nop nop 32-Byte Data (5)

DL Content read_response(dL=128) nop 32-Byte Data (6)

DL Content read_response.ow nop 32-Byte Data (7)

64-Byte Data (8)

64-Byte Data (9)

DL Content nop nop 32-Byte Data (10)

Bytes(63:0)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 187 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Data is placed into data carriers following the same rules as commands and responses with addresses
described in the previous section. This section defines how the host_tag is associated with the alignment of
immediate data in 64- and 32-byte data carriers.

castout.push:

castout.push contains a dLength field that specifies the size and alignment of the naturally aligned data
block associated with the immediate data. The immediate data may be sent using 64- or 32-byte data
carriers, or a mix of 32- and 64-byte data carriers. The host_tag specified is associated with a naturally
aligned 64-byte segment found at offset 0 of the full data block.

• When dLength is specified as 64-bytes, there is a single host_tag and the data is treated as a naturally
aligned 64-byte data block.

• When the dLength is specified as 128 bytes, there are two host_tags. The host_tag specified is associ-
ated with the naturally aligned 64-byte segment found at offset 0 of the 128-byte data block. Based on the
host_tag arithmetic specification, host_tag + 1 is associated with the naturally aligned 64-byte segment
found at offset 64 of the 128-byte data block.

• When the dLength is specified as 256 bytes, there are four host_tags. The host_tag specified is associ-
ated with the naturally aligned 64-byte segment found at offset 0 of the 256-byte data block. Based on the
host_tag arithmetic specification, host_tag + 1 is associated with the naturally aligned 64-byte segment
starting at offset 64 of the 256-byte data block. Similarly, host_tag + 2 is associated with the naturally
aligned 64-byte segment starting at offset 128. host_tag + 3 is associated with the naturally aligned 64-
byte segment starting at offset 192.

cl_rd_resp:

cl_rd_resp is in response to a read_me, read_mes,read_s, or dot-t variants of these commands. These
commands contain an EA or TA field and dLength. The data requested is a naturally aligned data block based
on the dLength field.

cl_rd_resp contains a dLength, dPart and a host_tag field. The dPart(1:0) indicates the dLength sized natu-
rally aligned data block associated with the response. See the description of dPart(1:0) for the offset of the
data block returned with the response within the data block specified by the command. The host_tag speci-
fied is associated with the naturally aligned 64-byte segment found at offset 0 of the data block associated
with the response.

• When dLength is specified as 64-bytes, there is a single host_tag and the data is treated as a naturally
aligned 64-byte data block.

• When the dLength is specified as 128 bytes, there are two host_tags. The host_tag specified is associ-
ated with the naturally aligned 64-byte segment found at offset 0 of the 128-byte data block. Based on the
host_tag arithmetic specification, host_tag + 1 is associated with the naturally aligned 64-byte segment
found at offset 64 of the 128-byte data block.

• When the dLength is specified as 256 bytes, there are four host_tags. The host_tag specified is associ-
ated with the naturally aligned 64-byte segment found at offset 0 of the 256-byte data block. Based on the
host_tag arithmetic specification, host_tag + 1 is associated with the naturally aligned 64-byte segment
starting at offset 64 of the 256-byte data block. Similarly, host_tag + 2 is associated with the naturally
aligned 64-byte segment starting at offset 128. host_tag + 3 is associated with the naturally aligned 64-
byte segment starting at offset 192.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

DL frame format
Page 188 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

cl_rd_resp.ow:

cl_rd_resp.ow specifies a single 32-byte data carrier only and is used in response to read_me,
read_mes,read_s, or dot-t variants of these commands. dPart(2:0) specifies the 32-byte offset of the data
block returned with the response within the data block specified by the command.

Bit 0 of dPart(2:0) indicates the offset within the 64-byte naturally aligned data block associated with the
host_tag specified in the response. When bit 0 is ‘0’, the offset is 0. When bit 0 is ‘1’, the offset is 32. One and
only one host_tag is associated with each even and odd value dPart(2:0) pair. That is, dPart(2:0) values of 0
and1 are associated with a host_tag, dPart(2:0) values of 2 and 3 are associated with different host_tag and
so on.

Since the specification of the response cannot span 64-byte address boundaries, there is only one host_tag
associated with each cl_rd_resp.ow

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 189 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

6. TL and TLX template specifications
This specification defines the allowed placement formats of TL/TLX packets, metadata, extended metadata,
8- and 32-byte data fields within the DL/DLX frame’s control flit. The allowed formats are captured in four
capability descriptions defined in Table 6-1 on page 190.

A TL template field is specified within the DL content of a DL packet’s control flit. The DL content of the
control flit is shown in Section 5.1 DL frame control flit (64 bytes) on page 183. The DLX frame has the same
format as the DL frame.

The TL architecture specifies all template capability descriptions and specifies a number for each specifica-
tion that is used in the TL template field. When transmitting a packet:

• The TL shall place the TL transmit template number used to form the control flit of the DL frame.

• The TLX shall place the TLX transmit template number used to form the control flit of the DLX frame.

The template capabilities specify the legal locations of one or more TL/TLX command or response packets’
starting slot29 as well as the contiguous number of slots used by the packet. In addition to TL/TLX command
and response packets, the templates specify the legal locations of metadata and data and the contiguous
number of slots used by the metadata and data fields. The format of the data fields is also specified. Unused
control flit slots are reserved. That is, unused control flit slots shall be set to an all zero state when transmitted
and shall not be examined on receipt for any purpose other than CRC checking.

The template restricts the maximum length of TL/TLX command or response packets placed in the control flit.
The template specification permits a smaller packet to be placed into a larger specification footprint. For
example, a six-slot template specification may be filled with a 4-, 2-, or 1-slot packet. The state of the unused
slots is undefined.

A template may further restrict the TL/TLX command or response packet placed into packet locations. These
restrictions include and are not limited to the following:

• Command

• Response

• VC used

• DCP requirement (present or absent)

Table 6-1 on page 190 defines the template capabilities.

29.Bits 27:0 of the TL/TLX packet specification.

Developer Note
Allowing smaller TL packets to occupy larger packet-specified locations helps to reduce the number of template
specifications.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 190 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

The intersection of the TL transmit template capability and the TLX receive template capability shall not be a
null set. All OpenCAPI devices shall support TLX receive template x‘00’.

The intersection of the TLX transmit template capability and the TL receive template capability shall not be a
null set. All OpenCAPI hosts shall support TL receive template x‘00’.

See the host’s platform architecture for additional information about how the receive and transmit capabilities
are resolved and what is stored into the OpenCAPI device’s configuration space.

Table 6-2 defines the terms used in Section 6.1 and Section 6.2.

Table 6-1. Template capability definitions

Capability Definition Specified by

TLX receive template Specifies the templates that the OpenCAPI device supports when receiving DL frames. OpenCAPI device

TL transmit template Specifies the templates that the host supports when transmitting a DL frame to the
OpenCAPI device. Host

TL receive template Specifies the templates that the host supports when receiving DLX frames. Host

TLX transmit template Specifies the templates that the OpenCAPI device supports when transmitting a DLX
frame to the host. OpenCAPI device

Table 6-2. Terms used in template capability specifications (Page 1 of 2)

Term Width
(bits) Description

<n>-slot <type> packet n*28 The number <n> of slots specified for a packet <type> of either a TL or TLX.

Data(x:y) Indicates a data field of x + 1 - y bits in length.

xmeta 72 Extended-metadata. A 72-bit field associated with a 32 byte naturally aligned data block.
Extended metadata is placed in the control flit carrying the 32-byte data block.
The specification of the extended-metadata is outside the scope of this architecture and is found
in the host and OpenCAPI device’s documentation.

Meta 7 Metadata. A 7-bit field associated with a naturally aligned data block. The size of the data block is
implementation dependent. Metadata may be associated with blocks smaller than the implemen-
tation-specified size during data transfer.
The specification of the metadata is outside the scope of this architecture and is found in the host
and OpenCAPI device’s documentation.
The implementation defines the transformation of the metadata associated with a smaller block
when merged into a larger data block. For example, the implementation’s data block size might be
64 bytes and an update to an 8-byte naturally aligned data block might be required. When the 8-
byte block is provided with metadata, the implementation determines how the metadata provided
with the 8-byte block is used to transform the metadata associated with the 64-byte block.

• mdf(n) indicates metadata associated with the nth data flit following the control flit containing
the metadata. Each field is 7 bits wide.

• meta(6:0) specifies a single metadata field associated with data found in the control flit.

R Indicates a reserved bit in a slot.
• R(x:y) specifies x + 1 - y reserved bits
• R(0) specifies a single reserved bit

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 191 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

6.1 TLX receive and TL transmit template capability specification

V 2 A 2-bit field indicating that the associated data is valid and if it is bad.
Bit Description
0 Bad data indication. This bit is valid only when bit 1 is set to ‘1’.

0 The associated data is good.
1 The associated data is bad.

1 Valid field indication.
0 The associated data is not valid.
1 The associated data and bit 0 are valid.

Table 6-3. TLX receive/TL transmit template (Page 1 of 3)

Slot # x‘00’ x‘01’ x‘02’ x‘03’

0
return_tlx_creditsa

4-slot TL packet

2-slot TL packet

4-slot TL packet
1

2
reserved 2-slot TL packet

3

4

6-slot TL packet

4-slot TL packet

2-slot TL packet

6-slot TL packet

5

6
2-slot TL packet

7

8

4-slot TL packet

2-slot TL packet
9

10

reserved

2-slot TL packet

6-slot TL packet

11

12

4-slot TL packet

2-slot TL packet
13

14
2-slot TL packet

15

Table 6-2. Terms used in template capability specifications (Page 2 of 2)

Term Width
(bits) Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 192 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Slot # x‘04’ x‘05’ x‘06’ x‘07’b

0
2-slot TL packet 2-slot TL packet 2-slot TL packet

Data(27:0)

1 Data(55:28)

2 mdf(3) || mdf(2) || mdf(1) ||
mdf(0)

mdf(3) || mdf(2) || mdf(1) ||
mdf(0)

mdf(3) || mdf(2) || mdf(1) ||
mdf(0) Data(83:56)

3 mdf(7) || mdf(6) || mdf(5) ||
mdf(4)

mdf(7) || mdf(6) || mdf(5) ||
mdf(4)

mdf(7) || mdf(6) || mdf(5) ||
mdf(4) Data(111:84)

4

4-slot TL packet

1-slot TL packet

6-slot TL packet

Data(139:112)

5 1-slot TL packet Data(167:140)

6 1-slot TL packet Data(195:168)

7 1-slot TL packet Data(223:196)

8

4-slot TL packet

1-slot TL packet Data(251:224)

9 1-slot TL packet
mdf(1) || mdf(0) || R(0) ||

V(1:0) || meta(6:0) ||
Data(255:252)

