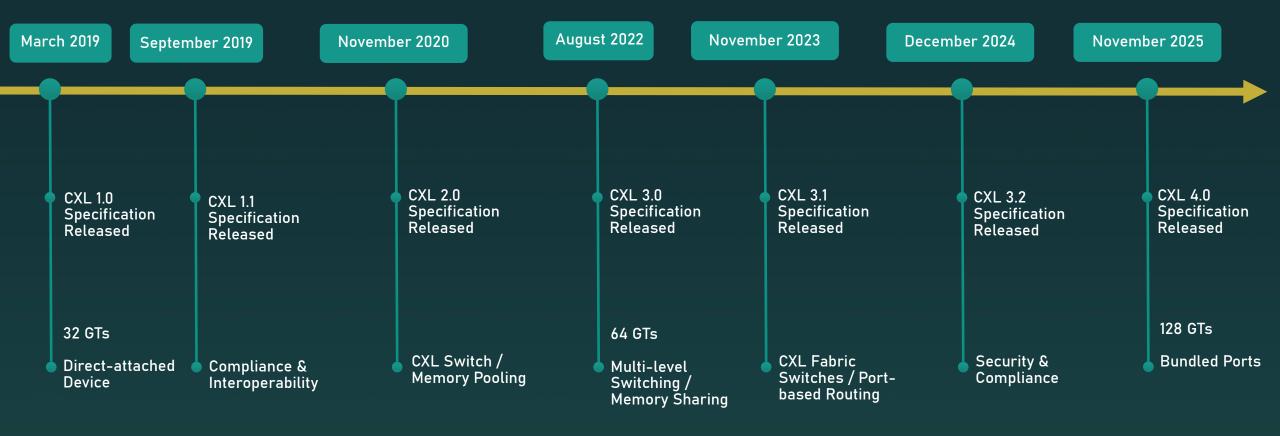


Introducing the CXL 4.0 Specification

December 4, 2025

Google

CXL Board of Directors



Industry Open Standard for High Speed Communications

280+ Member Companies

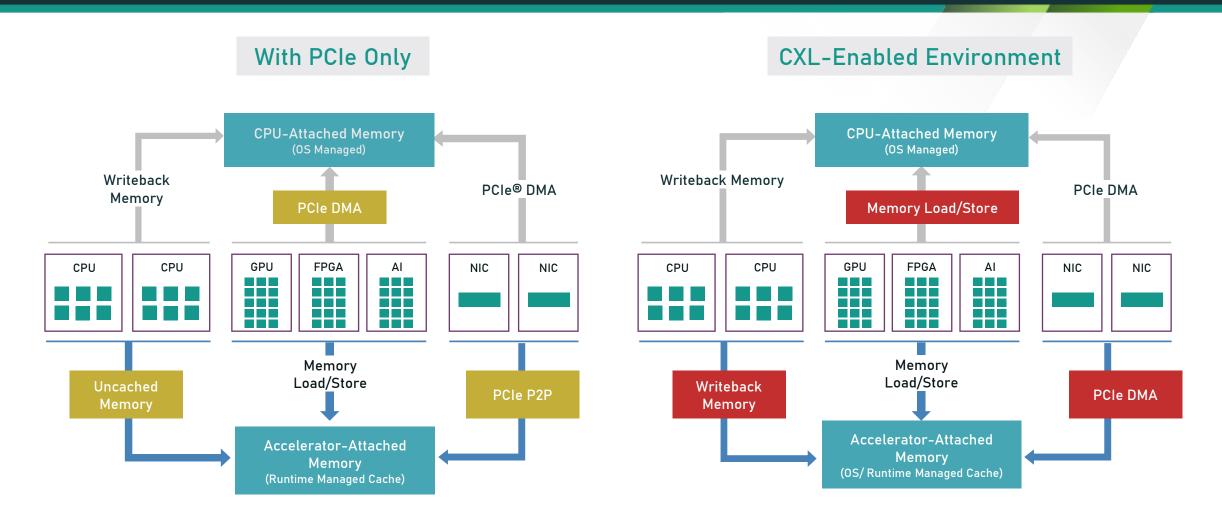
CXL Specification Release Timeline

Agenda

- Industry Landscape and CXL
- Computing challenges addressed by CXL (3 generations)
- CXL 4.0 Features
- Conclusions

