
Introducing the CXL 3.X Specification

Mahesh Natu

System and Software WG Co-Chair - CXL Consortium

Senior Principal Engineer and Director of Platform Architecture – Intel Corporation

- Industry Trends and CXL 3.X Themes
- CXL 3.X Features Progression
- CXL 3.2 New Feature Enhancements
- Compliance Updates
- Summary
- Q&A

Industry Trends and CXL 3.X Themes

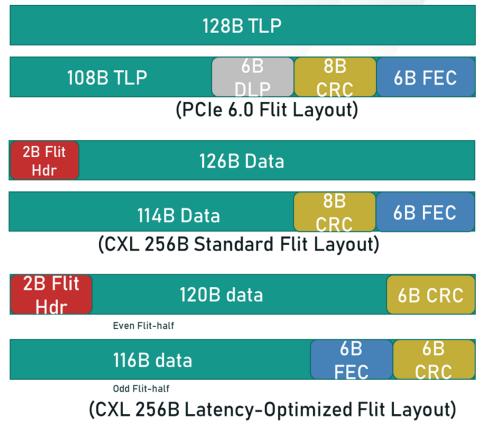
- Al and ML applications, heterogenous computing \rightarrow 2X Bandwidth, Caching protocol enhancements, large fabric
- Disaggregation of memory from compute → standardize i/f for managing pooled and shared memory
- Lower-cost memory tiers deployed to decrease overall platform costs → standardize Hot-Page detection
- Confidential computing \rightarrow TSP support for CXL memory devices and accelerators
- CXL becomes the industry choice for coherent IO (CCIX, OpenCAPI and Gen-Z assets transferred to CXL) \rightarrow Cover use cases previously addressed by these standards such as large fabrics

CXL Specification Release Timeline

Industry Standards Converge

CXL becomes the industry choice for coherent IO

August 3, 2023, CXL Consortium and CCIX Consortium sign letter of intent to transfer CCIX specification and assets to the CXL Consortium


August 1, 2022, CXL Consortium and OpenCAPI Consortium Sign Letter of Intent to Transfer OpenCAPI Assets to CXL

February 2022, CXL Consortium and Gen-Z Consortium signed agreement to transfer Gen-Z specification and assets to CXL Consortium

Compute Express Link [®] and CXL [®] are registered trademarks of the Compute Express Link Consortium.

CXL 3.0: Doubles Bandwidth with Same Latency

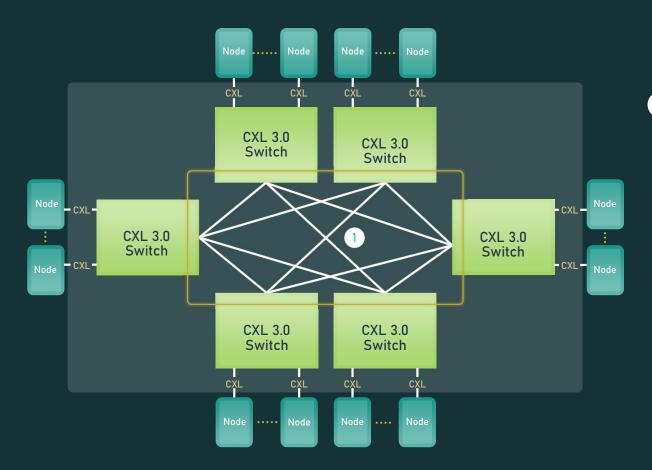
- Uses PCIe[®] 6.0 PHY @ 64 GT/s
- PAM-4 and high BER mitigated by PCIe 6.0 FEC and CRC (different CRC for latency optimized)
- Standard 256B Flit along with an additional 256B Latency Optimized Flit (0-latency adder over CXL 2)
 - O-latency adder trades off FIT (failure in time, 109 hours) from 5x10-8 to 0.026 and Link efficiency impact from 0.94 to 0.92 for 2-5ns latency savings (x16 - x4)1
- Extends to lower data rates (8G, 16G, 32G)
- Enables several new CXL 3 protocol enhancements with the 256B Flit format

Compute

Express

1: D. Das Sharma, "A Low-Latency and Low-Power Approach for Coherency and Memory Protocols on PCI Express 6.0 PHY at 64.0 GT/s with PAM-4 Signaling", IEEE Micro, Mar/ Apr 2022 (<u>https://ieeexplore.ieee.org/document/9662217</u>)