10 1-slot TL packet

6-slot TL packet

2-slot TL packet
11 1-slot TL packet

12

4-slot TL packet 4-slot TL packet 4-slot TL packet
13

14

15

Table 6-3. TLX receive/TL transmit template (Page 2 of 3)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 193 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Slot # x‘08’c x‘09’d x‘0A’e x’0B’f

0 Data(27:0) Data(27:0) Data(27:0) Data(27:0)

1 Data(55:28) Data(55:28) Data(55:28) Data(55:28)

2 R(10:0) || V(1:0) || meta(6:0) ||
Data(63:56) Data(83:56) Data(83:56) Data(83:56)

3 Data(27:0) Data(111:84) Data(111:84) Data(111:84)

4 Data(55:28) Data(139:112) Data(139:112) Data(139:112)

5 R(10:0) || V(1:0) || meta(6:0) ||
Data(63:56) Data(167:140) Data(167:140) Data(167:140)

6
2-slot TL packet

Data(195:168) Data(195:168) Data(195:168)

7 Data(223:196) Data(223:196) Data(223:196)

8

4-slot TL packet

Data(251:224) Data(251:224) Data(251:224)

9
mdf(1) || mdf(0) || R(0) ||

V(1:0) || meta(6:0) ||
Data(255:252)

xmeta(23:0) || Data(255:252) xmeta(23:0) || Data(255:252)

10
2-slot TL packet

xmeta(51:24) xmeta(51:24)

11 R(5:0) || V(1:0) ||
xmeta(71:52)

R(5:0) || V(1:0) ||
xmeta(71:52)

12

4-slot TL packet

1-slot TL packet

4-slot TL packet

2-slot TL packet
13 1-slot TL packet

14 1-slot TL packet 1-slot TL packet

15 1-slot TL packet 1-slot TL packet

a.Template x’0’ slots 0 and 1 shall contain either a nop or return_tlx_credits
b.Template x’07’ is limited to a two data flit run length. Slot 9 contains the metadata for data flits 0 and 1 as shown.
c.Template x‘08’ should only be used when there is at least one 8-byte data carrier valid. That is, a single 8-byte data shall be placed in
slots 0 to 2. Violating this rule may cause a Bad template usage error to be reported. Metadata fields are not provided in this template.
This template shall only be used when metadata is not required for the data in the data flits following the control flit using this template.
d.Template x’09’ is limited to a two data flit run length. Slot 9 contains the metadata for data flits 0 and 1 as shown.
e.Template x’0A’ specifies extended metadata associated with the 32-byte data carrier in the control flit. This template shall only be used
when metadata is not required for the data in the data flits following the control flit using this template.
f.Template x’0B’ specifies extended metadata associated with the 32-byte data carrier in the control flit. This template shall only be used
when metadata is not required for the data in the data flits following the control flit using this template.

Table 6-3. TLX receive/TL transmit template (Page 3 of 3)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 194 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

6.2 TL receive and TLX transmit template capability specification

Table 6-4. TL receive/TLX transmit template (Page 1 of 2)

Slot # x‘00’ x‘01’ x‘02’ x‘03’

0
return_tl_creditsa

4-slot TLX packet

2-slot TLX packet

4-slot TLX packet
1

2
reserved 2-slot TLX packet

3

4

6-slot TLX packet

4-slot TLX packet

2-slot TLX packet

6-slot TLX packet

5

6
2-slot TLX packet

7

8

4-slot TLX packet

2-slot TLX packet
9

10

reserved

2-slot TLX packet

6-slot TLX packet

11

12

4-slot TLX packet

2-slot TLX packet
13

14
2-slot TLX packet

15

Slot # x‘04’ x‘05’ x‘06’ x‘07’b

0
2-slot TLX packet 2-slot TLX packet 2-slot TLX packet

Data(27:0)

1 Data(55:28)

2 mdf(3) || mdf(2) || mdf(1) ||
mdf(0)

mdf(3) || mdf(2) || mdf(1) ||
mdf(0)

mdf(3) || mdf(2) || mdf(1) ||
mdf(0) Data(83:56)

3 mdf(7) || mdf(6) || mdf(5) ||
mdf(4)

mdf(7) || mdf(6) || mdf(5) ||
mdf(4)

mdf(7) || mdf(6) || mdf(5) ||
mdf(4) Data(111:84)

4

4-slot TLX packet

1-slot TLX packet

6-slot TLX packet

Data(139:112)

5 1-slot TLX packet Data(167:140)

6 1-slot TLX packet Data(195:168)

7 1-slot TLX packet Data(223:196)

8

4-slot TLX packet

1-slot TLX packet Data(251:224)

9 1-slot TLX packet
mdf(1) || mdf(0) || R(0) ||

V(1:0) || meta(6:0) ||
Data(255:252)

10 1-slot TLX packet

6-slot TLX packet

2-slot TLX packet
11 1-slot TLX packet

12

4-slot TLX packet 4-slot TLX packet 4-slot TLX packet
13

14

15

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 195 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

6.3 Control-flit rate capability

Each receive and transmit template capability specification has an associated control-flit rate capability.
When a template is used to format a control flit, the template’s associated control flit rate capability specifies
when the next control flit may be sent.

The control-flit rate capability controls the DL flit spacing between control flits. The configuration space for this
capability provides 4 bits.

• A value of x‘0’ indicates that a control flit may be sent in the following flit-cycle.

• A value of x‘1’ indicates that the cycle following the control flit shall contain either a null control flit or a
data flit.

Slot # x‘08’c x‘09’d x‘0A’e x’0B’f

0 Data(27:0) Data(27:0) Data(27:0) Data(27:0)

1 Data(55:28) Data(55:28) Data(55:28) Data(55:28)

2 R(10:0) || V(1:0) || meta(6:0) ||
Data(63:56) Data(83:56) Data(83:56) Data(83:56)

3 Data(27:0) Data(111:84) Data(111:84) Data(111:84)

4 Data(55:28) Data(139:112) Data(139:112) Data(139:112)

5 R(10:0) || V(1:0) || meta(6:0) ||
Data(63:56) Data(167:140) Data(167:140) Data(167:140)

6
2-slot TLX packet

Data(195:168) Data(195:168) Data(195:168)

7 Data(223:196) Data(223:196) Data(223:196)

8

4-slot TLX packet

Data(251:224) Data(251:224) Data(251:224)

9
mdf(1) || mdf(0) || R(0) ||

V(1:0) || meta(6:0) ||
Data(255:252)

xmeta(23:0) || Data(255:252) xmeta(23:0) || Data(255:252)

10
2-slot TLX packet

xmeta(51:24) xmeta(51:24)

11 R(5:0) || V(1:0) ||
xmeta(71:52)

R(5:0) || V(1:0) ||
xmeta(71:52)

12

4-slot TLX packet

1-slot TLX packet

4-slot TLX packet

2-slot TLX packet
13 1-slot TLX packet

14 1-slot TLX packet 1-slot TLX packet

15 1-slot TLX packet 1-slot TLX packet

a.Template x’00’ slots 0 and 1 shall contain either a nop or return_tl_credits.
b.Template x’07’ is limited to a two data flit run length. Slot 9 contains the metadata for data flits 0 and 1 as shown.
c.Template x‘08’ should only be used when there is at least one 8-byte data valid. A single 8-byte data shall be placed in slots 0 to 2. Vio-
lating this rule may cause a Bad template usage error to be reported. Metadata fields are not provided in this template. This template
shall only be used when metadata is not required for the data in the data flits following the control flit using this template.
d.Template x’09’ is limited to a two data flit run length. Slot 9 contains the metadata for data flits 0 and 1 as shown.
e.Template x’0A’ specifies extended metadata associated with the 32-byte data carrier in the control flit. This template shall only be used
when meta data is not required for the data in the data flits following the control flit using this template.
f.Template x’0B’ specifies extended metadata associated with the 32-byte data carrier in the control flit. This template shall only be used
when meta data is not required for the data in the data flits following the control flit using this template.

Table 6-4. TL receive/TLX transmit template (Page 2 of 2)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

TL and TLX template specifications
Page 196 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

In general, a value of “n” indicates that there shall be a gap of “n” 64-byte flits before the next control flit can
be sent. During the gap, either null control flits or data flits shall be inserted.

A null control flit is defined as using template x‘00’. The 6-slot packet contains a 1-slot null command, and the
remaining five slots are undefined. A return credit response found in slots 0 and 1 may be used to return
credits.

6.4 Metadata capability

Templates x‘04’ through x‘06’ allow the specification of metadata associated with up to eight data flits.
Templates x‘07’ and ‘09’allow specification of metadata associated with up to two data flits. To enable this, a
metadata capability is specified in the configuration space for the host and the OpenCAPI device.

Templates x’0A’ and x‘0B’ allows the specification of extended-metadata for the 32-byte data carrier specified
in the control flit. To enable this, an extended-metadata capability is specified in the configuration of the host
and the configuration space for the OpenCAPI device.

Engineering note
At the start of initialization of an OpenCAPI device, the flit rate capability is unknown since the configuration
space has not yet been examined. Template x’00’ is used to issue config_read commands to determine the
device’s capabilities.

Until the device’s capabilities are determined, template 0 shall be used and the control flit rate capability shall be
assumed to be x’F’.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 197 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

7. Error detection
This section identifies errors and classes of errors detected by the TL and TLX. Error notifications and the
collection of error signatures are specified.

• The host or device may provide:

– Additional error signature information for error events defined by this architecture

– Additional error events that are implementation-specific.

Specification of these implementation-specific error signature and error event extensions might be found in
either the host’s platform architecture, the host’s user’s guide, or the manufacturer’s documentation provided
with the OpenCAPI device.

Implementation-specific fatal error events shall be summarized in the AFU Fatal error detected and the Host
Fatal error detected error events specified by this specification. This specification provides these summary
error events to expose the existence of fatal implementation-specific error events and are included in confor-
mance tests. Note that conformance testing may not test the underlying implementation-specific error events,
but shall ensure that the architecturally specified error events are tested.

Actions taken by hypervisors, operating systems, firmware, or device drivers when error notifications are
asserted are beyond the scope of this architecture.

Error events are specified in Table 9-1 on page 213 using the following format:

Error classes are specified as follows:

• Correctable error events are error conditions that the hardware can recover without any loss of function,
state, or data.

• Fatal error events are error conditions that result in the unrecoverable loss of function, state, or data.
Continued use of the link and attached device might not be safe. A reset might be required to return the
link and device to a safe operational state. The architecture does not place conformance requirements on
an implementation once a fatal error event has occurred. That is, continued use of the link may occur and
the results of operations after a fatal error are undefined.

The TL shall report the detection of a fatal error to the device using the method described by the
OpenCAPI DL specification.

The TLX shall report the detection of a fatal error to the host using the method described by the
OpenCAPI DL specification.