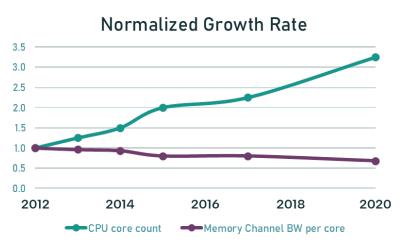
Industry Trends

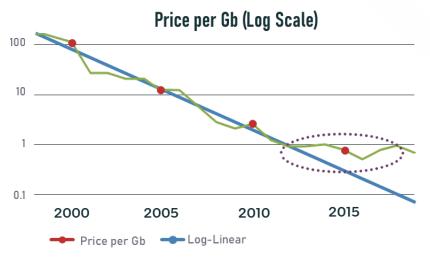
- Al and ML applications on cloud and on-premises
- Memory-intensive applications (database, fraud-detection, animation, retail etc.)
- Compute and silicon diversification (Heterogeneous computing)
- Disaggregation of memory from compute (memory pooling/sharing, etc.)
- Media Agnostic memory tiers deployed to decrease overall platform costs

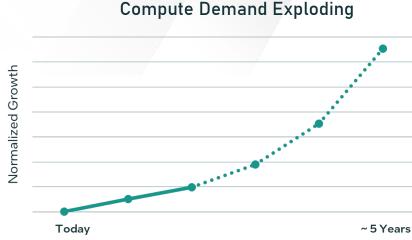

Agenda

- Industry Landscape and CXL
- Computing challenges addressed by CXL (3 generations)
- CXL 4.0 Features
- Conclusions

CXL®: Heterogeneous Compute - Challenge 1






Coherency and Memory Semantics added on PCIe Infrastructure

System Memory Scalability - Challenge 2

- Increasing core counts drives memory demand
- Increasing bandwidth and capacity
- Memory is not able to keep up -> more DDR channels (cost, power and feasibility challenges)
- Memory is an increasing % of system power and cost
- Memory price (cost/bit) is flat due to scaling challenges
- Memory power scaling with speed

AI/ ML Models are Growing Rapidly:

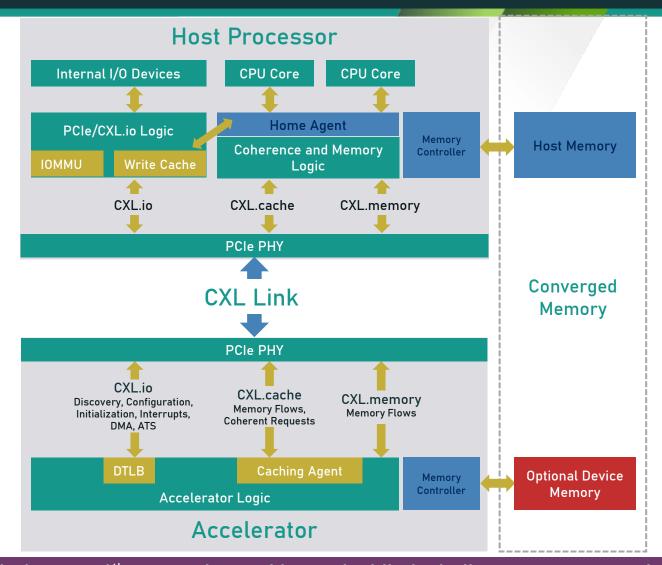
- ~50x growth in ~5 years
- Existing memory hierarchy can't keep pace

DDR5-6400 offers 50 GB/s with \sim 200 signal-pins. A x16 PCIe 6.0 at 64.0 GT/s offers 512 GB/s raw with 64 signal pins with no restriction of 15W per DIMM!