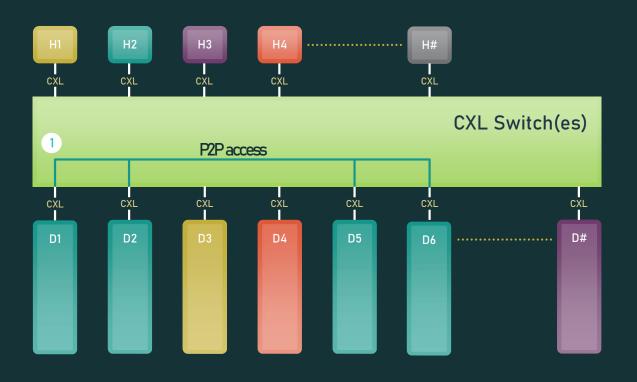
Compute Express Link [®] and CXL [®] are registered trademarks of the Compute Express Link Consortium.



CXL 3.X Features Progression

CXL Scales New Heights

CXL Fabrics

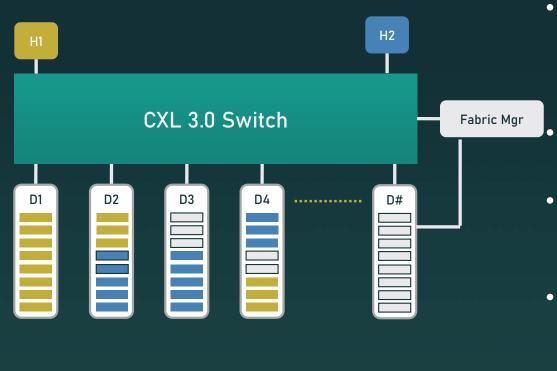


1 CXL 3.0 enables nontree architectures

 Each node can be a CXL Host, CXL device or PCIe device

CXL 3.1 enables even larger fabrics via Port-based Routing, Fabric attached devices and Fabric Management APIs

CXL 3.x Peer-to-peer Comms

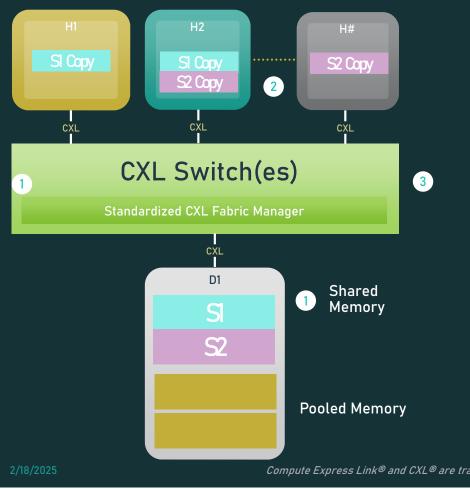


1 CXL 3.0 enables efficient peer-to-peer communication (P2P) between devices. Relies on PCIe Unordered I/O.

The target device that hosts the memory returns the latest copy, by using the Back-Invalidation protocol extension

CXL 3.1 adds peer-to-peer communication (P2P) using CXL.mem

CXL 3.X - Memory Pooling


 Memory Pooling allows a host to dynamically expand/shrink its memory capacity to match Workload

Improves TCO by reducing stranded memory capacity

- CXL 3.0 standardized OS to device and Fabric Manager to device/switch interfaces
- CXL 3.1 expanded the scope to include Fabric attached devices

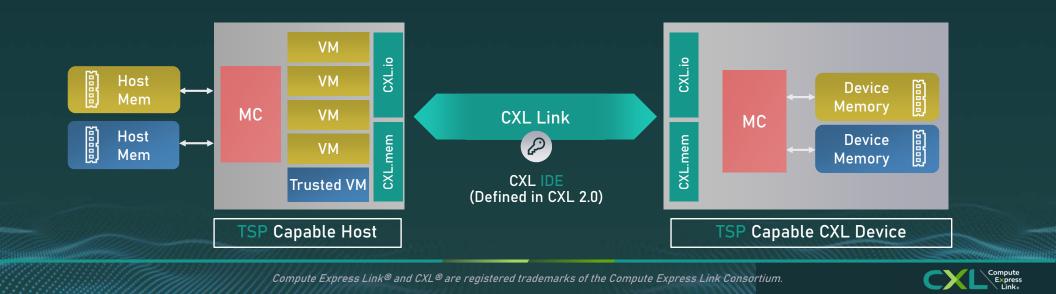
CXL 3.0: COHERENT MEMORY SHARING

1 Device memory can be shared by all hosts to increase data flow efficiency and improve memory utilization

- 2 Host can have a coherent copy of the shared region or portions of shared region in host cache
- 3