• Non-fatal error events are error conditions that affect the operation of a single transaction. The link is con-
sidered to be operationally safe. The results of the transaction might not be as intended. That is, the

Error event name

Description of error event
• Action taken

Error signature:

The minimum set of information captured by a compliant design.

Error Class Specifies the class and architecture conformance requirements.

Engineering Note
The error signatures specified in Table 9-1 on page 213
shall be accessible and may be obtained for diagnostic use
by an examination of hardware facilities and may require
additional host- or device-specific software manipulation.

https://members.opencapi.org/wg/DL_wg_discuss/document/194
https://members.opencapi.org/wg/DL_wg_discuss/document/194
https://members.opencapi.org/wg/DL_wg_discuss/document/194
https://members.opencapi.org/wg/DL_wg_discuss/document/194

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 198 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

results of the operation are undefined. Devices associated with the error might require a reset. Devices
not associated with the error are not affected by the error. Continued use of the link may occur and the
results of operations after a non-fatal error shall conform to the requirements of the architecture.

Error events are assigned error types and may be assigned an error subtype. These assignments are found
in bold text in the description of the error event.

Error events are assigned an error class and a conformance requirement.

• Required error events are demanded by the architecture and shall be included in any architecture confor-
mance testing. All error events specified as required shall be included in both the TL and TLX implemen-
tation unless otherwise specified.

• Optional error events are not required by the architecture. Careful reading of the description of the error
events assigned as optional is strongly recommended since detection may be required due to architectur-
ally required actions to be taken. Conformance testing may indicate the presence or absence of the hard-
ware’s capability to detect and report the error event.

7.1 Error events

The following error events are specified

acTag specified in a command is outside
the configured specification set

acTag specified in the command points to
an invalid entry AFU Fatal error detected

Age out specified for xlate_touch.n Bad BDF and PASID combination Bad Cache State Transition

Bad data flit indication error Bad data received Bad opcode and template combination

Bad response received Bad template x‘00’ format Bad template usage

Control flit overrun DCP credit under-run Host Fatal error detected

Illegal return credit command location log2_page_size specification in xlate_touch
is bad. Missing Metadata

PA specified is out of bounds Posted command error Reserved field not transmitted as 0

Reserved field value used Reserved opcode used Returned credit overflows credit counter

ta_req specified for xlate_touch.n TL response timer expired Unexpected data carrier

Unsupported page size specified Unsupported template format

VC credit under-run

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 199 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 7-1. Error event specification (Page 1 of 10)

Error event Description

acTag specified in a command is outside
the configured specification set

On receipt of a TLX command packet containing an acTag field, it is determined that the
acTag is specified outside the configured specification set.

• The operation is aborted without changes to the machine state, and a malformed
packet error type 2 event is asserted.

Error signature:

opcode(7:0), AFUTag(15:0)

Error Class: Fatal/Required (TL only)

acTag specified in the command points to
an invalid entry

On receipt of a TLX command packet containing an acTag field, the entry in the acTag
table is examined and found to be marked invalid.
The operation is aborted without changes to the machine state, and an address context
error type 0 event is asserted.

Error signature: opcode(7:0), AFUTag(15:0), acTag(11:0)

Error Class: Fatal/Required (TL only)

AFU Fatal error detected

An AFU and device implementation-specific fatal error.
This error is specified by the device manufacturer.

Error signature: See the manufacturer’s device documentation.

Error Class: Fatal/Optional (TLX only)

Age out specified for xlate_touch.n

An xlate_touch.n is specified with a command flag of “age out”. This is a nonsensical
combination. The dot-n directive is ignored, and the operation proceeds to completion.

• An xlate_touch error type 1 event may be asserted.

Error signature: AFUTag(15:0)

Error Class: Non-fatal/Optional (TL only)

Bad BDF and PASID combination

On receipt of a TLX command packet containing an acTag field, the entry in the acTag
table is found to be valid. The BDF and PASID specified are not valid for use.
The operation is aborted without changes to the machine state, and an address context
error type 1 event is asserted.

Error signature: opcode(7:0), AFUTag(15:0), acTag(11:0)

Error Class: Fatal/Required (TL only)

Bad Cache State Transition

A castout or castout.push command has specified an illegal cache state transition.
Legal cache state transitions can be found in Table 7-2 Cache state transition errors on
page 208.

• The cache state of the line is unchanged. A coherency error event is asserted.

Error signature: opcode(7:0), dLength(1:0), cache_state(2:0) found in the command
specification, host_tag(23:0), Initial cache state held by the host.

Error Class: Fatal / Required (TL only)

Engineering note
When the TLX command is assign_actag, the AFUTag in the
error signature is reserved.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 200 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Bad data flit indication error

On the receipt of a control flit, the bad data flit field indicates that a data flit is bad and is
located beyond the scope of the control flit. That is, the control flit indicates that n data
flits follow, and the bad data flit field indicates that data flit n or above is in error. In the fol-
lowing valid combinations, an ‘x’ indicates that the field may take on either a 0 or 1 state.

• A malformed control flit error type 3 event is asserted.
The bad data flit information beyond the scope of the control flit is ignored.

Error signature:
The bad data flit and data run length fields are captured. These are
found in the DL content of the control flit found in bits 11:0 as shown
in Section 5.1.1 DL content on page 183.

Error Class: Non-fatal/Optional (TL and TLX)

Bad data received

On processing data flits, a data flit is marked bad by the bad data flit indication field found
in the control flit as described in Section 5.1.1 DL content on page 164.

• A bad data flit error event may be asserted. The command or response associated
with the bad data is provided with the data and the bad data indication. The bad data
indication shall be propagated to the final destination of the data. It is strongly rec-
ommended that the error propagation be implemented in a fashion that allows for
error isolation; that is, first error incidence reporting.

Error signature:

Data is associated with:
TLX response packet: opcode(7:0), CAPPTag(15:0).
TLX command packet: opcode(7:0), acTag(11:0), AFUTag(15:0), or
opcode(7:0), host_tag(23:0).
TL response packet: opcode(7:0), AFUTag(15:0).
TL command packet: opcode(7:0), CAPPTag(15:0)

Error Class: Non-fatal/Optional (TL and TLX)

Bad opcode and template combination

The format of the control flit specified by the template is in error. Opcodes specified indi-
cate packet sizes larger than allowed by the template found in the control flit. This error is
detected in both the TL and TLX.
All commands or responses identified in the control flit are aborted and do not cause any
machine state changes, and a malformed control flit error type 2 event is asserted.

Error signature:

• Template (5:0) found in the control flit.
• The opcode (7:0) found in the control flit where it was deter-

mined that the template packet size rules were violated.
• The slot location, a 4-bit field, where it was determined that the

template packet size rules were violated.

Error Class: Fatal/Required. (TL and TLX)

Table 7-1. Error event specification (Page 2 of 10)

Error event Description

Data run length Bad data flit

x‘0’ ‘0000 0000’

x‘1’ ‘0000 000x’

x‘2’ ‘0000 00xx’

x‘3’ ‘0000 0xxx’

x‘4’ ‘0000 xxxx’

x‘5’ ‘000x xxxx’

x‘6’ ‘00xx xxxx’

x‘7’ ‘0xxx xxxx’

x‘8’ ‘xxxx xxxx’

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 201 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Bad response received

TL: On receipt of a TLX response packet, the CAPPTag is first examined to determine if
a prior command has been issued using the CAPPTag found in the response packet. It is
reported as a bad response received variant 0 if the CAPPTag has not been used.
If the response packet is not a variant 0, the response opcode is checked to determine if
it is a valid response for the command opcode used. It is reported as a bad response
received variant 1 if it is not.

TLX: On receipt of a TL response packet, the AFUTag is first examined to determine if a
prior command has been issued using the AFUTag found in the response packet. It is
reported as a bad response receive variant 0 if the AFUTag has not been used.
If the response packet is not a variant 0, the response opcode is checked to determine if
it is a valid response for the command opcode used. It is reported as a bad response
received variant 1 if it is not.

• The actions specified by the completion of the command due to a correct response
are aborted, and a malformed packet error type 5 event is asserted. The state
machine representing the command source is left in an undefined state. The unde-
fined state of the machine is bounded, that is, the state is known to the implementa-
tion and the actions taken by the state machine in this architecturally undefined
state is predictable by the implementation.

Error signature:

TL: CAPPTag(15:0), variant(0). For a variant 1, the command
opcode(7:0) is also provided.
TLX: AFUTag(15:0), variant(0). For a variant 1, the command
opcode(7:0) is also provided.
In the error signature, the variant(0) field is set to the variant error
type.

• variant(0) = ‘0’ when the error is variant 0.
• variant(0) = ‘1’ when the error is variant 1.

Error Class: Fatal/Required (TL and TLX)

Bad template x‘00’ format

The format of the control flit, specified as using the x‘00’ template, does not match the
template x‘00’ format. Slot 0 does not contain either a nop, or return_tlx_credits
(detected by the TLX), or return_tl_credits (detected by the TL), opcode.

• Any commands or responses found in the control flit are aborted and do not cause
any machine state changes. A malformed control flit error type 0 event is
asserted.

Error signature: Slot 0 (27:0) contents

Error Class: Fatal/Required (TL and TLX)

Bad template usage

 Template x‘08’ is improperly used.
1. The template contains two 8-byte data fields, and the field starting in slot 0 is

unused (the valid bit is set to 0). (TL and TLX)
A malformed control flit error type 3 event is asserted. Any valid data is used.
Command and response packets, if any, are not dropped.

2. The data is associated with a fetch and swap operation (amo_rw, cmd_flag =
{x‘8’...x‘A’}) (TL and TLX)
A malformed control flit error type 4 event is asserted. Any valid data associated
with the control flit is dropped.

Error signature: Template (5:0) found in the control flit.

Error Class: 1. Non-fatal/Optional
2. Fatal/Required

Table 7-1. Error event specification (Page 3 of 10)

Error event Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 202 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Control flit overrun

The destination is unable to accept a subsequent control flit. A possible cause is a viola-
tion of the control flit rate capability for the prior control flit's template.

• The incoming control flit is discarded. The machine state is unchanged. A control
flit overrun error event is asserted.

Error signature: None

Error Class: Fatal/Required (TL and TLX)

DCP credit under-run

The consumer of DCP credits has issued more commands or responses that consume
DCP credits than the number of DCP credits released. DCP credits correspond to data
buffer resources in the data sink. This error detects when those resources have been
over-run by the data source. Data carriers are discarded. The machine state is
unchanged.
TL: The TLX has consumed more DCP credits than the TL has released to the TLX.
TLX: The TL has consumed more DCP credits than the TLX has released to the TL.

Error signature DCP channel number(2:0)

Error Class Fatal/Required (TL and TLX)

Host Fatal error detected

A TL and host implementation-specific fatal error.
This error is specified by the host manufacturer.