Challenge 2 addressed by CXL: Memory capacity and bandwidth expansion with scalability

CXL Approach

Coherent Interface


- Leverages PCIe with three multiplexed protocols
- Built on top of PCIe® infrastructure

Low Latency

 CXLCache/CXLMemory targets near CPU cache coherent latency (<200ns load to use)

Asymmetric Complexity

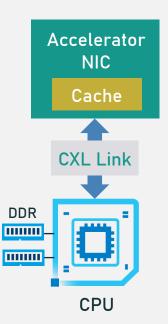
 Eases burdens of cache coherence interface designs for devices

Building on this approach for backwards-compatible evolution – to 4th generation and beyond while including new usage models

CXL 1.0/CXL 1.1 Usage Models w/ Direct Connect

Type 1 Device

Caching Devices/Accelerators


Usages:

Protocols:
• CXL.io

- PGAS NIC

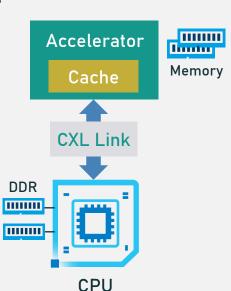
NIC atomics

CXL.cache

Type 2 Device

Accelerators with Memory

Protocols:

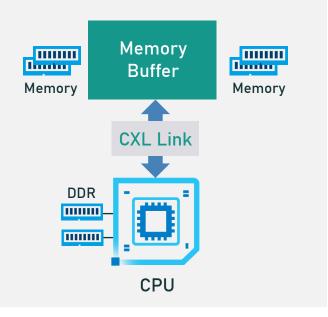

CXL.cache

CXL.memory

CXL.io

Usages:

- GPU
- FPGA
- Dense
 Computation

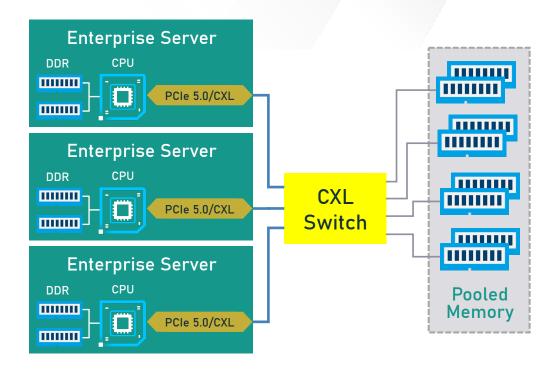


Type 3 Device

Memory Buffers

Usages:

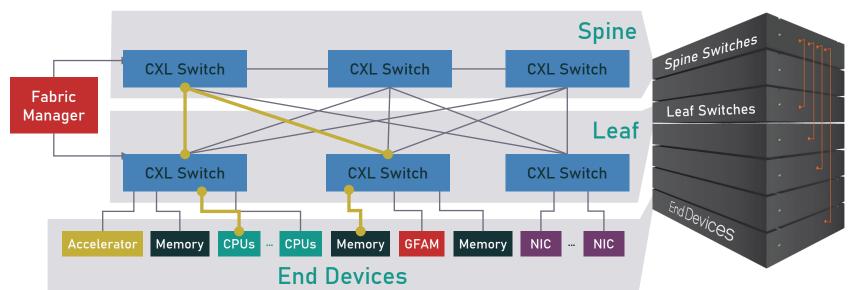
- Protocols:
- Memory BW expansion CXL.io
- Memory capacity
 CXL.mem expansion
- 2LM



Challenges addressed: (1) Heterogeneous compute and (2) Memory scalability

CXL 2.0: Resource Pooling at Rack Level, Persistent Memory Support and Enhanced Security

- Resource pooling/disaggregation
 - Managed hot-plug flows to move resources
 - Type-1/Type-2 device assigned to one host
 - Type-3 device (memory) pooling at rack level
 - Direct load-store, low-latency access similar to memory attached in a neighboring CPU socket (vs. RDMA over network)
- Hot-plug; On/Off-lining support
- Persistence flows for persistent memory
- Fabric Manager/API for managing resources
- Security: authentication, encryption
- Beyond node to rack-level connectivity!