CXL 3.0 defined mechanisms to enforce hardware cache coherency between copies

CXL Trusted Security Protocol (TSP)


Allows for Virtualization-based, Trusted Execution Environments (TEEs) to host Confidential Computing Workloads

Key Capabilities:

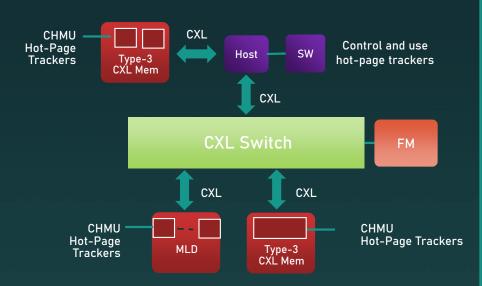
- Cryptographic Separation between Trusted VM & CSP infrastructure
- Support for memory devices and accelerators
- Encryption of sensitive data in Host & Device memory during use
- Cryptographically verify configuration of the computing environment •

Benefits:

- Freedom to migrate sensitive WLs to TSP-enabled Clouds
- Collaboration with multiple parties without exposing secrets
- Conform to Compliance & Data sovereignty programs
- Strengthen Application security & Software IP protection

TSP Feature Progression

- TSP builds on top of CXL Integrity and Data Encryption (IDE) capability introduced in CXL 2.0
- CXL 3.0 introduces TSP for simple memory devices that rely on host for coherency management
- CXL 3.1 specification extended TSP to cover devices such as accelerators
- CXL 3.1 extended IDE protection to late poison messages
- CXL 3.2 specification added TSP compliance tests for improving interop


CXL 3.2 Specification

New Feature Enhancements

Compute Express Link® and CXL® are registered trademarks of the Compute Express Link Consortium.

······

CXL Hot-Page Monitoring Unit (CHMU) for Memory Tiering

More efficient SW Memory Tiering Better Perf, lower TCO

Challenges faced by the current SW tiering solutions

- Must trade-off accuracy against perf overhead
- Measurement polluted by cache hits
- CPU vendor specific

CHMU addresses these problems

- Works for simple and pooling memory devices
- Hot-page trackers implemented in CXL memory device, avoids host perf overhead
- Standardized interface, enables generic OS based solutions
- By design, counts memory accesses only, excludes cache hits
- Multiple CXL Hot-Page Monitoring Unit (CHMU) instances provides SW more flexibility.
- Allows counting at different granularity.
- Improves memory workload analysis

CHMU Overview

- Highly configurable, SW can make best use of these critical resources.
 - Counts accesses on specific DPA granularities called units; unit sizes is SW configurable
 - A unit is marked as hot if it encounters more accesses than software configurable threshold during an epoch. Epoch length is also SW configurable.
 - Access counting may be enabled on multiple address ranges with 256-MB granularity.
- Hot units are reported to SW thru' circular structure called Hotlist, the raw counters are not exposed to SW allowing device vendors to innovate
- SW can either poll for Hotlist or choose to be interrupted when Hotlist starts to become full
- SW chooses the types of CXL.mem requests that are counted.

Compatibility with the PCIe® MMPT ECN

- A great example of collaboration with PCI SIG
- Management Message Pass Through (MMPT) ECN was built on top of CXL 2.0 specification constructs and makes special accommodates for CXL backward compatibility
- Enables unified OS based management of CXL and PCIe devices, everybody wins!

CXL 3.2 Enhances Event Record

More localized error handling of Memory Pooling devices Limiting the error blast radius to fewer hosts.

CXL 3.2 Enhances functionality of CXL Memory Devices for OS and Application

Post Package Repair (PPR) enhancements

- Function: Enables PPR (Post Package Repair) at the hardware-level during initialization hPPR (Hardware Post Package Repair).
- Benefit: Extends RAS for CXL Memory Devices allowing seamless repair to the attached memory.

Addition of performance monitoring events for CXL Memory Devices

- Function: Adds CXL memory performance counters, events, and performance enhancements.
- Benefit: Provides memory usage analytics for OS/Application.

Meta-bits Storage Feature for Host-only Coherent Host-Managed Device Memory (HDM-H) address region

- Function: Allows the host to discover and control meta-data usage.
- Benefit: Dyanamic optimization of DRAM usage to match host requirements.