Error signature: See the manufacturer’s device documentation.

Error Class: Fatal/Optional (TL only)

Illegal return credit command location

TL: return_tl_credits shall be found only in the following slots based on the template
used:
x‘07’ slots (11:10)
x‘09’ slots (11:10)
x’0B slots(13:12)
All other templates slots(1:0)
TLX: Regardless of the template used, return_tlx_credits shall be found only in slots
1:0.

• The credit return, as specified by the command, may occur. A malformed packet
error type 3 event shall be asserted.

Error signature: Template (5:0) found in the control flit; slot where return credit
opcode was found (3:0).

Error Class: Fatal/Required (TL and TLX)

log2_page_size specification in xlate_touch
is bad.

This error is detected when an xlate_touch is specified with a cmd_flag specification of
age-out, and the page size specified by the ATC entry found does not match the page
size specified by the command’s log2_page_size field.

• See Figure 2-1 Address translation sequence: xlate_touch on page 111 for actions
taken when there is a mismatch.

• An xlate_touch error type 0 event may be asserted.

Error signature: acTag(11:0)

Error Class: Non-fatal/Optional (TL only)

Table 7-1. Error event specification (Page 4 of 10)

Error event Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 203 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Missing Metadata

The host and attached OpenCAPI device have been configured to use metadata, and
metadata has not been provided for a command or response that is specified with imme-
diate data.
The assertion of this error excludes config_write and config_read operations. These
operations tolerate the presence of metadata. That is, the use of metadata for
config_write and config_read operations is not defined by this architecture and an error
shall not be reported.
When missing metadata is determined, the following actions may be used to allow the
link to continue operation.
TL: The host may

• provide non-destructive metadata to the data block. The value used is beyond the
scope of the TL architecture.

• mark the data as bad.
TLX: The OpenCAPI device may

• provide non-destructive metadata to the data block. The value used is beyond the
scope of the TL architecture.

• mark the data as bad.
A Missing metadata error is asserted.

Error signature: TL: AFUTag;
TLX: CAPPTag.

Error Class: Non-fatal/Optional (TL and TLX)

PA specified is out of bounds

A command specifies a PA that is determined to be out of bounds for the AFUM.
For TL commands, the host has specified a PA that is outside the AFUM1 PA range.

• The operation is aborted without changes to the machine state. A PA specification
error event is asserted.

Error signature: opcode(7:0), PA(63:0)

Error Class: Fatal/Required (TLX)

Table 7-1. Error event specification (Page 5 of 10)

Error event Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 204 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Posted command error

 The TL detects an error associated with a TLX posted command that is not covered by
other errors defined in this specification.

• The operation is aborted. The machine state is undefined. A Posted command
error event is asserted.

Error signature:

AFUTag(15:0), Type(3:0). The Type field is specified as:
x’0’ Reserved
x’9’ Unsupported operand length
x’B’ Bad TA specification. The TA specified by the command is

not naturally aligned.
x’C’ The {TA, address context} is not recognized by the host.
x’E’ Failed for unspecified reason
x’F’ Bad TA specification. The {TA, address context} specified

by the command is does not have write permission as
required by the command.

All other code points are reserved.

Error Class: Fatal/Required (TL)

Reserved field not transmitted as 0

On the receipt of a command or response packet, it is determined that a field specified by
the architecture as reserved does not contain 0.

• The packet is used.That is, the operation specified by the command or response
occurs normally. This is an architecture conformance violation.

• A malformed packet error type 4 event is asserted.

Error signature: None.

Error Class: Non-fatal/Optional (TL and TLX)

Table 7-1. Error event specification (Page 6 of 10)

Error event Description

This error is detected only by the TL. There is no TLX detec-
tion of a posted TL command error. The reasoning is as fol-
lows:
xlate_done, intrp_rdy, rd_pf and force_evict are posted TL
commands that could be found in error by the TLX.

• rd_pf is explicitly specified to not report errors when the
TL command packet is found to malformed.

• The remaining commands report a Reserved field value
used error when the operand values are out of bounds or
otherwise reserved.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 205 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Reserved field value used

On the receipt of a command or response packet, it is determined that a field specifica-
tion contains an architecturally reserved value. If multiple fields contain reserved values,
only one field is reported.

• The operation is aborted and the machine state is unchanged. A malformed packet
error type 1 event is asserted.

The following fields have reserved values. Detection occurs at the receiver of the com-
mand or response packet.:

• cache_state. Detected by TL and TLX.
• cmd_flag. Detected by TL and TLX.
• dLength. Detected by TL and TLX.
• dPart(1:0) or dPart(2:0) detected by TL and TLX.
• host_tag specified out of negotiated range. Detected by TL and TLX.
• pLength. Detected by TL and TLX.
• Resp_code. Detected by TL and TLX.

Error signature:
opcode(7:0), starting (LSb) field offset within the packet. For exam-
ple, the acTag in a rd_wnitc TLX command packet has a field offset
of 24.

Error Class Fatal/Required (TL and TLX)

Reserved opcode used

On the receipt of a command or response packet, the opcode field is examined and found
to be a value reserved by the architecture.

• The packet is dropped, the machine state is unchanged. A malformed packet error
type 0 event is asserted.

Error signature: opcode(7:0)

Error Class: Fatal/Required (TL and TLX)

Returned credit overflows credit counter

On processing of a return_tl_credits or return_tlx_credits response packet, it is deter-
mined that the addition of the credits specified by the response will cause the counter to
overflow.

• The counter may increment and is allowed to saturate. That is, the counter shall not
wrap. A credit return error event is asserted.

Error signature:

opcode(7:0), specification of the counter or counters associated with
the error using the following format:

Error Class: Fatal/Required (TL and TLX)

ta_req specified for xlate_touch.n

An xlate_touch.n is specified with a command flag of ta_req. This is a nonsensical com-
bination since the dot-t indicates that an ATC entry is not formed, while the ta_req direc-
tive indicates that a translated address and a pinned ATC entry is required.
The dot-n directive is ignored and the operation proceeds to completion.

• An xlate_touch error type 2 event may be asserted.

Error signature: AFUTag(15:0)

Error Class: Non-fatal Optional (TL only)

Table 7-1. Error event specification (Page 7 of 10)

Error event Description

 TL: R R dcp.1 dcp.0 R R vc.2 vc.1 vc.0
TLX: dcp.3 dcp.2 R dcp.0 R vc.3 vc.2 R vc.0

8 7 6 5 4 3 2 1 0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 206 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

TL response timer expired

The TL or host has determined that the TLX or AFU has not responded within a host
architecture specified time out period.

• Changes to the machine state are undefined. A Response time out error event is
asserted.

The value specified is host specific and should be found in the host’s platform architec-
ture documentation.

Error signature:

Type(3:0)
x‘0’ General. Non-posted command time out.
x‘1’ force_evict waiting on castout or castout.push.
x’3’ synonym_detected waiting on synonym_done

• For type x’1’ and type x’3,’ it is strongly recommended that the
error signature include the host_tag.

Error Class: Fatal / Required (TL only)

Table 7-1. Error event specification (Page 8 of 10)

Error event Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 207 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Unexpected data carrier

The destination has detected that the accumulated number of data carriers has exceeded
the amount of data expected.
The expected data count is determined by an examination of the commands and
responses received that specify immediate data. The ordering requirements specifying
commands or responses with immediate data are received before the data is found in
Section 5.1.3 Data transport, order, and alignment on page 184.

TL:
TLX packets received by the TL with immediate data specify the amount of data expected
from the TLX.
TLX packets that specify immediate data:

TLX:
TL packets received by the TLX with immediate data specify the amount of data expected
by the TL.
TL packets that specify immediate data:

• The unexpected data carrier’s contents may be discarded. An unexpected data
carrier error event is asserted.

Error signature: None

Error Class: Fatal/Required (TL and TLX)

Table 7-1. Error event specification (Page 9 of 10)

Error event Description

mem_rd_response dma_w dma_w.n dma_w.be

dma_w.be.n dma_pr_w dma_pr_w.n amo_rw

amo_rw.n amo_w amo_w.n intrp_req.d

mem_rd_response.ow mem_rd_response.xw

castout.push intrp_req.d dma_w.t.p dma_w.t.p.s

dma_w.be.t.p dma_w.be.t.p.s dma_pr_w.t.p dma_pr_w.t.p.s

amo_rw.t.s amo_w.t.p amo_w.t.p.s

read_response write_mem write_mem.be pr_wr_mem

config_write

read_response.ow read_response.xw

cl_rd_resp cl_rd_resp.ow amo_rw amo_w

Expected data can be counted by determining the number of DCP credits
required to send the data as specified by the command or response. Counting
DCP credits can be split out by data credit pool number or aggregated.
Counts are incremented as expected-data-information, as described above, is
observed. Counts are decremented as the data is received. That is, the DCP
count of expected data is decremented as the data carriers arrive. When the
count drops below zero, an unexpected data carrier error is detected.
Other implementation specific methods may also be used.

Developer Note

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 208 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 7-2 shows all combinations of castout and castout.push commands and the error conditions that are
reported by Bad Cache State Transition. An X indicates a legal transition, and “error” indicates an illegal one
which shall assert the error.

Unsupported page size specified

Page size support is determined during initialization of the OpenCAPI device. The page
size capabilities of the host and the AFU are compared and the intersection of the page
sizes support are used. The log2_page_size field is specified in the following commands
and is checked for legal page size values.
Detected by the TLX on receipt of: touch_resp, touch_resp.t, kill_xlate.
Detected by TL on receipt of: xlate_release, xlate_touch(age out request only).

• The operation is aborted and changes to the machine state are undefined. A mal-
formed packet error type 6 is asserted.

Error signature: None

Error Class: Fatal/Required

Unsupported template format

An unsupported template is specified in a received control flit.
• Any commands or responses identified in the control flit are aborted. Changes to the

machine state are undefined. A malformed control flit error type 1 event is
asserted.

Error signature: Template (5:0) found in the control flit.

Error Class: Fatal/Required (TL and TLX)

VC credit under-run

The consumer of VC credits has issued more commands or responses that consume VC
credits than the number of VC credits released. VC credits correspond to command
queuing resources in the command receiver. This error detects when those resources
have been over-run by the command source. Commands and responses associated with
the VC channel or channels are discarded. Changes to the machine state are undefined.
TL: The TLX has consumed more VC credits than the TL has released to the TLX.
TLX: The TL has consumed more VC credits than the TLX has released to the TL.