Challenge 3: Stranded memory and compute resources at Data Centers.

Disaggregated system with CXL optimizes resource utilization delivering lower TCO and power efficiency

CXL 3.0 Enhancements

- Bandwidth doubling with 64 GT/s at 0-latency add
- Protocol enhancements with direct peer-to-peer to HDM memory
- Composable systems with spine/leaf architecture at rack/pod, Scale-out Fabric (PBR)
- Shared Memory
- Confidential Compute

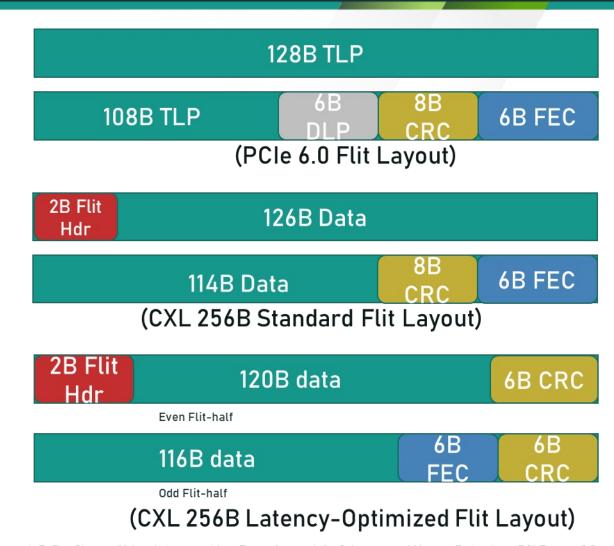
CXL 3.0 Fabric Architecture

- Interconnected spine switch system
- Leaf switch NIC enclosure
- Leaf switch CPU enclosure
- Leaf switch accelerator enclosure
- Leaf switch memory enclosure

Example Traffic Flow

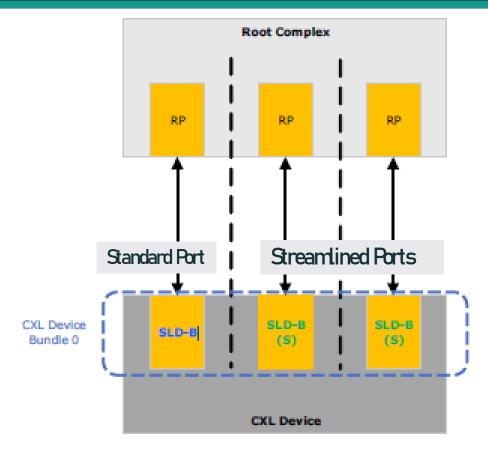
Challenge 4: Fine-grained data sharing/ message passing in distributed composable systems

Key Feature Enhancements for CXL 4.0



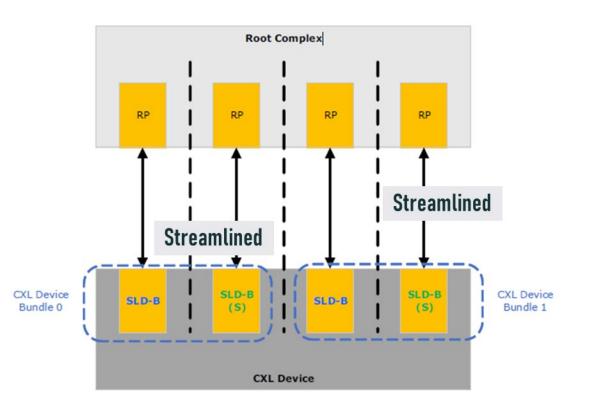
- Doubles the bandwidth to 128GTs with zero added latency
 - Enables rapid data movement between CXL devices, directly improving system performance
 - Maintains previously enabled CXL 3.x protocol enhancements with the 256B Flit format
 - Introduces the concept of native x2 width to support increased fan-out in the platform
 - Support for up to four retimers for increased channel reach
- CXL bundled port
 - Ability to aggregate device ports between Host and CXL accelerators (Type 1/2 devices) to increase bandwidth of the connection
- Memory RAS enhancements