Compute Express Link [®] and CXL [®] are registered trademarks of the Compute Express Link Consortium.

CXL Specification Fe	ature S	Summa	ary	Not Supported ✓ Supported
Features	CXL 1.0 / 1.1	CXL 2.0	CXL 3.0 / 3.1	CXL 3.2
Release date	2019	2020	2022 / 2023	November 2024
Max link rate	32GTs	32GTs	64GTs	64GTs
Flit 68 byte (up to 32 GTs)	\checkmark	✓	\checkmark	\checkmark
Flit 256 byte (up to 64 GTs)			\checkmark	\checkmark
Type 1, Type 2 and Type 3 Devices	✓	✓	\checkmark	\checkmark
Memory Pooling w/ MLDs		✓	\checkmark	\checkmark
Global Persistent Flush		✓	\checkmark	\checkmark
CXL IDE		✓	\checkmark	\checkmark
Switching (Single-level)		\checkmark	\checkmark	✓
Switching (Multi-level)			\checkmark	✓
Direct memory access for peer-to-peer			\checkmark	\checkmark
Enhanced coherency (256-byte flit)			\checkmark	\checkmark
Memory sharing (256-byte flit)			\checkmark	\checkmark
Multiple Type 1/Type 2 devices per root port			\checkmark	✓
Fabric capabilities (256-byte flit)			\checkmark	✓
Back invalidate capabilities on Type 3 devices (HDM-DB)			\checkmark	✓
Fabric Manager API definition for PBR Switch			\checkmark	\checkmark
Host-to-Host communication with Global Integrated Memory (GIM) concept			✓	✓
Trusted-Execution-Environment (TEE) Security Protocol			✓	✓
Memory expander enhancements (up to 32-bit of meta data, RAS capability enhancements)			✓	✓
Security, compliance, and CXL Memory Device enhancements				✓
Compute Express Link® and CXL® are registered trademark	is of the Compute Expres	ss Link Consortium		Compute

Compliance Updates

Official testing for CXL 2.0 kicked off in December 2024

- CXL hosts multiple Test Events each year to provide Members with opportunities to test the functionality and interoperability of CXL devices and feature their devices on the CXL Integrators List
- The CXL Integrators List features over 48+ devices: <u>https://computeexpresslink.org/integrators-list/</u>