Error signature VC channel number(2:0)

Error Class Fatal/Required

Table 7-2. Cache state transition errors (Page 1 of 2)

Host proxy cache state cache_state(2:0) castout,
cmd_flag=’0011’ castout.push Comments

M M X X update / write through

E error X clean

S error error Error

EI error X Down grade and retain

I error X Eviction

E M X X update / write through

E X X update / write through

S error error Error

EI X X Down grade or clean and
retain

I X X Eviction

Table 7-1. Error event specification (Page 10 of 10)

Error event Description

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

Error detection
Page 209 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

S M error error Error

E error error Error

S error error error

EI error error Error

I X error Eviction

EI M X X update / write through

E error X write through

S error error Error

EI X X write through

I X X Eviction

I M error error Error

E error error Error

S error error Error

EI error error Error

I error error Error

Table 7-2. Cache state transition errors (Page 2 of 2)

Host proxy cache state cache_state(2:0) castout,
cmd_flag=’0011’ castout.push Comments

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 210 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

8. OpenCAPI profiles

A device shall use an OpenCAPI profile to specify groups of commands, responses, and templates supported
by the device. Each row in the following tables identifies an architectural feature, and each column indicates
the content of a profile. The full specification of a profile is comprised of the same column from all tables in
this section.

Within each profile a feature is marked using the notation found in Table 8-1. The specification of the compli-
ance notation is taken from the view of the consumer of the command or response packet. That is, a
command that is specified as mandatory requires that the consumer of the command shall process and
execute the command per the architecture specification. Since the architecture specifies any responses or
errors that are reported, those features become mandatory as well.

Table 8-1. Feature compliance requirement notation

Support requirement
notation Description

(blank / empty) No conformance requirement, no recommendation guidance provided.

M Mandatory

M.c2 Mandatory when the AFU is C2. Otherwise it is unsupported (U).

M.cx Mandatory when the AFU is C1 or C2. Otherwise it is unsupported (U).

M.ir Mandatory when the AFU issues any form of intrp_req or wake_host_thread. Otherwise it is unsupported
(U).

M.mx Mandatory when the AFU is M1. Otherwise it is unsupported (U).

M.sc Mandatory when the AFU issues the sync command. Otherwise it is unsupported (U).

M.ta Mandatory when the AFU supports the use of translated addresses (TA). Otherwise it is optional (O) or
unsupported (U) as specified by the table note.

M.tp Mandatory when the required template is supported by the TL and TLX. Otherwise it is unsupported (U).

M.wht Mandatory when the TLX issues wake_host_thread. Otherwise it is unsupported (U).

M.xt Mandatory when xlate_touch is issued by the TLX. Otherwise it is unsupported (U).

O Optional. This feature may be supported. Conformance evaluation to determine the presence of the feature
and when present shall test its architectural compliance.

O.E Compliance specification for endianness support.
Either big or little endian data formats used in atomic* class commands may be supported. An implementa-
tion shall support one of the formats.

U Unsupported. This feature is not included in conformance evaluation. Use of a command or response noted
as unsupported may result in a fatal error event.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 211 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-2 specifies the compliance requirements for the TLX and AFU accepting and processing a command
from the TL and host.

Table 8-3 specifies the compliance requirements for the TL and host accepting and processing a command
from the TLX and AFU.

Table 8-2. Profile specifications for TL commands

TL command Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

amo_rd U U O

amo_rw U U O

amo_w U U O

config_read M M M

config_write M M M

disable_atc U U M.ta1

disable_cache U U M.c2

enable_atc U U M.ta1

enable_cache U U M.c2

force_evict U U M.c2

intrp_rdy M.ir M.ir M.ir

kill_xlate U U M.ta1

mem_cntl U O O

nop M M M

pad_mem U O O

pr_rd_mem M,mx M M.mx

pr_wr_mem M.mx M M.mx

rd_mem M.mx M M.mx

rd_pf U M M.mx

write_mem M.mx M M.mx

write_mem.be M.mx M M.mx

xlate_done M.cx U M.cx

Notes
1. When the device does not support translated addresses (TA), support is Optional

(O).

Table 8-3. Profile specifications for TLX commands (Page 1 of 3)

TLX command Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

amo_rd M U M

amo_rd.n M U M

amo_rd.t M U M

amo_rd.t.s M U M

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 212 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

amo_rw M U M

amo_rw.n M U M

amo_rw.t M U M

amo_rw.t.s M U M

amo_w M U M

amo_w.n M U M

amo_w.t.p M U M

amo_w.t.p.s M U M

assign_actag M M M

castout U U M

castout.push U U M

dma_pr_w M U M

dma_pr_w.n M U M

dma_pr_w.t.p U U M

dma_pr_w.t.p.s U U M

dma_w M U M

dma_w.be M U M

dma_w.be.n M U M

dma_w.be.t.p U U M

dma_w.be.t.p.s U U M

dma_w.n M U M

dma_w.t.p U U M

dma_w.t.p.s U U M

intrp_req M M M

intrp_req.d M M M

intrp_req.d.s U U M

intrp_req.s U U M

nop M M M

pr_rd_wnitc M U M

pr_rd_wnitc.n M U M

pr_rd_wnitc.t U U M

pr_rd_wnitc.t.s U U M

rd_wnitc M U M

rd_wnitc.n M U M

rd_wnitc.t U U M

rd_wnitc.t.s U U M

Table 8-3. Profile specifications for TLX commands (Page 2 of 3)

TLX command Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 213 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-4 specifies the compliance requirements for the TLX and AFU accepting and processing a response
from the TL and host. Note that in most cases, TL responses are due to TLX commands issued to the host.

read_me U U M

read_me.t U U M

read_mes U U M

read_mes.t U U M

read_s U U M

read_s.t U U M

sync U U M

synonym_done U U M

upgrade_state U U M

upgrade_state.t U U M

wake_host_thread M U M

wake_host_thread.
s

U U M

xlate_release U U M

xlate_touch M U M

xlate_touch.n M U M

Table 8-4. Profile specifications for TL responses (Page 1 of 2)

TL response Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

cl_rd_resp U U M.c2

cl_rd_resp.ow2 U U M.c2, M.tp

intrp_resp M.ir M.ir M.ir

nop M M M

read_failed M.cx U M.cx

read_response M.cx U M.cx

read_response.ow3 U U M.cx, M.tp

read_response.xw4 U U M.cx, M.tp

return_tlx_credits M M M

sync_done U U M.sc

synonym_detected U U M.c2

touch_resp M.xt U M.xt

touch_resp.t U U M.ta1

upgrade_resp U U M.c2

wake_host_resp M.wht U M.wht

Table 8-3. Profile specifications for TLX commands (Page 3 of 3)

TLX command Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 214 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-5 specifies the compliance requirements for the TL and the host accepting and processing a
response from the TLX and AFU. Note that in most cases, TLX responses are due to TL commands issued to
the TLX.

Table 8-6 and Table 8-7 add template capability specifications to profiles. As discussed in Section 6 TL and
TLX template specifications on page 189, the host’s platform architecture provides additional information
about how receive and transmit capabilities are resolved between the host and the attached OpenCAPI
device. Other than the mandatory support for transmitting and receiving template x‘00’ template control flits,
the profile specifications for templates provides guidance as to the recommended templates an implementa-
tion should support and is not a conformance requirement. The templates marked as Optional are recom-

write_failed M.cx U M.cx

write_response M.cx U M.cx

Notes
1. When the device does not support translated addresses (TA), support is Optional

(O).
2. Use of cl_rd_resp.ow is dependent on support of either templates x’07’ or x’09’.
3. Use of read_response.ow is dependent on support of either templates x’07’ or x’09’.
4. Use of read_response.xw is dependent on support of template x’08’.

Table 8-5. Profile specifications for TLX responses

TLX response Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

atc_disabled U U M

atc_enabled U U M

cache_disabled U U M

cache_enabled U U M

kill_xlate_done U U M

mem_cntl_done U O O

mem_rd_fail M M M

mem_rd_response M M M

mem_rd_response.
owa

a.Use of mem_rd_response.ow is dependent on support of either templates x’07’ or x’09’.

U M.tp M.tp

mem_rd_response.
xwb

b.Use of mem_rd_response.xw is dependent on support of template x’08’.

U M.tp M.tp

mem_wr_fail M M M

mem_wr_response M M M

nop M M M

return_tl_credits M M M

Table 8-4. Profile specifications for TL responses (Page 2 of 2)

TL response Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 215 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

mended. See Section 6.1 TLX receive and TL transmit template capability specification on page 191 and
Section 6.2 TL receive and TLX transmit template capability specification on page 194. All host and devices
shall support template x‘00’.

Table 8-6 specifies the requirements and recommendations for the

• TLX to accept a control flit using the specified template.

• TL to transmit a control flit using the specified template.

Table 8-7 specifies the requirements and recommendations for the

• TL to accept a control flit using the specified template.

• TLX to transmit a control flit using the specified template.

Table 8-6. Profile specifications for TLX receive/TL transmit templates

TLX receive/TL transmit
template

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

x‘00’ M M M

x‘01’ O O O

x‘02’ O O

x‘03’ O O

x‘04 U O

x‘05’ U

x‘06’ U

x‘07’a

a.Specifies a 32-byte data carrier. This template is used to support dot-ow response forms.

U O

x‘08’b

b.Specifies two 8-byte data carriers. This template is used to support dot-xw response
forms.

U

x’09’c

c.Specifies a 32-byte data carrier. This template is used to support dot-ow response forms.

U

x‘0A’d

d.Specifies a 32-byte data carrier with extended-metadata.

U O

x‘0B’e

e.Specifies a 32-byte data carrier with extended-metadata.

U

Template notes:
To support metadata, an implementation must support one of the following templates:
x’04, x’05’, or x’06.

Table 8-7. Profile specifications for TL receive/TLX transmit templates (Page 1 of 2)

TL receive/TLX transmit
template

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

x‘00’ M M M

x‘01’ O O O

x‘02’ O O

x‘03’ O O

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 216 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-8 specifies the operation modes recommended to be supported by the host and the OpenCAPI
device for different interface classifications and is not a conformance requirement. The operation modes
marked as Optional are recommended. The definition of the host operation modes are found in Section 1.2
Host operation modes on page 28.

Table 8-9 adds page size support specification to profiles. The profile specification for page size provides
guidance as to the recommended page sizes supported by the host’s and AFU’s ATC. Address translation
and ATC are discussed in Section 1.8 on page 45. Support for a 4K page size is required for the host and
required for the AFU only when the AFU manages an ATC. Page sizes marked as Optional are recom-
mended.

x‘04 U

x‘05’ U O

x‘06’ U

x‘07’a U

x‘08’b U

x’09’c U O

x‘0A’d U

x‘0B’e U O

a.Specifies a 32-byte data carrier. This template is used to support dot-ow response forms.
b.Specifies two 8-byte data carriers. This template is used to support dot-xw response
forms.
c.Specifies a 32-byte data carrier. This template is used to support dot-ow response forms.
d.Specifies a 32-byte data carrier with extended-metadata.
e.Specifies a 32-byte data carrier with extended-metadata.