CXL 4.0: Doubles Bandwidth with Same Latency


- Uses PCIe® 7.0 PHY @ 128 GT/s
- PCle 7.0 FEC and CRC
 - No changes from CXL 3.0 FEC and CRC
 - Optical support with PCIe 7.0
 - Up to 4 Retimers for channel extension
- Standard 256B Flit along with an additional 256B Latency Optimized Flit (0-latency adder over CXL 2.0 and CXL 3.X)
 - 0-latency adder trades off FIT (failure in time, 10⁹ hours) from 5x10-8 to 0.026 and Link efficiency impact from 0.94 to 0.92 for 2-5ns latency savings (x16 - x4)
- Native x2 width support
- Extends to lower data rates (8G, 16G, 32G, 64G)
- Keeps several previously enabled CXL 3.X protocol enhancements with the 256B Flit format

1: D. Das Sharma, "A Low-Latency and Low-Power Approach for Coherency and Memory Protocols on PCI Express 6.0 PHY at 64.0 GT/s with PAM-4 Signaling", IEEE Micro, Mar/ Apr 2022 (https://ieeexplore.ieee.org/document/9662217)

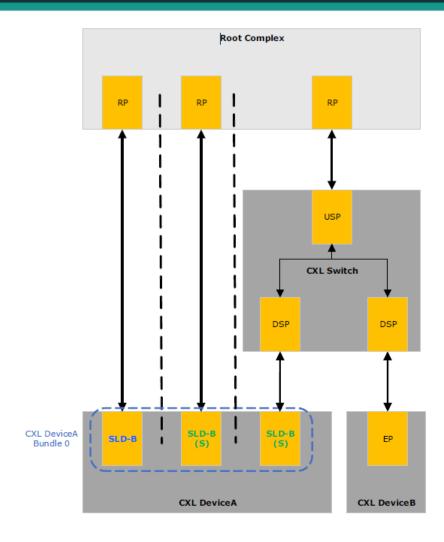
Bundled Ports to Increased Bandwidth


SLD-B : Single Logical Device exposed by each port in a bundle

- Bandwidth requirements growing, but at different rates depending on type of devices and workloads
- Certain devices and workloads can benefit from more than 2X Bandwidth scaling that transition to 128 GT/s provides
- Need the ability to logical aggregate multiple CXL Ports
- MH-SLDs enable such aggregation for memory expansion use case, but does not address accelerators
- CXL 4.0 introduces "Bundled Ports" => enables Logical Aggregation of multiple CXL Ports of an accelerator device
 - Type 1 and Type 2 Devices
 - Type 3 accelerator devices