Company Name †	Product Name	Device ID	Device Type	Feature Set	Spec Revision	PHY Speed	Max Lane :	Form Factor	Function	Compliance Event (CTE)	Astera Labs, Inc.	Leo A1000	0x01E2	Type 3	MEM 2.0	CXL 2.0	3267/5	×16	CEM	MEM Expander	CTE 006	Microchip	SMC2000 8x32G	PM8701	Type 3	CN), Core 1.1	CXL 1.1	32GT/5	×8	CEM	MEM Expander	CTE 002				
dvanced	AMD EPYC	Turin	Type 1,	CNL Core	CXL 2.0	3267/5	x16	Other -	Host	Approved CTE 005	Cadence Design	Cadence CXL Controller IP	0100	Type 3	CXL Core 1.1, CXL	CNL 2.0	8GT/s	x4	CEM	ĮP	CTE 006	Microchip	SMC2000 16x32G	PM8702	Type 3	COL Core	CXI, 1.1	32GT/s	×16	CEM	MEM Expander	CTE 002				
	9005 Series Processors	turin	Type 2, Type 3	1.1, CAL Core 2.0,	CAL 2.0	320175	*10	Root Complex	PROSE	CIEGOS	Systems	control of the			Core 2.0							Microchip	SMC2000	PM8702	Type 3	CNL Core	CKL 2.0	32GT/s	x16	CEM	MEM	CTE 006				
	FIGUE SOLF		ijpe 5	MEM 2.0				compiex			Design C	Cadence CXL Controller IP	100	Type 3	CXL Core 1.1	OXL 1.1	8GT/s	×4	CEM	1P	CTE 003 Technology Inc.		b/ 16x32G			2.0					Expander					
phawave mi	KappaCore32 (PCIe/CXL	1001	Type 3	CKL Core 1.1	CXL 1.1	BGT/s	×B	CEM	IP	CTE 003	Systems		10.0001010	0.01423	100000000		13227	1022	200	1200200000	0220682	Microchip Technology	SMC2100 16x32G	PM8712	Type 3	CNL Core 2.0	CXL 2.0	32G7/s	x16	CEM	MEM Expander	CTE 006				
	Controller)										Intel	Intel® Agilex® 7	0x0DDB	Type 2	CXL Core 1.1	CNL 1.1	3267/5	x16	CEM	Accelerator, IP, MEM	CTE 002	inc.	168320			2.0					Exponder					
ND	AMD EPVC Genoa, Type 3 9004 Series Genoa-X,	Genoa-X,	ьX,	Type 3	Type 3	Type 3	Type 3	CKL Core 1.1	CXL 1.1	32GT/5	x16	Other - Root Complex	Host	CTE 001		FPGAs with CXL IP								Expander		Microchip Technology	SMC2100 8x32G	PM8711	Type 3	CNL Core 1.1	CKL 1.1	32GT/s	xS	CEM	MEM Expander	CTE 006
	Processors *	Bergamo, Storm Peak *						Complex			intel	Intel® Agilex® 7 FPGAs with CXL IP	0x0DDB	Type 3	CXL Core 1.1	COL 1.1	32GT/s	x16	CEM	Accelerator, IP, MEM Expander	CTE 002															
stera Labs	Leo A1000	0x01E2	Type 3	CXL Core	CRL 1.1	32GT/s	x16	CEM	MEM	CTE 003												Microchip Technology	SMC2100 16x32G	PM8712	Type 3	CXL Core 1.1	C0_1.1	32GT/s	x16	CEM	MEM Expander	CTE 006				
				1.1					Expander		Intel		0x0DDB	08 Type 1	CXL Core 1.1	CKL 1.1	32GT/s	x16	CEM	Accelerator,	celerator, CTE 002	Microchip	SMC2100	PM8711	Type 3	CXL Core	CHL 2.0	32GT/s	x8	CEM	MEM	CTE 006				
stera Labs	Leo Smart Memory Controller	0x01E2	Type 3	CXL Core 1.1	C0L 1.1	32GT/s	x16	Other - System on Chip	MEM Expander	CTE 003		Agilex® 7 FPGAs with CXL IP								IP		Technology Inc.	8x32G	1 10007 11	1900 5	2.0	0.2.2.0	320175	~	cem	Expander	000				
itera Labs.	Astera Labs	PT5161L	Type 3	CXL Core	CR. 1.1	32GT/5	x16	(SoC) Other -	Retimer	CTE 006	Intel	4th Generation	Emerald Rapids *	Type 1 Type 2	CXL Core	CNL 1.1	32GT/s	×16	Other - Root	Host	CTE 001	Micron	Micron Rev B	6400	Type 3	CXL Core 1.1	COL 1.1	32GT/s	x8	EDSFF	MEM Expander	CTE 001				
c.	Aries Gen-5 Retimer		.,,,	1.1				System on Chip (SoC)				Xeon Scalable Processors *		Type 3					Complex			Micron	Micron Rev A	6400	Type 3	CXL Core 1.1	CNL 1.1	32GT/s	x8	EDSFF	MEM Expander	CTE 001				
tera Labs,	Leo Smart	0x01E2	Type 3	MEM 2.0	CNL 2.0	32GT/s	x16	Other -	her - MEM CTE 006 Intel 4th		CTE 006	4th	Sapphire	Type 1	CXL Core	CRL 1.1	32GT/s	x16	Other -	Host	CTE 001	Micron Technology,	CZ120	6400	Type 3	CXL Core 1.1, C0L	CHL 2.0	32GT/s	×8	EDSFF	MEM Expander	CTE 006				
	Memory Controller					System Expander on Chip	Generation Xeon Scalable	Rapids *	 Type 2 Type 3 	1.1				Root Complex				Inc.				Core 2.0, MEM 2.0														

Summary

- CXL 3.2 provides security, compliance, and CXL Memory Device enhancements
 - Optimizes CXL Memory Device Monitoring and Management
 - Enhances functionality of CXL Memory Devices for OS and Application
 - Extends security with TSP (Trusted Security Protocol)
 - IDE protection for late poison messages
 - Added for HDM-DB memory devices
 - Compliance testing
- Looking forward
 - CXL Consortium Technical Working Groups are developing the next CXL specification to increase speed and improve our features for AI workloads, memory expansion, security, and reliability.
- CXL 1.1 and 2.0 devices are available in the market today!
 - Scan the QR code to see the growing CXL device ecosystem

Q&A

Please share your questions in the Question Box

Compute Express Link® and CXL® are registered trademarks of the Compute Express Link Consortium.

A

Thank You

www.ComputeExpressLink.org