Table 8-8. Profile specifications host operation modes

AFU type Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

AFUC0 O O

AFUC1 O O O

AFUC2 U U O

AFUM0 O O

AFUM1 O M O

Table 8-7. Profile specifications for TL receive/TLX transmit templates (Page 2 of 2)

TL receive/TLX transmit
template

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 217 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-10 specifies the compliance requirements for the TLX and AFU accepting and processing commands
and responses from the TL and host with the dLength specified.

Table 8-11 specifies the compliance requirements for the TL and host accepting and processing commands
and responses from the TLX and AFU with dLength specified.

Table 8-12 specifies the compliance requirements for the TL and host accepting and processing atomic.*
class commands based on the endianness of the data. The E field in the command specifies the endianness
of the data. See Table 8-3 for the compliance requirements for the TL and host accepting and processing
these commands.

Table 8-9. Profile specifications supported page size

page size Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

4K O M.ta1

64K O O

2M O

Notes
1. When the device does not support translated addresses (TA), support is Optional

(O).

Table 8-10. Profile specifications supported dLength by TLX

dLength specification Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

64 M M M

128 M M M

256 O O O

Table 8-11. Profile specifications supported dLength by TL

dLength specification Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

64 M M M

128 M M M

256 M M M

Table 8-12. Profile specifications support of endianness data format by the TL (Page 1 of 2)

TLX atomic* class
command

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

E=0 E=1 E=0 E=1 E=0 E=1

amo_rd O.E O.E U U O.E O.E

amo_rd.n O.E O.E U U O.E O.E

amo_rd.t O.E O.E U U O.E O.E

amo_rd.t.s O.E O.E U U O.E O.E

amo_rw O.E O.E U U O.E O.E

amo_rw.n O.E O.E U U O.E O.E

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

OpenCAPI profiles
Page 218 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Table 8-13 specifies the compliance requirements for the TLX and the AFU accepting and processing
atomic.* class commands based on the endianness of the data. The E field in the command specifies the
endianness of the data. See Table 8-2 for the compliance requirements for the TLX and AFU accepting and
processing these commands.

amo_rw.t U U U U O.E O.E

amo_rw.t.s U U U U O.E O.E

amo_w U U U U O.E O.E

amo_w.n U U U U O.E O.E

amo_w.t.p U U U U O.E O.E

amo_w.t.p.s U U U U O.E O.E

Table 8-13. Profile specifications support of endianness data format by the TLX

TL atomic* class
command

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

E=0 E=1 E=0 E=1 E=0 E=1

amo_rd U U U U M M

amo_rw U U U U M M

amo_w U U U U M M

Table 8-12. Profile specifications support of endianness data format by the TL (Page 2 of 2)

TLX atomic* class
command

Device interface class,
OpenCAPI 3.0 OMI, OpenCAPI 3.1 Device interface class,

OpenCAPI 4.0

E=0 E=1 E=0 E=1 E=0 E=1

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 219 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Appendix A. AP (TLX) command transaction diagrams
This section contains figures that illustrate AP command flows and TLX and TL interaction.

Rules:

1. Commands received at the TL are not serviced until all data, if any, specified by the AP command has
arrived.

A.1 AFU read with no intent to cache; 128 bytes
• For the dot-s form of the command, dispatch is stopped until all prior commands associated with the VC,

BDF,PASID, and stream_id have completed on the host processor bus. See the description of presync
on page 23.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 220 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-1. TLX and TL interaction: rd_wnitc

AFU (TLX) Host(TL)

rd_wnitc xlate_result = rty_req 1.1.B

read_failed(rty_req)

rd_wnitc
xlate_result = xlate_pending 1.1.C

read_failed(xlate_pending)

Interrupt completes 1.1.E

xlate_done(completed)

rd_wnitc xlate_result = complete

1.1.A

Host read

Line obtained

read_resp
data_flit(read_resp)

Interrupt completes

xlate_done(rty_req)

rd_wnitc
xlate_result = completed
xlate_result = rty_req
xlate_reslut = xlate_pending

1.1.B

1.1.C

Interrupt completes

xlate_done(adr_error)
AFU error
recovery
process

1.1.A

Host protocol

1.1.E

1.1.E

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 221 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.2 TLX read with no intent to cache hits device co-located AFUC2 and AFUM1

Figure A-2. TLX rd_wnitc hits AFUC2 and AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

rd_wnitc(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
operation.

Host read

Hits host’s proxy cache

no intent to cache

AFUC issues command

write_mem(PA0)
TL.vc.1

[H2]

AFUM1 receives command

mem_wr_response
TLX.vc.0

[A3]

Line no longer hits host proxy
cache. Get data from AFUM1rd_mem(PA0)

TL.vc.1AFUM1 receives command

[H3]

Data

mem_rd_response
TLX.vc.0

Data

Data obtained by TL. Send data
with response to the AFUC
requester.

read_response(AFUTag0)
TL.vc.0

[H4]

[A4]

AFUC receives response

force_evict(host_tag(A))
TL.vc.0

host_tag(A) ↔ EA0

[H1]
AFUC2 receives command

castout.push(host_tag(A), AFUTag1)
TLX.vc.2

Data

TL writes data to POC in
AFUM1

[A2]AFU locks host_tag(A)
Updates state to I. Invali-
dates host_tag(A)
host_tag(A) ↔ null
AFU unlocks host_tag(A)

Data

Notes:
1. Steps in red [H3, A4] may occur when dL for rd_wnitc does not match the

force_evict dLength specification. For example, if the rd_wnitc dL=128 [A1], the
force_evict results in only 64-bytes being returned. The read [H3] is needed to obtain
the missing 64-bytes.

2. The assumption in this transaction diagram, is that transaction A1’s specification is of
a size that requires only a single action on the host’s protocol bus. That is, the
dLength specified by the rd_wnitc can be handled by the host without breaking it
down into multiple transactions.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 222 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.3 AFU DMA write; non-posted; 128 bytes
• For the dot-s form of the command, dispatch is stopped until all prior commands associated with the VC,

BDF,PASID, and stream_id have completed on the host processor bus. See the description of presync
on page 23.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 223 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-3. TLX and TL interaction: dma_w (Page 1 of 2)

AFU (TLX) Host(TL)

dma_wr (dL=128B) adr_xlate = complete
write authority OK

Host write operation

Data(128)

write_response

Data(128)

dma_wr (dL=128B)
adr_xlate = xlate_pending

Data(128)

write_failed(xlate_pending)

Interrupt completes;
xlate_done(completed) Write authority OK

1.1.A

1.1.A

dma_wr (dL=128B)
adr_xlate = xlate_pending

Data(128)

Interrupt completes; rty_req
xlate_done(rty_req)

1.1.A

write_failed(xlate_pending)

Successful completion of
address tenure

Host protocol

Host protocol

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 224 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-3. TLX and TL interaction: dma_w (Page 2 of 2)

AFU (TLX) Host(TL)

dma_wr (dL=128B)
adr_xlate = xlate_pending

Data(128)

Interrupt completes; adr_error
xlate_done(adr_error)

write_failed(xlate_pending)

Write authority not obtainedAFU error recovery
process

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 225 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.4 AFU DMA Write hits device co-located AFUC2 and AFUM1

Figure A-4. TLX dma_w hits AFUC2 and AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

dma_w(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues write
operation.

Host write operation

Hits host’s proxy cache

AFUC issues command

write_mem(PA0)
TL.vc.1

[H2]

AFUM1 receives command

mem_wr_response
TLX.vc.0

[A3]

Data

Operation completed, send
response to the AFUC requester. write_response(AFUTag0)

TL.vc.0
[H4]

AFUC receives response

force_evict(host_tag(A))
TL.vc.0

host_tag(A) ↔ EA0

[H1]
AFUC2 receives command

castout.push(host_tag(A), AFUTag1)
TLX.vc.2

DataA2

TL writes DataA2 to POC in
AFUM1
TL overwrites DataA2 with
DataA1 where they overlap.

[A2]AFU locks host_tag(A)
Updates state to I. Invali-
dates host_tag(A)
host_tag(A) ↔ null
AFU unlocks host_tag(A)

DataA1

write_mem(PA0)
TL.vc.1AFUM1 receives command

mem_wr_response
TLX.vc.0

DataA1

TL overwrites DataA2
in AFUM1 with DataA1
where they overlap.

[H3]

[A4]

Notes:
1. Transaction H2 data is either merged as noted in black, or is not merged as noted in

red text. (H2/H3 transaction). When the data is not merged, the transactions in red
(H3/H4) occur to cause the merging of the data in the attached device.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 226 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.5 AFU DMA Write hits device co-located AFUM1

Figure A-5. TLX dma_w hits host cache and AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

dma_w(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
operation.

Host write operation

Hits host cache that evicts
the line

AFUC issues command

write_mem(PA0)
TL.vc.1

[H2]

AFUM1 receives command

mem_wr_response
TLX.vc.0

[A3]

DataA1

Operation completed, send
response to the AFUC requester. write_response(AFUTag0)

TL.vc.0
[H3]

AFUC receives response

host_tag(A) ↔ EA0

[H1]
AFUM1 receives command

TL overwrites DataA2 in
AFUM1 with DataA1 where
they overlap.

DataA1

write_mem(PA0)
TL.vc.1

mem_wr_response
TLX.vc.0

DataA2

[A2]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 227 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.6 AFU DMA partial write; non-posted, 8 bytes
• For the dot-s form of the command, dispatch is stopped until all prior commands associated with the VC,

BDF,PASID, and stream_id have completed on the host processor bus. See the description of presync
on page 23

Figure A-6. TL and TLX interaction: dma_pr_w

AFU (TLX) Host(TL)

dma_pr_wr (stream_id, AFUTag,

Data(8)
acTag, EA, pL=8B)

Check address context and
translate address from EA to RA.
addressContext=
acLookup((dma_pr_w.acTag
xlate_result= adr_xlate(EA,
AddressContext

Address translation clean;
Host protocol executes write
operation and completes suc-
cessfully

write_response(AFUTag,dL=64B, dP=0)

1.1.A

xlate_result.status= xlate_pendingwrite_failed(AFUTag, dL=64B, dP=0,

1.2.A

1.2.A

Resp_code= xlate_pending)

Host completes address translation

xlate_done(AFUTag, Resp_code= Completed

Host operation fails

1.1.A

write_failed(AFUTag, dL=64B, dP=0,
Resp_code=failed)AFU error recovery

process

1.2.A

Bad data received

1.2.A

write_failed(AFUTag, dL=64B, dP=0,
Resp_code= dError)AFU error recovery

process

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 228 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.7 AFU Partial read with no intent to cache hits device co-located AFUM1

Figure A-7. TLX pr_rd_wnitc hits AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

pr_rd_wnitc(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues par-
tial read operation.