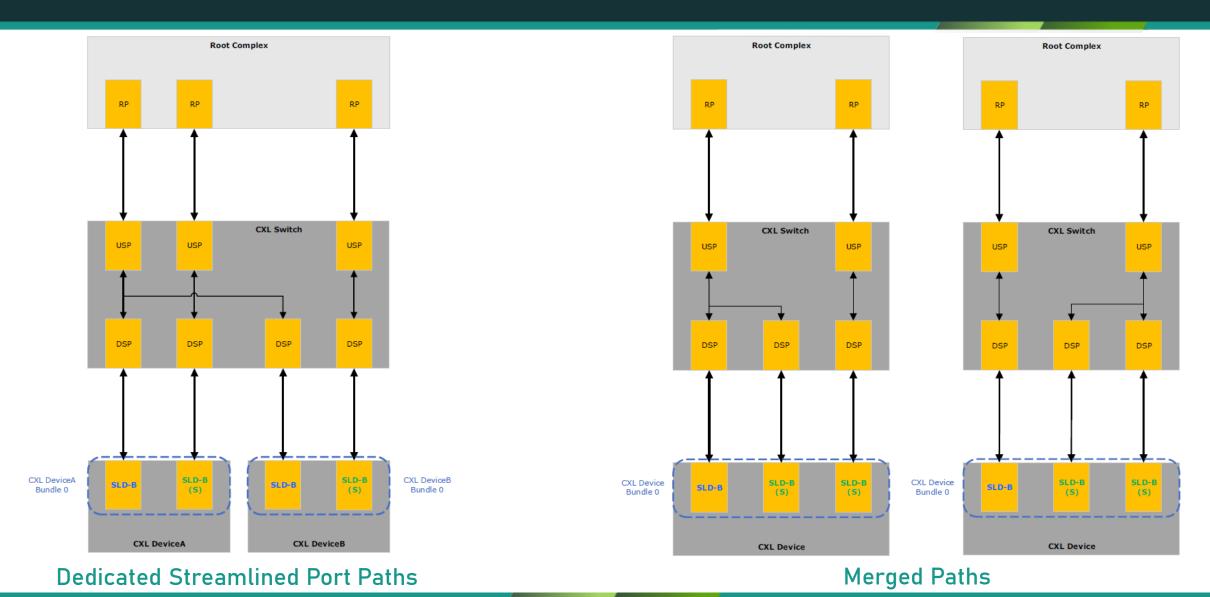
Challenge 5: Heterogeneous workloads demand higher bandwidth than ever

Bundled Port Device (BPD) Construction



- One or more Bundle(s) per Device
- Each Bundle exposes at least one standard fullcapability Port and any number of Streamlined Ports
- Streamlined Ports are area/power optimized for data bandwidth expansion
 - 256B Flit mode only
 - Optimized for UIO (non-UIO VCO perf can be sub-optimal)
- Legacy software can safely enumerate BPD and manage the individual ports
- New software is needed to take advantage of Bundling (e.g. interleaving traffic across BPD ports)
- BPDs will typically use a different Device ID(s) to prevent non-BPD aware device drivers from managing the device
- Bundled Port-aware software is expected to configure IOMMU instances associated with the Bundled Ports so that all ports have an identical view of the memory
 - One port of BPD may issue ATS request and other port may utilize the returned HPA

Switch Topologies - I


Root Complex CXL Switch DSP DSP DSP CXL DeviceA SLD-B SLD-B CXL DeviceB SLD-B SLD-B Bundle 0 CXL DeviceB CXL DeviceA

Bundle 0

1:1 Port Mapping

Switch Topologies - II

Coordination between Bundled Ports

- For PM/Reset purposes, each Port in a bundle is independent
 - Each port returns CDAT independently. HDM capacity of a BLD is the sum of its SLD-Bs.
 - All BLD links shall support PM VDM exchange including GPF
 - Each link can independently observe hot-resets
- CXL Reset and Cache disable bit are implemented by a single SLD-B. These have global scope and affect the entire BLD.
- Both TSP and IDE controls are centralized through one port

Memory RAS Enhancements

- Advanced CVME enhancements adding granularity control and event generation for Patrol Scrub cycles
 - Benefits: Allows for general media event record to be populated with error count flag conditions for advanced system decisions
- Defines mechanism for Host-initiated Post Package Repair (PPR) maintenance operations
 - Benefits: Ensure reliable DRAM row repair by enabling device-initiated PPR at boot through a persistent configuration bit across resets
- Defines memory sparing maintenance operations at device boot and enables deferral to next boot
 - Benefits: Enable flexible memory repair at boot by supporting both deviceinitiated and host-deferred sparing operations for improved reliability and maintenance efficiency