Host read partial read

Host pushes line to POC

Host cache does not inter-
vene, pushes line.

no intent to cache

AFUC issues command

write_mem(PA0)
TL.vc.1

[H1]

AFUM1 receives command

mem_wr_response
TLX.vc.0

[A2]

Line no longer on host. Get
data from AFUM1pr_rd_mem(PA0)

TL.vc.1AFUM1 receives command

[H2]

Data

mem_rd_response
TLX.vc.0

Data

Data obtained by TL. Send data
with response to the AFUC
requester.

read_response(AFUTag0)
TL.vc.0

[H3]

[A3]

AFUC receives response

Notes:
1. It is acceptable for the H2 transaction to be a rd_mem of 64, 128, or 256 bytes and is

constrained only by the host’s implementation, bus protocol and memory attributes.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 229 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.8 Translate touch (xlate_touch, ta_req)

Figure A-8. xlate_touch TLX and TL interaction

AFU (TLX) Host(TL)

xlate_touch(EA0)
TLX.vc.3

xlate_touch machine
goes active Host starts ATC entry invali-

dation protocol.

kill_xlate(EA0, cmd_flag=page)
TL.vc.2

Host chooses not to retain
EA→TA mapping for EA com-
mands and sends the request
to the operating system for
translation.

touch_resp(Resp_code=xlate_pending)
TL.vc.0

kill_xlate misses AFU ATC.
One or more pages, as speci-
fied by the cmd_flag, miss in
the AFU ATC. Each page that
is missed is marked done.
Each page that is a hit in the
AFU ATC follows the protocol
found in Section 1.8.2.2.

kill_xlate_done(Resp_code=completed)
TLX.vc.3

Machine for xlate_touch may
retry the operation based on
the Resp_code specified. In
this example, the machine may
wait on xlate_done (recom-
mended action) before retrying
the translation request.

xlate_touch(EA0)
TLX.vc.3

kill_xlate(EA0, cmd_flag=page)
TL.vc.2

touch_resp(Resp_code=xlate_pending)
TL.vc.0

kill_xlate_done(Resp_code=completed)
TLX.vc.3

Host starts ATC entry invali-
dation protocol.

Host chooses not to retain
EA→TA mapping for EA com-
mands and sends the request
to the operating system for
translation.

xlate_touch machine
goes active

kill_xlate misses AFU ATC.
One or more pages, as speci-
fied by the cmd_flag, miss in
the AFU ATC. Each page that
is missed is marked done.
Each page that is a hit in the
AFU ATC follows the protocol
found in Section 1.8.2.2.

Machine for xlate_touch may
retry the operation based on
the Resp_code specified. In
this example, the machine may
wait on xlate_done (recom-
mended action) before retrying
the translation request.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 230 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.9 Upgrade state

Figure A-9. upgrade_state TLX and TL interaction (Page 1 of 2)

AFU (TLX) Host(TL)

upgrade_state(EA0, I→ M)
TLX.vc.3 adr_xlate = complete

data-less state upgrade
request. Line is dirty

host grants upgrade
to M state, no data.

upgrade_response(host_tag(A), state=M)
TL.vc.0

AFUC2 wants to get owner-
ship of the line; no data is
required. adr_xlate_complete

upgrade_state(EA, I→ EI)
TLX.vc.3

host flushes cache

cache evicts line
in response to flush

write_mem(PA)
TL.vc.1

mem_wr_response
TLX.vc.0

host cache flush
completed

upgrade_response(host_tag, state=EI)
TL.vc.0

host protection window from
a host initiated read access
until the evict completes

write_mem(PA)
TL.vc.1

upgrade_state(EA, I→ EI)
TLX.vc.3

mem_wr_response
TLX.vc.0

adr_xlate_complete

host flushes cache

host protection window from
a host initiated read access
until the evict completes

host cache flush
completed

upgrade_response(host_tag, state=EI)
TL.vc.0

Lock host tag
Select host_tag(A) in host
proxy cache and set to state
to M state.
Unlock host_tag

EA0 ↔ RA0
host_tag(A) ↔ RA0

Lock host_tag(A)
host_tag(A) ↔ EA0
Set cache state to M

Unlock host_tag(A)

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 231 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-9. upgrade_state TLX and TL interaction (Page 2 of 2)

AFU (TLX) Host(TL)

upgrade_state(EA1, I→ M)
TLX.vc.3 adr_xlate = complete

data-less state upgrade
request. Line is dirty

host grants upgrade
to M state, no data.

synonym_detected(host_tag(A), state=M)
TL.vc.0

EA0 ↔ RA0
EA1 ↔ RA0
host_tag(A) ↔ RA0

host_tag(A) ↔ EA0
EA0 held in S

AFU locks host_tag(A)
Updates state to M and
data directory to 0.
host_tag(A) ↔ EA1

AFU unlocks host_tag(A)
synonym_done(host_tag(A))

TLX.vc.2

RA0 hits host directory
Synonym condition detected

host_tag(A) locked

host_tag(A) unlocked

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 232 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-10. TLX upgrade_state hits host cache and AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

upgrade_state(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
request to own operation.

Host read
request to own

AFUC2 issues command

host_tag(A) ↔ EA0
Set state as specified
by response.

write_mem(PA0)
TL.vc.1 Host cache evicts line (no

intervention case)

mem_wr_response
TLX.vc.0

AFUM1 receives command

upgrade_response(AFUTag0, host_tag(A))
TL.vc.0

[H1]

[A2]

Lock host tag.
Select host_tag(A) in
host proxy cache and
set to state specified
by request.

Host protocol grants
ownership to AFUC2.

Unlock host tag

Unlock host tag

[H2]

Data

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 233 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-11. TLX upgrade_state hits AFUC2 and AFUM1 TL issues commands to complete operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

upgrade_state(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
request to own operation.

Host read
request to own

AFUC2 issues command
EA0 held in S

Host protocol grants
ownership to AFUC2.

host_tag(A) ↔ EA0

synonym_detected(AFUTag0, host_tag(A))
TL.vc.0 Lock host tag.

Hit in proxy cache at
host_tag(A), held in S.
For:
I ↔ M, transition to E
I ↔ EI, transition to EI

[H1]

Unlock host tag

Lock host tag
AFUC2 supports in place
upgrade.
Response indicates new
state of:
I ↔ M, transition to M
I ↔ EI, transition to EI

synonym_done(host_tag(A))
TLX.vc.2

Unlock host tag

[A2]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 234 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-12. TLX upgrade_state hits AFUM1, requires host ATC evict TL issues commands to complete
operation

AFU (TLX) Host(TL)
EA0 ↔ RA0 ↔ PA0
RA0 Maps to AFUM1

upgrade_state(EA0, AFUTag0)
TLX.vc.3

[A1]

adr xlate ok; Host issues read
request to own operation.

Host read
request to own

AFUC2 issues command

write_mem(PA0)
TL.vc.1

[H2]

AFUM1 receives command
Data

AFUC2 receives command

castout.push(host_tag(B), AFUTag1)
TLX.vc.2

Data

TL writes data to POC in
AFUM1

[A2]AFU locks host_tag(B)
Updates state to I. Invali-
dates host_tag(B)
host_tag(B) ↔ null
AFU unlocks host_tag(B)

kill_xlate(EApage, CAPPTag0)

force_evict(host_tag(B))
TL.vc.0

[H1]

kill_xlate issued when device
has ATC.
Multiple force_evict com-
mands possible due to host
ATC evict (one shown)

mem_wr_response
TLX.vc.0

[A4]

host_tag(A) ↔ EA0
Set state as specified
by response.

upgrade_response(AFUTag0, host_tag(A))
TL.vc.0

Lock host_tag(A).
Select host_tag(A) in
host proxy cache and
set to state specified
by request.

Host protocol grants
ownership to AFUC2.

Unlock host_tag(A)

Unlock host tag

[H3]

Unlock host_tag(B)

Lock host_tag(B)

TL.vc.2

kill_xlate_done(CAPPTag0)
TLX.vc.3

[A3]

ATC victimization actions must be complete in
the host and the device. The device completes
with kill_xlate_done response.
In addition, the host proxy needs to obtain the
line in an M or EI state before completing the
upgrade_state command.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 235 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.10 Host tag locking transactions

Figure A-13. host_tag reuse Initial use and first reuse case

AFU (TLX) Host(TL)

read_mes(EA0, acTag)
TLX.vc.3

EA0 ↔ RA0
EA1 ↔ RA0
host_tag(A) ↔ nullhost_tag(A) ↔ null

read_mes(EA1, acTag)
TLX.vc.3

adr_xlate = complete

adr_xlate = complete

[A1]

[A2]

RA0 hits host directory and
identifies host_tag(A) is being
re-used. It is unable to obtain
the lock, so the operation can-
not complete until the directory
entry is unlocked.

host read M/E/S RA0

host read M/E/S RA0

RA0 misses host directory
Picks host_tag(A) for use.

RA0 granted in S

host_tag(A) locked [A1]

[A2]

[A1]

cl_rd_resp(host_tag(A), state=S)
TL.vc.0 Data

[H1]

RA0 granted in S [A2]

synonym_detected(host_tag(A), state=S)
TL.vc.0

synonym_done(host_tag(A))
TLX.vc.2host_tag(A) ↔ EA1

AFU unlocks host_tag(A)

AFU locks host_tag(A)
Updates state and data
directory.

[A3]

[H2]
AFU locks host_tag(A)
Updates state and data
directory.

host_tag(A) ↔ EA0
AFU unlocks host_tag(A)

[H2] unable to obtain lock on
host_tag(A). Operation cannot start
until lock is obtained.

[A2] command can complete,
since host_tag(A) is
unlocked.

host_tag(A) ↔ RA0
Unlock host_tag(A)

host_tag(A) ↔ RA0
Unlock host_tag(A)

[H3]

host_tag(A) locked

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 236 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Figure A-14. host tag reuse Command inversion on the host. host_tag locking illustrated.

AFU (TLX) Host(TL)

read_mes(EA1, acTag)
TLX.vc.3

EA0 ↔ RA0
EA1 ↔ RA0
EA2 ↔ RA1
host_tag(A) ↔ RA0

host_tag(A) ↔ EA0
EA0 held in S

read_mes(EA2, acTag)
TLX.vc.3

adr_xlate = complete

adr_xlate = complete

RA1 misses host directory.
Picks host_tag(A) directory
entry for castout. Locks
host_tag(A)

host read M/E/S RA1

host read M/E/S RA0

RA0 hits host directory and
finds the entry locked. Opera-
tion can not complete until the
directory entry is unlocked.