CXL Specification Feature Summary

Not Supported

√ Sunnorted

Features	CXL 1.0 / 1.1	CXL 2.0	CXL 3.x	CXL 4.0
Release date	2019	2020	2022-2024	2025
Max link rate	32GTs	32GTs	64GTs	128GTs
Flit 68 byte (up to 32 GTs)	✓	✓	✓	✓
Flit 256 byte (up to 64 GTs)			✓	✓
Type 1, Type 2 and Type 3 Devices	✓	✓	✓	✓
Memory Pooling w/ MLDs		✓	✓	✓
Global Persistent Flush		✓	✓	✓
CXL IDE		✓	✓	✓
Switching (Single-level)		✓	✓	✓
Switching (Multi-level)			✓	✓
Direct memory access for peer-to-peer			✓	✓
Enhanced coherency (256-byte flit)			✓	✓
Memory sharing (256-byte flit)			✓	✓
Multiple Type 1/Type 2 devices per root port			✓	✓
Fabric capabilities (256-byte flit)			✓	✓
Back invalidate capabilities on Type 3 devices (HDM-DB)			✓	✓
Fabric Manager API definition for PBR Switch			✓	✓
Host-to-Host communication with Global Integrated Memory (GIM) concept			✓	✓
Trusted-Execution-Environment (TEE) Security Protocol			✓	✓
Memory expander enhancements (up to 32-bit of meta data, RAS capability enhancements)			✓	✓
Security, compliance, and CXL Memory Device enhancements			✓	✓
CXL Bundled Port				✓
Memory RAS enhancements (granular event reporting, Post Package Repair (PPR), and flexible memory sparing operations)				✓

Evolution of CXL

CXL 4.0 • 128 GTs CXL Bundled Port Core/Edge • Memory RAS enhancements WAN CXL 3.x Spine Switch • 64 GTs **DATA** Improved security - Leaf Switch **CENTER** • Composable Fabric growth for disaggregation of memory & accelerators _ TOR Switch • Memory sharing with back invalidate Data center **RACK** CXL 2.0 Interconnect • Multiple nodes inside a Rack/Chassis supporting pooling of resources Switch-based memory poolingGlobal Persistent Flush (GPF) Processor NODE Interconnect Link-level encryption **PACKAGE** • 32 GTs SoC • Single Node coherent interconnect Interconnect Load/store semantics DIE

Hardware enforced cache coherence

Low latency

CXL: Health of the Ecosystem

Attribute	Status	Comments
Membership	280+ members	
Products	9 Compliance events since April 2023	9 ^{th:} : November 2-5, 2025. 30 CXL 1.1 and 30 CXL 2.0 devices in <u>Integrators list</u> 7 Type-1, 8 Type-2, 57 Type-3, 6 Type1/2/3 Significant s/w development. <u>Linux</u> Kernel 5.15 full support of T3 (Ubuntu 22.04.1 LTS/ Fedora Core 36 works) Multiple show-cases and demos in multiple conferences (SC, FMS, OCP, Memcon, etc.)
Heterogeneous Compute (Type1/2)	Deployed	<u>UberNIC</u> : low-latency (1/2) and high throughput (>2.5x) <u>VM Migration</u>
Memory (Type-3)	Deployed	Wide deployment. Both bandwidth and capacity expansion. Reduces loaded latency. Multiple media (DRAM and storage covered)
Pooling (CXL 2.0)	PoCs look promising	VM Elastic Memory demand: Pond showed 9% DRAM savings initially (still substantial; paper in ASPLOS 23) –likely to go up – direct attach. Data base elastic memory demand: SAP and Intel: works well for TPCC (negligible performance degradation even with switches). See paper.
Sharing/ Fabric	WIP (CXL3+)	CXL 3 silicon development in progress. S/W: Work actively continues on CXL 3.x (e.g., a patchset to layer a filesystem on top of shared memory)

Summary

- CXL 4.0 increases speed and bandwidth to meet the increasing demands of emerging workloads placed on today's data centers.
 - Doubles the bandwidth to 128GTs with zero added latency
 - Introduces the concept of native x2 width to support increased fan-out in the platform
 - CXL bundled port
 - Memory RAS enhancements
 - Maintains backward compatibility with CXL 3.x, 2.0, 1.1, and 1.0

 CXL Consortium Technical Working Groups continues to evolve to meet the future usage models

Thank You

www.ComputeExpressLink.org