RA1 granted in M

host_tag(A) locked

cl_rd_resp(EF,host_tag(A), state=M)
TL.vc.0

castout(host_tag(A), state=I)
TLX.vc.2

host_tag(A) ↔ EA2
AFU unlocks host_tag(A)

RA0 castout operation
host_tag(A) ↔ RA1
Unlock host_tag(A)

RA0 granted in M

RA0 no longer in host direc-
tory. Picks host_tag(B) for
castout. Locks host_tag(B).

cl_rd_resp(EF, host_tag(B), state=M)
TL.vc.0

host_tag(B) ↔ EA1
AFU unlocks host_tag(B)

host_tag(B) locked

castout(host_tag(B), state=I)
TLX.vc.2

RAb castout operation
host_tag(B) ↔ RA0
Unlock host_tag(B)

Data

Data

AFU locks host_tag(A)
Updates state and data
directory.

AFU locks host_tag(B)
Updates state and data
directory.

[A1]

[A2]

[A3]

[A4]

[H1]
[H2]

[H3]
[H4]

[A2]

[A1]

[A2]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 237 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

[A1], [H1], [A3] synonym response group can repeat for any number of synonym cases and only one
synonym will be serviced at a time because the host locks the entry from the time the host starts servicing
[A1] through [A3].

Figure A-15. host_tag reuse synonym update shown

AFU (TLX) Host(TL)

read_mes(EA1, acTag)
TLX.vc.3

EA0 ↔ RA0
EA1 ↔ RA0
EA2 ↔ RA1
host_tag(A) ↔ RA0

host_tag(A) ↔ EA0
EA0 held in S

read_mes(EA2, acTag)
TLX.vc.3

adr_xlate = complete

adr_xlate = complete

RA1 misses host directory.
Picks host_tag(A) directory
entry for castout. It is unable to
obtain the lock, so the opera-
tion cannot complete until the
directory entry is unlocked.

host read M/E/S RA0

host read M/E/S RA1

RA0 hits host directory and
identifies host_tag(A) is being
re-used.

RA0 granted in S

host_tag(A) locked

synonym_detected(host_tag(A), state=S)
TL.vc.0

synonym_done(host_tag(A))
TLX.vc.2

host_tag(A) ↔ EA1
AFU unlocks host_tag(A) host_tag(A) ↔ RA0

Unlock host_tag(A)

RA1 granted in M

[A2] command can complete,
since host_tag(A) is
unlocked. Locks host_tag(A).

cl_rd_resp(EF, host_tag(A), state=M)
TL.vc.0

host_tag(A) ↔ EA2
AFU unlocks host_tag(A)

host_tag(A) locked

castout(host_tag(A), state=I)
TLX.vc.2

RA0 castout operation
host_tag(A) ↔ RA1
Unlock host_tag(A)

Data

AFU locks host_tag(A)
Updates state and data
directory.

AFU locks host_tag(A)
Updates state and data
directory.

[A1]

[A2]

[A3]

[A4]

[H1]

[H2]
[H3]

[A1]

[A2]

[A1]

[A2]

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

AP (TLX) command transaction diagrams
Page 238 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

A.11 Castout push

Figure A-16. castout.push example showing host_tag ordering at the host

AFU (TLX) Host(TL)

castout.push(host_tag=A, state=E)
TLX.vc.2

Data

castout.push(host_tag=A, state=E)
TLX.vc.2

Data

castout.push(host_tag=B, state=I)
TLX.vc.2

Data

host_tag(A) → E
host_tag(B) → M

Host castout operation
host_tag(B), [A3]

Host castout operation
host_tag(A), [A1]

Host castout completed
host_tag(B), [A3]

Host castout completed
host_tag(A), [A1]

Host castout operation
host_tag(A), [A2]

Host castout completed
host_tag(A), [A2]

[A1]

[A2]

[A3]

host_tag(A) order is estab-
lished as {[A1], [A2]}. The
ordering shall be maintained
as specified in Section 1.5
Host tags on page 39.

[A3] has no host_tag
ordering requirements on
it. Host protocol can ser-
vice in any order relative to
the other commands.

[A2] cannot start until [A1] has
completed as shown.

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

CAPP (TL) command transaction diagrams
Page 239 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

Appendix B. CAPP (TL) command transaction diagrams
This section contains figures that illustrate CAPP command flows.

Rules:

1. Commands received at the TLX are not serviced until all data, if any, specified by the CAPP command
has arrived.

B.1 CAPP memory read; 128 bytes

Figure B-1. TL and TLX transaction: rd_mem

AFU (TLX) Host(TL)

1.1.A
rd_mem (PA, dL=128)

mem_rd_response(dL=128, dPart=0)
Data (2x 64-byte carriers)

mem_rd_fail(dL=128, dPart=0, Resp_code)

1.1.A

read command snooped;
Hits Host address bar for
this OpenCAPI interface;
PA← convert2PA(RA)

TL command recieved;
Read operation starts

Memory access is clean;
Response and data returned
to host.

Memory access fails;
Failed response and Resp_code
returned to host;

Examine bad data indicators and
data recieved.
Clean: return data as recieved to
to master on host;
Data error: mark data as bad
and return data to master

OpenCAPI 4.0
Transaction Layer

Approved Specification

Version 1.0
16 June 2020
Approved for Distribution to OpenCAPI Members
Approved for Distribution to Non-Members for Learning Purposes Only

CAPP (TL) command transaction diagrams
Page 240 of 240

OpenCAPI 4.0
Transaction Layer

Approved Specification

B.2 CAPP memory write; 128 bytes

Figure B-2. TL and TLX transaction: write_mem

AFU (TLX) Host(TL)

1.1.A
write_mem(PA, dL=128)

mem_write_response(dL=128, dPart=0)

Data (2x 64-byte carriers)

write command snooped;
Hits Host address bar for
this OpenCAPI interface;
PA← convert2PA(RA)

TL command recieved;
Write operation starts

Data received is OK and
write operation completes
without error.

Host completes write opera-
tion.

Data received is marked bad.
AFU marks data as bad
(SUE) in target memory.

1.1.A

mem_wr_fail(dL=128, dPart=0,
Resp_code= dError) Host error recovery

	Title Page
	Copyright and Disclaimer
	Participants
	Contents
	List of figures
	List of tables
	Revision log
	About this document
	Architecture compliance terminology
	Conventions used in this specification
	Bit and byte numbering
	Representation of numbers
	RTL notation

	Notes
	Engineering notes
	Developer notes

	Command flows and transaction diagrams
	Command flow diagrams
	Transaction diagrams

	Terms
	1. Overview
	1.1 OpenCAPI protocol stack
	1.2 Host operation modes
	1.2.1 No attached device (C0, M0)
	1.2.2 MEM-only mode (C0, M1)
	1.2.3 Checkout mode (C1, M0)
	1.2.4 Checkout with MEM (C1, M1)
	1.2.5 Cache-only mode (C2, M0)
	1.2.6 Cache + MEM mode (C2, M1)

	1.3 AFUC2
	1.3.1 Host proxy cache
	1.3.2 AFUC2 model
	1.3.2.1 host_tag database
	1.3.2.2 L1 EA cache directory
	1.3.2.3 data cache

	1.3.3 AFU cache states
	1.3.4 AFU Cache state transition reporting, initiation, and characteristics
	1.3.5 Design considerations when the AFUC2 and host cache line sizes are different
	1.3.5.1 Read commands
	1.3.5.2 Force evict
	1.3.5.3 Upgrade state command

	1.4 Command ordering
	1.5 Host tags
	1.5.1 host_tag run-length-capability
	1.5.2 host_tag update ordering
	1.5.2.1 TL and host rules
	1.5.2.2 TLX and AFU rules

	1.6 Write fragmentation ordering and atomicity
	1.6.1 Write fragmentation ordering and atomicity at the host
	1.6.1.1 Partial write operations
	1.6.1.2 64-,128-, 256-byte write operations

	1.6.2 Write fragmentation ordering and atomicity at the AFU
	1.6.2.1 Partial write operations
	1.6.2.2 64-, 128-, 256-byte write operations

	1.7 OpenCAPI device PA space specification
	1.7.1 PA-to-RA mapping rules

	1.8 Address translation
	1.8.1 Effective to real address translation
	1.8.2 Translated addresses, AFU ATC, and dot-t commands
	1.8.2.1 AFU initiated AFU ATC entry invalidation
	1.8.2.2 Host initiated AFU ATC entry invalidation

	2. TL and TLX command and response specifications
	2.1 Handling multiple responses to a single command
	2.1.1 TLX Read request getting multiple TL responses
	2.1.2 TLX Write request getting multiple TL responses
	2.1.3 TL read request getting multiple TLX responses.
	2.1.4 TL write request getting multiple TLX responses

	2.2 TL CAPP command packets
	2.3 TLX AP command packets
	2.4 TL CAPP response packets
	2.5 TLX AP response packets

	3. Virtual channel and data credit pool specification
	3.1 Virtual channel
	3.1.1 TLX command and response VC (TLX.vc)
	3.1.2 TL command and response VC (TL.vc)
	3.1.3 VC credit count specification

	3.2 Data credit pool
	3.2.1 TLX data DCP (TLX.dcp)
	3.2.2 TL data DCP (TL.dcp)
	3.2.3 DCP credit count specification

	3.3 TL Virtual channel and service queues
	3.3.1 Host TLX command handling
	3.3.2 Host TLX response handling

	3.4 TL Presync queues
	3.4.1 TL queuing and service of kill_xlate_done

	3.5 Device TL virtual channel queues
	3.6 Virtual channel dependency rules
	3.6.1 Dependency loop 1 resolution

	4. The acTag table
	4.1 acTag table contents
	4.2 acTag table access
	4.2.1 Error cases when accessing the acTag table

	4.3 acTag entry management

	5. DL frame format
	5.1 DL frame control flit (64 bytes)
	5.1.1 DL content
	5.1.2 TL command/response content
	5.1.3 Data transport, order, and alignment
	5.1.3.1 Data alignment for commands and responses specifying a host_tag field.

	6. TL and TLX template specifications
	6.1 TLX receive and TL transmit template capability specification
	6.2 TL receive and TLX transmit template capability specification
	6.3 Control-flit rate capability
	6.4 Metadata capability

	7. Error detection
	7.1 Error events

	8. OpenCAPI profiles
	Appendix A. AP (TLX) command transaction diagrams
	A.1 AFU read with no intent to cache; 128 bytes
	A.2 TLX read with no intent to cache hits device co-located AFUC2 and AFUM1
	A.3 AFU DMA write; non-posted; 128 bytes
	A.4 AFU DMA Write hits device co-located AFUC2 and AFUM1
	A.5 AFU DMA Write hits device co-located AFUM1
	A.6 AFU DMA partial write; non-posted, 8 bytes
	A.7 AFU Partial read with no intent to cache hits device co-located AFUM1
	A.8 Translate touch (xlate_touch, ta_req)
	A.9 Upgrade state
	A.10 Host tag locking transactions
	A.11 Castout push

	Appendix B. CAPP (TL) command transaction diagrams
	B.1 CAPP memory read; 128 bytes
	B.2 CAPP memory write; 128 bytes

